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Abstract. Traditional process mining often simplifies the multi-object
reality of business processes, linking each event to a single object called
“the case”. This oversimplification may lead to inaccurate analyses,
caused by missing interactions between object types. In contrast, object-
centric process mining permits events to be tied to multiple objects,
capturing complex interactions and providing a more accurate represen-
tation of business processes. This paper introduces an approach for sup-
porting object-centric process mining utilizing Object-Centric Directly-
Follows Graphs (OC-DFGs). Despite their advantages, e.g., simplicity,
OC-DFGs have been relatively untapped for essential process mining
tasks, such as conformance checking and performance analysis. In order
to address this, our research presents a comprehensive approach for OC-
DFG-based conformance checking and performance analysis. We fully
implement the proposed approach as a web application and demonstrate
the use of OC-DFGs for these tasks within a case study of a real-life loan
application process.

Keywords: Object-Centric Process Mining · Object-Centric
Directly-Follows Graphs · Conformance Checking · Performance
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1 Introduction

Conventional process mining necessitates every event to associate with a singu-
lar object type (i.e., a single case notion), and each change of case perspective
requires new data extraction and configuration [12]. This requirement can inad-
vertently duplicate events (convergence) and displace causal information between
events (divergence) [1]. Furthermore, the single-object focus can overlook inter-
actions with other object types in the process, leading to potentially inaccurate
and misleading analysis. These limitations are due to the oversimplified rep-
resentation of processes that involve multiple objects, essentially flattening a
3-dimensional reality into 2-dimensional event logs [2].

Similarly to traditional process mining, process models play a pivotal role in
object-centric process mining. The primary phase involves the discovery of pro-
cess models from object-centric event logs. Additionally, conformance checking,
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Fig. 1. A motivating example: (a) an example of OC-DFGs, (b) object-centric perfor-
mance metrics for activity pack items, (c) object-centric performance metrics for a pack
items event.

which compares observed behavior (event log) with modeled behavior (process
model), aids in identifying discrepancies between actual process execution and
the process model. Moreover, performance indicators can be visualized and ana-
lyzed within the process model’s context, offering clear insights into process
delays or inefficiencies.

A variety of modeling formalisms is employed to represent processes in object-
centric process mining, including Proclets [14], Object-Centric Behavioral Con-
straint (OCBC) models [17], and Object-Centric Petri Nets (OCPNs) [4]. Tech-
niques for conformance checking [5,7,15,20] and performance analysis [21,22]
have been developed using the formal semantics of these advanced modeling
formalisms.

Despite the prevalent adoption of directly-follows-based process maps in tra-
ditional process mining tools, attributed to their simplicity and interactive fil-
tering capabilities, their object-centric equivalents, i.e., Object-Centric DFGs
(OC-DFGs) [1], have not been widely adopted in practice due to the lack of
capabilities for conformance checking and performance analysis. To address this
gap, our work presents novel methods for conformance checking and performance
analysis using OC-DFGs.
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In more detail, this work presents a conformance checking technique using an
OC-DFG and object-centric event logs. To that end, we translate each directly-
follows graph constituting an OC-DFG to a workflow net and compute align-
ments of the corresponding projected event log on the workflow net. Next, we
visualize the alignments using the OC-DFG. For example, Fig. 1(a) shows an
example of an OC-DFG that visualizes alignments. The process model describes
an order-to-cash process with three object types: order, item, and package. Log
moves of 30 items, i.e., the actual behavior between pick item and pack items
that is missing in the model, are described as a dotted line. Model moves of 20
items, i.e., 20 items that skip pick item, are described as a double line.

Next, we introduce a performance analysis technique by projecting the align-
ments on the process model and computing object-centric performance metrics
such as synchronization time and pooling time. For example, a synchronization
time for execution of pack items with package1, item1, and item2, described in
Fig. 1(b), refers to the time taken from the picking of the last item to the cre-
ation of packages, as shown in Fig. 1(c). A pooling time of items in the execution
refers to the time taken from the first picking to the last picking, as depicted in
Fig. 1(c).

