
TOTeM: Temporal Object Type Model for
Object-Centric Process Mining

Lukas Liss , Jan Niklas Adams , and Wil M.P. van der Aalst

RWTH Aachen University, Aachen, Germany
{liss,niklas.adams,wvdaalst}@pads.rwth-aachen.de

Abstract. System behavior emerges from multiple subprocesses oper-
ating on interacting objects of different types. The relations between
types of subprocesses are essential to understand the system’s behav-
ior. This includes temporal relations as well as cardinalities of relation-
ships. Whether a product is produced before or after a customer order,
which is essential with respect to lean management, would be an exam-
ple of a temporal relationship. Conversely, the number of products for
each customer order would be an example of a cardinality constraint.
Current object-centric process modeling approaches focus on precedence
constraints between activities, which is not sufficient to capture tem-
poral and cardinality relationships between types. This paper introduces
the temporal object type model (TOTeM) to model and discover process-
specific type-level relations. We propose three type-level relations: a tem-
poral relation, an overall log cardinality, and an event cardinality. The
contributions of this paper include a definition of the temporal object
type model, an algorithm to compute them, a publicly available imple-
mentation, and an evaluation.

Keywords: Process model · Object-centric process mining · Relation-
ship model

1 Introduction

Real-world processes are complex orchestrations of interacting subprocesses.
Each subprocesses instantiation is identified by an object of the subprocesses’
type. The interaction between objects is defined by shared actions between sub-
processes. In traditional process mining, a process is assumed to only consist of
one single subprocess, i.e., the case identifier. As a result, one can not differ-
entiate the different objects and their interactions that make up a process. To
enable this distinction, process mining shifted towards an object-centric perspec-
tive on processes [14]. There, individual objects of different types can be tracked
throughout the process. Each event has an activity, a timestamp, and a set of
objects that are involved in the event via an event-to-object relation. Objects
can also be connected without sharing events. These relations can be quanti-
fied and captured in explicit object-to-object relations [10]. Current models for
object-centric processes have limitations in describing the temporal and cardi-
nality relations between types. Thus, we proposed a new model called TOTeM.

https://orcid.org/0000-0002-4719-7993
https://orcid.org/0000-0001-8954-4925
https://orcid.org/0000-0002-0955-6940

2 L. Liss et al.

order

metal

rubber

worker

tire0..1 0..1

0..1
0..1

0..1
0..1

0..1 0..1

0..
1

0..
1

0..1
0..1

* 0..1
1 1

1

1

0..*

1

1

*

*

1

10..*

1 1

Fig. 1. Temporal object type model for the example of a tire production process.

Let us consider an object-centric example process that produces tires. It
involves five object types: orders, tires, rubber, metal, and workers. The workers
produce multiple tires per day. A tire is built by exactly one worker using one
unit of metal and one unit of rubber. Both the metal and the rubber are prepared
before. Orders can be connected to multiple tires, but a tire is always connected
to exactly one order. The company follows the lean management pull principle
[18], so they only produce tires if there is a demand for them. So, a new tire
is only built after its order has been received. All the characteristics mentioned
above are modeled in the TOTeM model in Figure 1 for the running example.
In Section 4, we introduce TOTeM models and explain how the characteristics
are represented. Here, we first show that these characteristics are contained in
event logs, but current models are not sufficient to describe all of them.

An example excerpt of the object-centric event log in the OCEL 2.0 format
[10] from this process is presented in Table 1. This contains the event-to-object
relations as well as explicit object-to-object relations. Some events in the process
only involve objects from one type, like receive order that only involves an order
object. Other involve objects of multiple types, like build tire, which involves a
worker, metal, rubber, and a tire.

Table 1. Object-centric event log for the example tire production process. The event-
to-object relations are on the left and the object-to-object relations are on the right.

eventId activity time object types source object target object qualifier
order tire rubber metal worker ...

e1 receive order 1.3.24 14:10 o1 r2 w1 handled by
... r2 w2 handled by

e12 prepare rubber 1.3.24 15:15 r2 w1 m2 w1 handled by
e13 wash rubber 1.3.24 15:25 r2 w2 m2 t2 used for
e14 prepare metal 1.3.24 15:50 m2 w1 r2 t2 used for
e15 form metal 1.3.24 16:10 m2 w1 t2 w1 build by
e16 build tire 1.3.24 16:50 t2 r2 m2 w3 t2 o1 assigned to
e17 ship order 1.3.24 17:00 o1 t1,t2 w3 w1 supervises
e18 receive payment 5.3.24 13:00 o1 w3 w2 supervises

... ...

Temporal Object Type Model for Object-Centric Process Mining 3

An object-centric event log in the OCEL 2.0 format [10] contains four types
of information about activities and object types. First, the event log contains
information about the temporal ordering of activities. Second, the cardinality for
how many objects per object type are involved in an activity is contained in the
event log. We refer to this as the event cardinality. Third, the information on how
object types are related temporally. For example, tires only come into existence
after the order object exists. Fourth, the event log contains information about
the cardinalities between object types. For example, metal is always handled
by exactly one worker, but rubber can be connected to multiple workers. We
refer to this as the log-level cardinality. All types of information are valuable in
understanding and analyzing a process. Note that an object-centric event log is
not limited to these four types of information since there can be, for example,
additional attributes, but all object-centric event logs in the OCEL 2.0 format
[10] contain these four.

Current approaches model object-centric processes with object-centric Petri
nets [5] or class diagrams [8]. Class diagrams model only the fourth type of
information, the cardinalities between object types. They use neither temporal
information about activities nor object types. On the other hand, object-centric
Petri nets focus on the first type of information, the precedence constraints of
activities, and the second type. So the object-centric Petri net for the running
example in Figure 2 shows that prepare rubber has to precede wash rubber and
that ship order can involve multiple tires but just one order. The arcs with a
triple arrowhead in the object-centric Petri net are variable arcs that show that
the connected activity can involve multiple objects. However, none of the models
describe the third type of information, the temporal ordering of object types.
It is also impossible to reliably derive one type of information from another, as
shown by the example object-centric Petri net in Figure 2.

prepare
metal

form
metal

ship
order

receive
order

receive
payment

build
tire

prepare
rubber

wash
rubber

rubber

metal

order

worker

tire

recycle
metal

recycle
rubber

Fig. 2. Object-centric Petri net for the example tire production process.

For example, in the object-centric Petri net for the running example in Fig-
ure 2, one can not differentiate whether the pull principle [18] is followed or not.
In the context of the running example, this means that tires only come into

4 L. Liss et al.

existence when the order is placed, so the customer demand already exists. This
information on the temporal relation between types is contained in the event log
but not discovered or modeled by object-centric Petri nets. Since the tire and
the order only connect when the order is shipped, there is no temporal relation
between build tire and receive order modeled in the object-centric Petri net.

Another important characteristic of a process is the work distribution. This
relates to information about the cardinalities between object types. For example,
in the tire process, it makes a huge difference whether there is an assembly line
where multiple workers are connected to (work on) a material or just one. In
the example process, multiple workers are connected to one rubber, but for each
metal object, there is only one worker connected. This difference is not visible
in the object-centric Petri net. This example shows the limitations of current
modeling approaches for object-centric processes. To close that gap, we propose
the temporal object type model (TOTeM).

This paper presents four contributions to enable the data-based discovery of
the described object-type relations that characterize object-centric processes.

• We propose a definition for temporal object type models (TOTeM) and the
three types of object type relations.

• We describe an algorithm to discover TOTeM models from object-centric
event logs [10].

• We implement the algorithm and publish the open-source code.

• We use the implementation to perform an evaluation of our approach on a
publicly accessible event log.

The paper is structured in the following way. In Section 2, we present the
related work. Afterward, in Section 3, we describe the preliminaries. Section 4
elaborate on the three types of relations and how they are combined to TOTeM
models. A definition of the proposed algorithm to compute TOTeM models is
given in Section 5. Section 6 evaluates the proposed model and algorithm with
a qualitative and quantitative evaluation. In Section 7, we conclude the paper
and give directions for future research.

2 Related Work

Process Mining aims to generate insights into business processes [1]. The main
three tasks in process mining are discovery, conformance checking, and enhance-
ment. In process discovery, one creates a process model given an event log that
describes the process. To better represent real-world processes with multiple
objects of different types, object-centric process mining was introduced [14].
This allows distinguishing multiple objects within a process and solves repre-
sentation problems of traditional process mining like deficiency, convergence,
and divergence [2]. Our proposed TOTeM model and the described discovery
algorithm, therefore, belong to the field of object-centric process discovery. The
goal of TOTeM models is to give insights into the process by understanding

Temporal Object Type Model for Object-Centric Process Mining 5

the temporal relations and cardinalities between object types. Current discovery
approaches focus on mining dependency constraints between events [5].

There exist a variety of process models for traditional event logs, like directly
follows graphs, Petri Nets [24], BPMN [12], Causal Nets [3], and Process Trees
[21]. Since they are limited to a single case identifier, they do not model any
object type relations.

There are also object-centric process models. For example, object-centric
Petri nets [5] and object-centric directly follows graphs [9] can be discovered from
object-centric event logs [10]. An object-centric directly follows graph shows the
directly follows relations between activities per object type [9]. Object-centric
Petri nets and a discovery approach for them are introduced by Berti and van der
Aalst [5]. Other approaches like Petri nets with identifiers [26] and COA-nets [16]
also extend Petri nets to track objects and their types in a process. These models
describe process behavior by modeling precedence constraints of activities. As
shown in the introduction, one can not always derive clear insights about the
type-level behavior from the activity level constraints. Object-centric behavior
constrains [4] also model temporal relations between activities and additionally
model the cardinality of object types for the activities as well as the cardinal-
ity relation between object types. But similar to object-centric Petri nets [5],
the temporal ordering of object types is only indirectly modeled via precedence
constraints for activities, which is not sufficient, as shown in the introduction.
Other approaches like PHILharmonicFlows [20] and the MERODE approach [25]
combine multiple models to represent object-centric processes. They use state
models to represent the lifecycle of object types and class diagrams to model
the relations between them. The temporal relations between object types can be
represented indirectly via state change dependencies but must not be explicitly
modeled. But they can not be discovered from event data but must be modeled
by an domain expert and they distribute the information over multiple models.