The proposed approach is fully implemented as a web application with a
dedicated user interface. Furthermore, we evaluate the approach by applying it
in a real-life loan application process using the implementation.

The remainder of this paper is organized as follows. We discuss the related
work in Sect. 2. Next, we introduce preliminaries on event data and OC-DFGs
in Sect. 3. Afterward, we explain an approach to conformance checking using
OC-DFGs and alignments in Sect. 4 and performance analysis in Sect. 5. Then,
Sect. 6 introduces the implementation of the proposed approach, presents a use
case study on a real-life loan application process using the implementation, and
discusses the utility and limitations of the proposed approach. Finally, Sect. 7
concludes the paper.

2 Related Work

This section introduces related work on object-centric process mining and pro-
cess mining using directly-follows graphs.

2.1 Object-Centric Process Mining

This research aligns with recent developments in object-centric process min-
ing [1]. Traditional process mining methods assume each event is associated
with a single case, viewing the event log as a collection of isolated event
sequences. Object-centric process mining deviates from this assumption, permit-
ting an event to associate with multiple cases, leading to shared events between
sequences, i.e., a graph of events.

A range of process modeling formalisms has been proposed to address the
complexities of multiple case notions. Proclets [14], the first modeling tech-
nique designed to describe interacting workflow processes, was later extended by
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artifact-centric modeling [11]. DB nets [19], a modeling technique built on colored
Petri nets, were also introduced. Li et al. [17] proposed Object-Centric Behavioral
Constraint (OCBC) models, merging data models with process models. In addi-
tion, Object-Centric Petri Nets (OCPNs), a restricted variant of colored Petri
nets, were suggested, where places are typed, tokens refer to objects, and tran-
sitions correspond to activities [4]. Moreover, typed Jackson nets, a subclass of
typed Petri nets, were recently suggested along with a unique reconstructability
property [9]. Alongside these advanced modeling languages, OC-DFGs have been
presented as a simpler solution to address the inherent complexity in advanced
modeling languages [1].

Numerous techniques have been proposed to facilitate object-centric pro-
cess mining using these advanced modeling formalisms. Initially, process dis-
covery techniques were suggested to automatically discover process models
in Proclets [18], OCBC [17], and OCPNs [4] from event data. Furthermore,
conformance checking techniques were developed to assess the discrepancies
between modeled behavior and actual behavior in event data using Proclets [15],
OCBC [5], and OCPNs [4,7]. Moreover, techniques for performance analysis have
been introduced. For instance, an approach to object-centric performance anal-
ysis based on OCPNs was proposed in [21].

While several process mining approaches utilizing OC-DFGs exist, such as
the baseline approach for discovering OC-DFGs from object-centric event logs [1]
and the technique by Berti and van der Aalst for discovering Multiple View Point
(MVP) models from databases [10], there remains a gap in the area of confor-
mance checking and performance analysis using OC-DFGs. To our knowledge,
there is no existing work that tackles these two aspects with OC-DFGs. This
paper, therefore, strives to fill this gap by developing a technique for conformance
checking and performance analysis using OC-DFGs.

2.2 Process Mining Using Directly-Follows Graphs

Directly-Follows Graphs (DFGs) are advantageous in traditional process mining
due to their simplicity, allowance for vagueness, and scalability [6]. First, these
models are easier to understand for end-users, as they circumvent the complex-
ity often associated with formal models like Petri nets and BPMN. Secondly,
they accommodate vagueness, allowing them to represent the majority of pro-
cess behaviors without having to account for every outlier or deviation. Finally,
directly-follows graphs are highly scalable. They can handle logs with millions of
events efficiently, which is a crucial requirement for commercial process mining
tools.

Many techniques have been developed to enhance process mining using
DFGs. First, various discovery techniques aim to lessen the complexity of DFGs.
For instance, Heuristic Miner [23] excludes infrequent behavioral relations based
on the frequency of occurrences. Leemans [16] present a technique for confor-
mance checking and performance analysis with DFGs. They propose a DFG-
to-Petri-net conversion to align the model with a log. This alignment serves as
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a foundation for analyzing discrepancies between the log and the model. Sub-
sequently, they determine performance metrics by projecting alignments onto
DFGs. In our work, we employ the method proposed by Leemans [16] to calcu-
late alignments for each DFG that forms a part of an OC-DFG. The alignment
is then projected onto the DFG to compute object-centric performance metrics.

3 Preliminaries

In this section, we introduce object-centric event logs, object-centric directly-
follows graphs, and alignments.

3.1 Object-Centric Event Logs (OCELs)

An object-centric event log overcomes the limitation of traditional event logs by
relating events to multiple interacting objects [1]. To define object-centric event
logs, we first introduce several universes.

Definition 1 (Universes). Uei is the universe of event identifiers, Uoi is the
universe of object identifiers, Uact is the universe of activity names, Utime is
the universe of timestamps, Uot is the universe of object types, Uattr is the
universe of attributes, Uval is the universe of values, and Umap = Uattr � Uval

is the universe of attribute-value mappings. For any f ∈ Umap and x /∈ dom(f),
f(x) =⊥.

Using the universes, we define an object-centric event log.

Definition 2 (Object-Centric Event Log). An object-centric event log is a
tuple L = (E,O, μ,R), where E ⊆ Uei is a set of events, O ⊆ Uoi is a set of
objects, μ ∈ (E → Umap) ∪ (O → Umap) is a mapping, and R ⊆ E × O is a
relation, s.t. for any e ∈ E, μ(e)(act) ∈ Uact and μ(e)(time) ∈ Utime , and for
any o ∈ O, μ(o)(type) ∈ Uot . ≺L⊂ E × E is a total order such that for any pair
of events e1, e2 ∈ E : e1 ≺L e2 implies e1 	= e2 and μ(e1)(time) ≤ μ(e2)(time).

For the sake of brevity, we denote μ(e)(x) as μx(e) and μ(o)(x) as μx(o).
Table 1 describes a fragment of a simple event log L1 = (E1, O1, μ1, R1) with
E1 = {e1, e2, . . . }, O1 = {o1, , i1, i2, . . . }, R1 = {(e1, o1), (e1, i1), . . . }, μact(e1) =
po, μtime(e1) = 25-11-2023:09.35, μtype(o1) = order, and μtype(i1) = item.

The event sequence and trace of an object are defined as follows.

Table 1. A fragment of an event log

event id activity timestamp order item

e1 place order (po) 25-11-2023:09.35 {o1} {i1, i2, i3}
e2 check availability (ca) 25-11-2023:13.35 ∅ {i1}
e3 check availability (ca) 25-11-2023:18.35 ∅ {i2}
e4 send invoice (si) 26-11-2023:15.35 {o1} ∅
. . . . . . . . . . . . . . .
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Definition 3 (Event Sequences and Traces). Let L = (E,O, μ,R) be
an object-centric event log. For object o ∈ O, seq(o) = 〈e1, e2, . . . , en〉 s.t.
{e1, e2, . . . , en} = {e ∈ E | (e, o) ∈ R} and ei ≺L ej for any 1 ≤ i < j ≤ n
is the sequence of all events where the object is involved in. For object o ∈ O,
trace(o) = 〈a1, a2, . . . , an〉 s.t. seq(o) = 〈e1, e2, . . . , en〉 and ai = μact(ei) for any
1 ≤ i ≤ n is the trace of the object.

Given L1, seq(o1) = 〈e1, e4〉 and trace(o1) = 〈po, si〉.

3.2 Object-Centric Directly-Follows Graphs (OC-DFGs)

An OC-DFG can be conceptualized as a layered arrangement of Directly-Follows
Graphs (DFGs), where each DFG corresponds to a distinct object type within
a business process. In this layered structure, the arcs, as well as the start and
end activities, are always associated with a specific object type. The interlinking
within this multilayered construct is achieved through shared activities which,
acting as interconnecting nodes, bridge different object types.