Besides the object-centric process models, one can also use class diagrams
to describe how object types are related to each other [8]. This modeling is
mainly done by hand and is not discovered, which hinders the ability to dis-
cover unknown behavior in the process. Many different class diagrams exist,
e.g., UML-Class diagrams [8] or Entity-Relationship models [11]. Since they are
not specifically designed for processes, they do not support the event-level car-
dinality and do not model temporal relation between types. There are multiple
extensions that try to integrate time into class models [17]. However, those ap-
proaches focus on the time that modeled information is valid. Ferg for example,
extended ER diagrams to represent the start and end date of the validity of
attributes of classes [15]. Elmasri and Wuu extended ER models to model the
lifespan of individual classes [13]. However, they do not model how the lifespans
of two classes relate to each other, which is relevant for processes.

So far, a process-specific model notation describing the temporal relations
and the cardinality relations between types that can be discovered from process
data is missing. To close that gap, we propose TOTeM models.

6 L. Liss et al.

3 Preliminaries

We assume object-centric event data stored in, for example, OCEL 2.0 format
[10]. Events are activities that happen at a timestamp for a set of objects of
different types. Uevent is the universe of event identifiers. The universe Uact

contains all visible activities. Utype is the universe of all object types. The uni-
verse of objects is Uobj . Each object has exactly one type associated with it
πtype : Uobj → Utype. Utime is the universe of all timestamps.

Definition 1 (Object-Centric Event Log). L = (E,O,OT,O2O, πact, πobj ,
πtime) is an event log with:

– E ⊆ Uevent is a set of events, O ⊆ Uobj is a set of objects,
– OT = {πtype(o)|o ∈ O} is a set of object types,
– O2O ⊆ {(o1, o2)|o1, o2 ∈ O ∧ o1 ̸= o2} is the set of object to object relations,
– πact : E → Uact maps each event to an activity,
– πobj : E → P(Uobj) \ {∅} maps each event to at least one object,
– πtime : E → Utime maps each event to a timestamp.

Note that we abstract from qualifiers and attribute values, i.e. we use a sub-
set of OCEL 2.0 [10]. The tabular representation of an object-centric event log
consists of one table showing the event-to-object relations and another table
showing the object-to-object relations. Table 1 shows the event to object rela-
tions for the example event log. There, each event is connected to one activity,
a timestamp, and some objects of the five types of the example tire produc-
tion process. Table 1 shows the object-to-object relations for the exemplary tire
production process. Often, two objects are connected via an object-to-object re-
lation if they share an event. For example, the objects r2 and w1 of the first
object-to-object relation in Table 1 are both involved in event e2. However, a
shared event is not required if there is an explicit object-to-object relationship.
For example, there is an object-to-object relation between w3 and w2, although
they never share an event because, for example, w3 supervises w2. Older formats
of object-centric event logs do not have explicit object-to-object relations. To be
able to use these event logs as well and have one source of truth for which objects
are connected, we add objects that share events to the potentially empty set of
object-to-object relations.

Definition 2 (Object-to-Object Relations from Event-to-Object Rela-
tions). Given event log L = (E,O,OT,O2O, πact, πobj , πtime) the event log with
all connected objects represented in the object-to-object relations is given by:
L′ = (E,O,OT,O2O′, πact, πobj , πtime) with O2O′ = O2O ∪ {(o1, o2) ∈ O ×
O|o1 ̸= o2 ∧ ∃e∈E {o1, o2} ⊆ πobj(e)}.

In the following we assume, that all event logs are event logs that represent all
connected objects in the object-to-object relation. We call two objects connected
if they are part of an object-to-object relation and we call two types related if
there is at least one object of each type that is connected to an object of the
other type.

Temporal Object Type Model for Object-Centric Process Mining 7

Definition 3 (Connected Objects and Types). Given event log L = (E,O,
OT,O2O, πact, πobj , πtime), the set of connected objects O2O = {(o1, o2) ∈ O ×
O|(o1, o2) ∈ O2O ∨ (o2, o1) ∈ O2O} contains all pairs of objects for which at
least one direction is part of O2O.
We reduce a set of objects O′ ⊆ O to objects of type t ∈ OT with the following
notation: O′

↓t = {o ∈ O′|πtype(o) = t}.
We reduce the connected objects to pairs of type t1, t2 ∈ OT with O2O↓t1,t2 =
{(o1, o2) ∈ O2O|o1 ∈ O↓t1 ∧ o2 ∈ O↓t2}.
Two types t1, t2 ∈ OT are connected iff ∃o1∈O↓t1 ,o2∈O↓t2

(o1, o2) ∈ O2O.

For all the example objects in Table 1, the reduction to the type worker
results in {o1, t2, r2,m2, w1, w2, w3}↓worker = {w1, w2, w3}. The types rubber
and worker are connected because, for example, r2 and w1 are connected.

For the temporal type relation, we need to determine the lifespan of objects
within a process. We assume that the lifespan of an object, in the context of the
given process, is defined by the first and last appearance of that object in the
event-to-object table.

Definition 4 (Object Lifespan Interval). Given an event log L = (E,O,OT,
O2O, πact, πobj , πtime) and object o ∈ O. The start of the lifespan of object o is
otsL,start(o) = min({t ∈ Utime|∃e∈Eπobj(e) = o ∧ πtime(e) = t}). The end
of the lifespan of an object o is otsL,end(o) = max({t ∈ Utime|∃e∈Eπobj(e) =
o ∧ πtime(e) = t}). The lifespan of an object is the interval ols(o) = {t ∈
Utime|otsL,start(o) ≤ t ≤ otsL,end(o)}.

while (w) equal (=)starts (s) finishes (f)

before (<) meets (m) overlap (o)

Fig. 3. Allen’s interval relations [7].

For example the lifespan for object r2 starts at 1.3.24 15:15 and ends at
1.3.24 16:50 because event e12 is the first and event e16 is the last event that
involves r2.

We use Allen’s interval algebra [7] on the object lifespan intervals. Figure 3
shows all the relations that intervals can have. For example, the first one shows
I1 w I2, which means that the interval for I1 is while(w) interval I2. Each of
the relations (except equal(=)) has an inverse relation as well. So, for example,
if I1 is while(w) I2, then I2 is while inverse(w−1) to I1. In the following, we
will focus on non-inverse relations. For example, the lifespan of r2 is while(w)
the lifespan of o1 because the lifespan of o1 starts earlier and ends later. So

8 L. Liss et al.

the while(w) relation holds: ols(r2) w ols(o1). The concrete definitions for the
relations are given in [7]. Note that Allen calls the while(w) relation during, but
to avoid confusion with the during(■) relation proposed in this paper we use
another name.

4 Temporal Object Type Model

In this section, we describe the proposed TOTeM model. First, we introduce each
of the three relation types separately. Then, we explain how they are combined
together in the TOTeM model.

4.1 Temporal Relation

The goal of the temporal relation is to describe how the lifespan of connected
objects from two types relate to each other. The relation of one object’s lifespan
to another can be described using Allen’s 13 interval algebra relations. Some of
these relations are similar. We group these similar relations together and use
these groups to define temporal relations over object types.

For example, the while(w), starts(s), finishes(f), and equal(=) interval rela-
tions have in common that the first interval only exists if the second one exists.
This group of lifespan interval relations belongs to the temporal relation dur-
ing(■). A during(■) relation from type 1 to type 2 describes that all pairs of
connected objects from type 1 to type 2 have only lifespan interval relations
that belong to the described group. So the lifespan of a type 1 object either is
while(w), starts(s), finishes(f), or is equal(=) to the lifespan of a connected type
2 object. Figure 4 shows the temporal relations and the related groups of inter-
val relations. In the running example, the during(■) from the tire to the order
means that all tires only exist during their connected order object also exists and
never earlier or later. Also, one can differentiate long-term assets like the workers
and short-term assets like rubber, metal, and tire. In the TOTeM model, all the
connected short-term assets have a during(■) relation to the worker type.

T1:
T2:

ols(o1)Type 1 Type 2

Type 1 Type 2

Type 1 Type 2

ols(o2)

w s f =

T1:
T2:

ols(o1)

ols(o2)

< m o

Visualization in TOTM Allowed lifespan relations between connected objects

all relations are allowed

Temporal
Relation

During

Proceeds

Parallel

+ During-Inverse and Proceeds-Inverse

Fig. 4. The temporal relation during(■), precedes(▶), and parallel(∥) (based on Allen’s
interval algebra [7]). For each temporal relation, the allowed lifespan relations for con-
nected objects of Type 1 (in orange) and Type 2 (in green) are shown.

Temporal Object Type Model for Object-Centric Process Mining 9

We also grouped together the before(¡), meets(m), and overlaps(o) interval
relations because for all of them, the first interval starts before the second one
starts and ends before the second one ends. This group relates to the precedes(▶)
temporal relation. Both the during(■) and precedes(▶) temporal relation can
be inversed by changing the target and source type. In the running example,
there are precedes(▶) relations from rubber and metal to the tire. Since these
materials are used to produce the tire, they exist before the tire.

The parallel(∥) temporal relation allows for all interval relations. This means
that there is no clear order in the relationship between lifespans. The parallel
relation between metal and rubber in the TOTeM model for the running example
shows that the lifespans of objects of these types are not ordered.

Temporal relations are defined in Definition 5 by requiring that all lifespan
interval relations for connected objects of the types belong to the described
groups for the temporal relation. The definition introduces a scoring function
that computes the fraction of object pairs from the two types that fulfill the
requirements of the temporal relation. This scoring function is also used in the
algorithm in Section 5 together with a noise parameter for filtering undesired
infrequent behavior to determine possible temporal relations.

Definition 5 (Temporal Relations). Given event log L = (E,O,OT,O2O,
πact, πobj , πtime) we define the score for (t1, t2) ∈ OT × OT for the temporal
relations as:
sc■(t1, t2) =

|{(o1,o2)∈O2O↓t1,t2|ols(o1) d ols(o2)∨ols(o1) s ols(o2)∨ols(o1) f ols(o2)∨ols(o1) = ols(o2)}|
|O2O↓t1,t2|

sc■inv
(t1, t2) = sc■(t2, t1)

sc▶(t1, t2) =
|{(o1,o2)∈O2O↓t1,t2|ols(o1)<ols(o2)∨ols(o1) m ols(o2)∨ols(o1) o ols(o2)}|

|O2O↓t1,t2|
sc▶inv

(t1, t2) = sc▶(t2, t1)

sc∥(t1, t2) =
|O2O↓t1,t2|
|O2O↓t1,t2|

= 1

A temporal relation holds for two types if the related score is equal to 1.