Definition 4 (OC-DFGs). An OC-DFG M = (OT,A,Astart , Aend , R) con-
sists of

– OT ⊆ Uot is a set of object types,
– A ⊆ Uact is a set of activities,
– Astart = {startot | ot ∈ OT} is a set of start activities and Aend = {endot |

ot ∈ OT} is a set of end activities such that (Astart ∪ Aend) ∩ A = ∅, and
– R ⊆ {(ot, a1, a2) ∈ OT × (A ∪ Astart) × (A ∪ Aend) | (a1 ∈ Astart =⇒ a1 =

startot) ∧ (a2 ∈ Aend =⇒ a2 = endot)} is a set of edges labeled with the
corresponding object type.

Figure 1 shows an OC-DFG with order, item, and package as object types.
An OC-DFG can be discovered from an object-centric event log.

Definition 5 (Discovering OC-DFGs). Let L = (E,O, μ,R) be an object-
centric event log. disc(L) = (OT,A,Astart , Aend , R) is the corresponding OC-
DFG where

– OT = {μtype(o) | o ∈ O} is the set of object types,
– A = {μact(e) | e ∈ E} is the set of activities,
– R = {(ot, ai, ai+1) | o ∈ O ∧ ot = πtype(o) ∧ trace(o) = 〈a1, a2, . . . , an〉 ∧ a0 =

startot ∧ an+1 = endot ∧ 0 ≤ i ≤ n} is the set of edges with the corresponding
object type.

4 Conformance Checking

Conformance checking techniques compare an event log with a process model,
which can be constructed either manually or by process discovery techniques.
The commonly used technique for conformance checking involves calculating
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alignments on Petri nets. In this section, we describe how alignments can be
applied to OC-DFGs and visualized accordingly.

Figure 2 shows an overview of the approach. First, an OC-DFG is translated
into multiple workflow nets, each of which represents a unique object type. The
OCEL is then converted into a set of event logs projected on different object
types. Subsequently, alignments are calculated for each workflow net and event
log pair. Finally, these individual alignments are visualized within the OC-DFG.

Fig. 2. An overview of conformance checking using OC-DFGs

4.1 Translating an OC-DFG to Workflow Nets

First, we translate an OC-DFG, i.e., M = (OT,A,Astart , Aend , R), into a set of
DFGs projected on object types OT . For ot ∈ OT , a projected DFG (DFGot =
(Aot, startot, endot, Rot)) consists of
– a set of activity nodes, i.e., Aot = {a ∈ A | ∃a′∈A (ot, a, a′) ∈ R ∨ (ot, a′, a) ∈

R},
– a start node, i.e., startot ∈ Astart ,
– an end node, i.e., endot ∈ Aend , and
– a set of edges, i.e., Rot = {(s, t) ∈ (Aot ∪ {startot}) × (Aot ∪ {endot}) |

(ot, s, t) ∈ R}.

Figure 3(a) shows an example of projecting M1 to DFGitem.
Next, we translate each DFG to a workflow net. A translated workflow net

(PNot = (P, T, F, l)) from a DFG (DFGot = (Aot, startot, endot, Rot)) consists
of
– a set of places that correspond to the nodes, i.e., P = Aot ∪ {startot, endot},
– a set of transitions correspond to the edges, i.e., T = Rot,
– a set of arcs that connect the transitions (i.e., the edges) to the

corresponding places (i.e., the source and target nodes), i.e., F =⋃
(s,t)∈Rot

{(s, (s, t)), ((s, t), t)}, and
– a labeling function l such that, for (s, t) ∈ T , l(s, t) = t if t 	= endot. l(s, t) = τ

otherwise.

Figure 3(b) shows translating DFGitem to PNitem.
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Fig. 3. (a) A OC-DFG is projected on item object type, resulting in a DFG representing
the process model of items. (b) A projected DFG is translated to a workflow net.

4.2 Projecting an OCEL to Event Logs

We convert an object-centric event log L = (E,O, μ,R) into projected event
logs, i.e., {Lot1 , Lot2 , . . . }, each corresponding to an object type of the OC-
DFG. For any object type ot, we create a projected event log Lot = [seq(o) | o ∈
O ∧ μtype(o) = ot]. Given the object-centric event log L described in Table 2, we
derive Litem = [〈e11, e12, e13, e21〉, . . . ] and Lpackage = [〈e20, e21, e22〉, . . . ].