4.2 Log Cardinality

The log cardinality describes how many objects of a target type are associated
with objects of the source type over the whole lifespan of an object. They are
similar to cardinalities described by class diagrams [8]. Types are only connected
when there is at least one pair of objects from the two types that are connected.
Therefore, we do not need to consider the case that no objects of a type are
connected to any object of the other type. The cardinality of connected objects
can therefore be 1 (exactly 1), 0..1 (none or 1), 1..* (1 or many) 0..* (none,
1, or many). Figure 5 shows the possible cardinalities from type 1 to type 2 and
what type of structures this relation allows in the connected object graph. The
indicator for how many objects of type 2 are connected to objects of type 1 is
located on the connection line between the types close to the box that repre-
sents type 2. Definition 6 defines log cardinalities using a scoring function that
represents the fraction of objects of the source type that match a log cardinality
by being connected to the right amount of objects from the source type. If all

10 L. Liss et al.

objects of the source type match the cardinality requirement, the log cardinality
holds for the given types.

Definition 6 (Log Cardinality). Given event log L = (E,O,OT,O2O, πact,
πobj , πtime) and filter parameter τ , we detect temporal relation for a pair of
connected types (t1, t2) ∈ OT ×OT :

scl−1(t1, t2) =
|{o1∈O↓t1 | |{o2∈O↓t2 |(o1,o2)∈O2O}|=1}|

|O↓t1 |

scl−0..1(t1, t2) =
|{o1∈O↓t1 | |{o2∈O↓t2 |(o1,o2)∈O2O}|∈{0,1}}|

|O↓t1 |

scl−1..*(t1, t2) =
|{o1∈O↓t1 | |{o2∈O↓t2 |(o1,o2)∈O2O}|≥1}|

|O↓t1 |

scl−0..*(t1, t2) =
|{o1∈O↓t1 | |{o2∈O↓t2 |(o1,o2)∈O2O}|≥0}|

|O↓t1 |
= 1

A log cardinality relation holds for two types if the related score is equal to 1.

The log cardinality can give process owners and analysts insights into how
objects of a given type relate to objects of other types. For example, Figure 1
shows that tire objects are always connected to exactly one rubber and one metal
object. This shows that these types of materials are required for the tire. If the
rubber would be optional for the tire, one would find a 0..1 log cardinality there.

Some log cardinalities are stricter special cases of other cardinalities. For
example, all tuples of types that fulfill the 1 log cardinality also fulfill all other
log cardinalities because they are all less restrictive. Therefore, one should model
the most restrictive log cardinality that applies.

One is interested in selecting the most restrictive cardinality because multiple
ones can fit. For example, tires are always connected to only one order. This is
allowed for the cardinalities 1, 0..1, 1..*, and 0..*. Since cardinality 1 is the most
specific, one wants to select that one.

Fig. 5. The four log cardinality relations that describe how many objects of the types
can be connected to how many objects of the other type in the log.

Temporal Object Type Model for Object-Centric Process Mining 11

4.3 Event Cardinality

The event cardinality describes how many objects of the target type are involved
in events that involve at least one object of the source type. So the event car-
dinality for type 1 as the source and type 2 as the target describes how many
objects are involved in events that involve at least one object of type 1. Since ob-
jects that are related via object-to-object relations do not need to share events,
there can be either always 0, exactly 1, 0 or 1, multiple (which includes 1), 0 or
multiple objects of the target type involved. Figure 6 shows the event cardinali-
ties, how they are visualized, and sketches events with their related objects from
the source type (type 1) and target type (type 2). The cardinality is visualized
in a black ellipsis that is on the connection line between two connected types.
Since there are two directions between connected types, in a TOTeM model,
there are always two event cardinalities in the black ellipses that are separated
by a dash. The event cardinality is always placed closer to the target type. So in
the first row in Figure 6, the 0 in the black ellipsis is closer located to type 2. This
shows that it is the cardinality that has type 1 as the source and type 2 as the
target. Definition 7 defines event cardinalities by introducing scoring functions
that compute the fractions of events that belong to a certain cardinality for the
two types given. If all events of the given source type follow the cardinality in
regards to the target type, the event cardinality holds for them.