4.3 Aligning Event Logs with Workflow Nets

Optimal alignments are then computed for each object type ot, utilizing the
corresponding projected event log Lot and the translated workflow net PNot.
Several techniques have been developed to calculate optimal alignments. The
most recognized approach employs the A∗ algorithm to identify the shortest path
in the reachability graph of a synchronous product net [3], using the marking
equation of workflow nets. Figure 4 showcases optimal alignments of the package
and item object types, respectively. For example, item2 has a log move at e17
(pick item), e18 (inspect item), and e19 (report item), whereas item3 has a model
move at pick item.
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Fig. 4. Optimal alignments for the package and item object types

4.4 Visualizing Alignments

Alignments result in two types of deviations: log moves and model moves. Log
moves suggest that an event appeared in the log that the model did not permit.
These are visualized using a dotted edge connecting model nodes, indicating
additional events executed between the source and target activities in the model.
There are five distinct situations in which log moves may occur, and each is
visualized in a different way. Assuming that Fig. 5(a) presents a DFG for a
specific object type, the situations can be explained as follows:

1. A log move at the beginning of an alignment, e.g., 〈(e1,�), (e2, a), (e3, b)〉, is
visualized as a dotted edge connecting the start node to the activity of the
first synchronous move (cf. Fig. 5(b)).

2. A log move in the middle of an alignment, e.g., 〈(e1, a), (e2,�), (e3, b)〉, is
visualized as a dotted edge connecting the activities of the preceding and fol-
lowing synchronous moves (cf. Fig. 5(c)). Additionally, we handle two special
cases:
(a) If μact(e2) = a, the log move is visualized as a self-loop to the activity of

the preceding synchronous move (cf. Fig. 5(d)).
(b) If μact(e2) = b, the log move is visualized as a self-loop to the activity of

the following synchronous move (cf. Fig. 5(e)).

Table 2. A fragment of an event log.

event id activity timestamp order item package

. . . . . . . . . . . . . . . . . .

e11 place order (po) 27-11-2023:09.35 {o1} {i1, i2, i3} ∅
e12 check availability (ca) 27-11-2023:13.35 ∅ {i1} ∅
e13 pick item (pi) 28-11-2023:11.35 ∅ {i1} ∅
e14 check availability (ca) 28-11-2023:12.35 ∅ {i2} ∅
e15 pick item (pi) 28-11-2023:18.35 ∅ {i2} ∅
e16 check availability (ca) 29-11-2023:09.35 ∅ {i3} ∅
e17 pick item (pi) 29-11-2023:10.35 ∅ {i2} ∅
e18 inspect item (ii) 29-11-2023:15.35 ∅ {i2} ∅
e19 report item (ri) 29-11-2023:17.35 ∅ {i2} ∅
e20 create package (cp) 30-11-2023:11.35 ∅ ∅ {p1}
e21 pack items (pa) 30-11-2023:12.35 ∅ {i1, i2, i3} {p1}
e22 deliver package (dp) 02-12-2023:17.35 ∅ ∅ {p1}
. . . . . . . . . . . . . . . . . .
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3. A log move at the end of an alignment, e.g., 〈(e1, a), (e2, b), (e3,�)〉, is visu-
alized as a dotted edge connecting the activity of the last synchronous move
to the end node (cf. Fig. 5(f)).

Conversely, model moves, indicated by a double-line edge bypassing a model
node, suggest that an event that the model dictates should have occurred was
missing from an event log trace.

Fig. 5. (a) A DFG, (b–f) Five different types of log moves, and (g) Log moves (dotted
lines) and model moves (double line) visualized on an OC-DFG.