Definition 7 (Event Cardinality). Given event log L = (E,O,OT,O2O, πact,
πobj , πtime) and filter parameter τ , we detect temporal relation for a pair of con-
nected types (t1, t2) ∈ OT ×OT :

sce−0(t1, t2) =
|{e∈E|πobj(e)↓t1 ̸=∅∧|πobj(e)↓t2 |=0}|

|{e∈E|πobj(e)↓t1 ̸=∅}|

sce−1(t1, t2) =
|{e∈E|πobj(e)↓t1 ̸=∅∧|πobj(e)↓t2 |=1}|

|{e∈E|πobj(e)↓t1 ̸=∅}|

sce−0..1(t1, t2) =
|{e∈E|πobj(e)↓t1 ̸=∅∧|πobj(e)↓t2 |∈{0,1}}|

|{e∈E|πobj(e)↓t1 ̸=∅}|

sce−1..*(t1, t2) =
|{e∈E|πobj(e)↓t1 ̸=∅∧|πobj(e)↓t2 |≥1}|

|{e∈E|πobj(e)↓t1 ̸=∅}|

sce−0..*(t1, t2) =
|{e∈E|πobj(e)↓t1 ̸=∅∧|πobj(e)↓t2 |≥0}|

|{e∈E|πobj(e)↓t1 ̸=∅}| = 1

Event cardinality relations hold for two types if the related score is equal to 1.

For example the TOTeM model for the tire process in Figure 1 shows an event
cardinality of 0..* from order to tire. This means that there are events involving
orders that have no tire involved, but there are also events that involve multiple
tires. The event cardinality is especially interesting in combination with the log
cardinality. We can see, for example, that the worker is connected to multiple
metal objects in total but handles at most one at a time.

4.4 TOTeM: Temporal Object Type Model – Combined Model

The TOTeM model describes the overall behavior-based relations of types in a
process. All three relations mentioned above, temporal relations, log cardinality,
and event cardinality, are combined in the TOTeM model. In the TOTeM model,

12 L. Liss et al.

Fig. 6. The three event cardinality relations describe how many objects of the types
participate in shared events. Note that we only visualized events with one object of
Type 1, but there can also be more.

all object types of the object-centric event log are represented as boxes exactly
once. Two types are related if there is at least one connection between objects
of the two types. For the example tire process, that means that all the five types
are represented as boxes in Figure 1. Since there is no object-to-object relation
between order objects and rubber objects, these two types are not connected.
Whereas for example, metal and worker types are connected because there are
workers that are connected with metal objects.

All three type relations are directed between two connected types, assum-
ing a source and target type. For two connected types, we show six relations
simultaneously on the connection line (all three relation types for both direc-
tions). For example, on the connection between rubber and tire, we show all
three relation types, once assuming tire is the source type and once assuming
rubber is the source type. So, the log cardinality from tire to rubber is shown,
as well as the log cardinality from rubber to tire. The same holds for the event
cardinality, which is shown in the black ellipsis on the connection line. Both
types of cardinalities are visualized closer to the target type, as explained be-
fore, so one can differentiate the cardinalities for both directions. The during(■),
and precedes(▶) temporal relations can be inversed and the parallel(∥) relation
always holds for both directions. Therefore by visualizing either a during(■),
precedes(▶), or parallel(∥) relation between two types, the temporal relations
for both directions are defined. The definition of the TOTeM model is given in
Definition 8.

Temporal Object Type Model for Object-Centric Process Mining 13

Definition 8 (Temporal Object Type Model). A temporal object type model
is a directed graph (T,C, πtr, πcc, πoc) where:

– T ⊆ Utype is a finite set of object types as nodes;
– C ⊆ T × T is a set of directed edges between connected types;
– πtr : C → {■,■inv,▶,▶inv, ∥} labels each edge with a temporal relation that

holds;
– πlc : C → {1, 0..1, 1..*, 0..*} labels each edge with a log cardinality that holds;
– πec : C → {0, 1, 0..1, 1..*, 0..*} labels each edge with an event cardinality that

holds.

5 Mining Algorithm

In this section, we define the algorithm to discover TOTeM models from object-
centric event logs. The implementation code is publicly accessible on GitHub1.

Real-world data, including event data, often contains noise. Process owners
want to discover the process, so the influence of noise should be minimized. Also,
process variants are often not equally frequent. Sometimes, one is interested in
capturing infrequent behavior, but sometimes, one is only interested in main-
stream behavior. This motivates the use of a parameter in the model discovery
that allows users to adjust how strictly the discovered model should incorpo-
rate infrequent behavior. Therefore, we use the parameter 0 ≤ τ ≤ 1, which
represents the fraction of conformity, to detect a relation for a tuple of types.

The algorithm starts with importing the object-centric event log. For that
purpose, we use the open-source library ocpa [6]. First, all object types and
the object-to-object relations are determined. Then, the object-to-object re-
lations are supplemented with connections based on event-to-object relations.
Definition 2 defines how the object-to-object relations are computed from the
event-to-object relations. After that, we mine the temporal relations, the event
cardinality, and the log cardinalities.

We use the scoring function defined in Definition 5, Definition 6, and Defi-
nition 7 to mine potential relations for each pair of types. Instead of requiring
that the scoring function is equal to one, we require it to be higher or equal to
the parameter τ . So for τ = 1, only relations that hold for all objects and events
are considered as potential relations. For a τ smaller than 1, we include relations
that hold for a fraction of the behavior that is at least as big as τ . For example,
if τ = 0.8 then two types (t1, t2) have a during(■) relation if at least 80% of
the connected objects of these types fulfill the during requirements.

Out of the potential relations, we select the most specific relation. As men-
tioned before, it is possible that a tuple is part of multiple relations of each of
the three relation types. For example, a type tuple can belong to the during(■)
relation and also to the parallel(∥) relation. Also, all type tuples that have 1
as a potential log cardinality also have 1..* as a potential log cardinality. We
construct the TOTeM model only with the most specific relation for each of the

1 https://github.com/LukasLiss/TOTeM-temporal-object-type-model

14 L. Liss et al.

three types of relations for each tuple. Thus, the most precise model given the
τ parameter is computed using the relation selection in Definition 9.

Definition 9 (Relations Selection). Given event log L = (E,O,OT,O2O,
πact, πobj , πtime) and filter parameter τ , the functions πtr,τ , πlc,τ , and πec,τ select
the relations for a pair of connected types (t1, t2) ∈ OT ×OT :

πtr,τ =

■, if sc■(t1, t2) ≥ τ

■inv, else if sc■inv
(t1, t2) ≥ τ

▶, else if sc▶(t1, t2) ≥ τ

▶inv, else if sc▶inv
(t1, t2) ≥ τ

∥, else if sc∥(t1, t2) ≥ τ

πlc,τ =

1, if scl−1(t1, t2) ≥ τ

0..1, else if scl−0..1(t1, t2) ≥ τ

1..*, else if scl−*(t1, t2) ≥ τ

0..*, else if scl−0..*(t1, t2) ≥ τ

πec,τ =

0, if sce−0(t1, t2) ≥ τ

1, else if sce−1(t1, t2) ≥ τ

0..1, else if sce−0..1(t1, t2) ≥ τ

1..*, else if sce−*(t1, t2) ≥ τ

0..*, else if sce−0..*(t1, t2) ≥ τ

6 Evaluation

In this section, we describe the evaluation results. We use a publicly accessible
event log [19] to compare the TOTeM model and the object-centric Petri net.
This object-centric event log describes the management of customer orders in a
company. The log contains 21.008 events and 10.840 objects of 6 types. Figure 7
shows the object-centric Petri net for the order management.

We computed the TOTeM model with a publicly accessible implementation
of the algorithm described in Section 5. The computation of the three relations
took 3.14 seconds on average (95% confidence interval from 3.09 seconds to 3.19
with a sample size of 100) on an i7 2.8 GHz processor with 16GB RAM. We
selected a τ parameter of 0.9 to allow for some noise, infrequent behavior, and
unfinished process executions. Figure 8 shows the resulting TOTeM model.

To evaluate whether the TOTeM model provides additional insights com-
pared to existing approaches like object-centric Petri nets [5], we analyzed which
insights present in the TOTeM model are missing in the object-centric Petri net.

For example, the TOTeM model shows that all products are ordered at least
once because there is a log cardinality of 1..* from products to orders. The
object-centric Petri net gives no information about the concrete objects used
in the event log. This also leaves it unclear whether items are sold, although
the matching product no longer exists. We can not answer that question with

Temporal Object Type Model for Object-Centric Process Mining 15

Fig. 7. Object-Centric Petri net for the order management example log [19]. Each color
represents an object type. Ellipsis with text are initial places for a certain object type.
The final places are represented by underlined text in the color of the object type.

the object-centric Petri net. However, the TOTeM model shows a during(■)
relation between items and products, which shows that items only appear while
their related product still exists. Moreover, the TOTeM model structures the
types into a group with long lifespans (products, customer, and employees) and
one with shorter lifespan (orders, items, and packages), such that all with shorter
lifespans happen during(■) those with longer lifespans. Since most types’ start
and end activities are separate in the object-centric Petri net, it does not contain
this information.

7 Conclusion

This paper presents four contributions to model and mine object-centric pro-
cesses. First, we defined TOTeM models with temporal relations, log cardinal-
ities, and event cardinalities. Second, we proposed an algorithm to compute
TOTeM models from object-centric event logs. The algorithm’s τ parameter
allows it to handle noise and infrequent behavior. Third, we implemented the
algorithm and published it on GitHub. Finally, in the evaluation, we showed
that TOTeM models can give new insights into object-centric processes that are
not captured in object-centric Petri nets.

This work also has limitations. We assume that the lifespan of objects is
defined by their first and last events. Therefore, logging issues that affect these

16 L. Liss et al.

1..*

1..*

1..*

1..*

1..* 1..*

1..*

0..*1..*

0..*
1

0..*

1

1

1..*

1..*

items

employees packages

orders

customer

products

1.
.*

0.
.*

0..1 1..*

0.
.1

1.
.*

0..1
1..*

1.
.*

1.
.*

0..1
0..1

0..1
0..1

1..*

1..*

1..*
1..*

1..*

1..*
0..1

1..*
0..1

1..* 0..1
0.
.1

1

1..*

1

1..*
0..1

1..*

1..*

0..1 1..*
1

Fig. 8. TOTeM model for the order management process with τ = 0.9.

events can strongly affect the result. The robustness of the presented algorithm
for given τ needs to be investigated in more detail. Currently, the TOTeM models
algorithm does not consider object-to-object qualifiers, which is additional infor-
mation that could be used to improve the discovered model. Also, the evaluation
is limited to simulated data.

Therefore, one direction for future work is to perform real-world case studies
to evaluate the insights analysts can get from TOTeM models. Another direction
is to investigate the usage of TOTeM models for other process mining tasks like
object-centric conformance alignments [23] and model enhancement [22].

Acknowledgments. The authors gratefully
acknowledge the financial support by the
Federal Ministry of Education and Research
(BMBF) for the joint project Bridging AI (grant
no. 16DHBKI023).

References

1. van der Aalst, W.M.P.: Process mining. Commun. ACM 55(8), 76–83 (2012)
2. van der Aalst, W.M.P.: Object-centric process mining: Dealing with divergence

and convergence in event data. In: SEFM. pp. 3–25. Springer (2019)
3. van der Aalst, W.M.P., Adriansyah, A., van Dongen, B.F.: Causal nets: A modeling

language tailored towards process discovery. In: CONCUR. pp. 28–42. Springer
(2011)

4. van der Aalst, W.M.P., Artale, A., Montali, M., Tritini, S.: Object-centric behav-
ioral constraints: Integrating data and declarative process modelling. In: Proceed-
ings of the 30th International Workshop on Description Logics. vol. 1879. CEUR-
WS.org (2017)

Temporal Object Type Model for Object-Centric Process Mining 17

5. van der Aalst, W.M.P., Berti, A.: Discovering object-centric petri nets. Fundam.
Informaticae 175(1-4), 1–40 (2020)

6. Adams, J.N., Park, G., van der Aalst, W.M.P.: ocpa: A Python library for object-
centric process analysis. Software Impacts 14, 100438 (2022)

7. Allen, J.F.: Maintaining knowledge about temporal intervals. Commun. ACM
26(11), 832–843 (1983)

8. Ashbacher, C.: The unified modeling language reference manual, Second Edition,
by Rumbaugh J. Journal of Object Technol. 3(10), 193–195 (2004)

9. Berti, A., van der Aalst, W.M.P.: Extracting multiple viewpoint models from re-
lational databases. In: IFIP WG. pp. 24–51. Springer (2019)

10. Berti, A., Koren, I., Adams, J.N., Park, G., Knopp, B., Graves, N., Rafiei, M., Liß,
L., Unterberg, L.T.G., Zhang, Y.: OCEL (Object-Centric Event Log) 2.0 Specifi-
cation (2023)

11. Chen, P.P.: Entity-relationship modeling: Historical events, future trends, and
lessons learned. In: Software Pioneers, pp. 296–310. Springer Berlin Heidelberg
(2002)

12. Chinosi, M., Trombetta, A.: BPMN: an introduction to the standard. Comput.
Stand. Interfaces 34(1), 124–134 (2012)

13. Elmasri, R., Wuu, G.T.J.: A temporal model and query language for ER databases.
In: ICDE. pp. 76–83. IEEE (1990)

14. Fahland, D.: Process mining over multiple behavioral dimensions with event knowl-
edge graphs. In: Process Mining Handbook, Lecture Notes in Business Information
Processing, vol. 448, pp. 274–319. Springer (2022)

15. Ferg, S.: Modelling the time dimension in an entity-relationship diagram. In: ER.
pp. 280–286. IEEE (1985)

16. Ghilardi, S., Gianola, A., Montali, M., Rivkin, A.: Petri net-based object-centric
processes with read-only data. Inf. Syst. 107, 102011 (2022)

17. Gregersen, H., Jensen, C.S.: Temporal entity-relationship models - A survey. IEEE
Trans. Knowl. Data Eng. 11(3), 464–497 (1999)

18. Hopp, W.J., Spearman, M.L.: To pull or not to pull: What is the question? Manuf.
Serv. Oper. Manag. 6(2), 133–148 (2004)

19. Knopp, B., van der Aalst, W.M.P.: Order Management Object-centric Event Log
in OCEL 2.0 Standard (Sep 2023)

20. Künzle, V., Reichert, M.: Philharmonicflows: towards a framework for object-aware
process management. J. Softw. Maintenance Res. Pract. 23(4), 205–244 (2011)

21. Leemans, S.J.J., Fahland, D., van der Aalst, W.M.P.: Discovering block-structured
process models from event logs - A constructive approach. In: PETRI NETS. pp.
311–329. Springer (2013)

22. de Leoni, M.: Foundations of process enhancement. In: Process Mining Handbook,
Lecture Notes in Business Information Processing, vol. 448, pp. 243–273. Springer
(2022)

23. Liss, L., Adams, J.N., van der Aalst, W.M.P.: Object-centric alignments. In: ER
2023. pp. 201–219. Springer (2023)

24. Peterson, J.L.: Petri nets. ACM Comput. Surv. 9(3), 223–252 (1977)
25. Snoeck, M.: Enterprise Information Systems Engineering - The MERODE Ap-

proach. The Enterprise Engineering Series, Springer (2014)
26. van der Werf, J.M.E.M., Rivkin, A., Polyvyanyy, A., Montali, M.: Data and Process

Resonance - Identifier Soundness for Models of Information Systems. In: PETRI
NETS 2022. vol. 13288, pp. 369–392. Springer (2022)

	TOTeM: Temporal Object Type Model for Object-Centric Process Mining