Figure 5(g) visualizes the alignments described in Fig. 4. For example, the
dotted edge connecting pick item node shows the log move of pick item (with
1 indicating item2 ’s log move at e17, i.e., pick item), while the dotted edge
connecting pick item to pack items indicates the log move between pick item
and pack items (with 2 denoting item2 ’s log moves at e18, i.e., inspect item, and
e19, i.e., report item, respectively). Moreover, the double-line edge in Fig. 5(g)
demonstrates the model move at pick item (with 1 indicating item3 ’s model
move at pick item).

5 Performance Analysis

Using the alignments computed in the previous section, we calculate various
object-centric performance metrics in relation to the process model. Firstly, the
alignments are projected onto the process model. An event relationship is then
established by linking each event for which performance metrics need to be com-
puted with the preceding events. Lastly, object-centric performance measures
for an event are computed using its associated event relationship.

5.1 Projecting Alignments

First, we project alignments on the process model. The synchronous moves of
an alignment are linked to the corresponding activities in the process model. For
instance, synchronous moves of item1, such as (e11, po), (e12, ca), (e13, pi), and
(e21, pa), are linked to respective activities place order, check availability, pick
item, and pack items, as depicted in Fig. 6(a).
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Fig. 6. (a) A OC-DFG projected by alignments. (b) A event relationship of e21 (pack
items). (c) Object-centric performance metrics of e21 (pack items).

5.2 Establishing Event Relationship

Then, we define an event relationship for each event by associating the event
with its preceding events. Figure 6(b) demonstrates an event relationship of e21,
where item1 ’s e13, item2 ’s e15, and package1 ’s e20 are the preceding events.
This is done by first identifying the objects involved in the event by collecting
the synchronous moves for the event. For instance, the synchronous moves for
e21 include item1 ’s (e21, pa), item2 ’s (e21, pa), item3 ’s (e21, pa), and package1 ’s
(e21, pa). From this, it is deduced that item1, item2, item3, and package1 are
involved in e21.

Next, for each object, we identify the event that corresponds to the preceding
activity of the target activity in the model, e.g., the preceding activity of pack
items is pick item and create package. For example, item1 ’s e13 and item2 ’s e15
correspond to the activity pick item, while package1 ’s e20 corresponds to activity
create package. Note that item3 does not have an event that corresponds to the
preceding activity of pack items.

5.3 Object-Centric Performance Measures

With the event relationship of an event, we can calculate various object-centric
performance measures. To achieve this, we introduce the concepts of first event
activation, first object type activation, and complete activation. The first event
activation refers to the first event in the event relationship. For instance, e13 is
the first event activation for the event relationship described in Fig. 6(b).

Next, the first object type activation refers to the last event of the object
type that occurs the earliest among other object types. For example, e15 is the
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first object type activation as it is the last event of the item object type, which
occurs earlier than the last event of the package object type. Finally, the complete
activation refers to the last event among the preceding events, i.e., e20.

Using these concepts, we explain each object-centric performance measure
as follows. Figure 6(c) shows an example of object-centric performance measures
related to e21 (pack items).

– Sojourn time is the time difference between the target event and the complete
activation.

– Synchronization time is the time difference between the complete activation
and the first event activation.

– Flow time is the time difference between the target event and the first event
activation.

– Lagging time for an object type is the time difference between the last event
of the object type and the first object type activation.

– Pooling time for an object type is the interval between the last event of the
object type and the first event of the object type.

6 Application and Discussion

This section presents a tool that implements the proposed conformance checking
and performance analysis. Next, we conduct a use case study on a real-life process
using the tool. Finally, we discuss the utility and limitations of the proposed
method.

6.1 Implementation: Explori

The approach described in this paper has been implemented as an open-source
web application named Explori, based on the Python library ocpa [8]. The source
code and manual are available at https://github.com/gyunamister/Explori. The
tool consists of four functional components: event log management, process dis-
covery, conformance checking, and performance analysis.

Event Log Management. This component aims to support users to man-
age and interact with Object-Centric Event Logs (OCELs). It allows users to
view available OCELs, delete existing OCELs, upload new OCELs, and select
an OCEL to start a new analysis. Users can upload an OCEL in either CSV
or JSONOCEL formats. After the file is uploaded, it will be displayed in the
list of available OCELs. The deletion of an OCEL will remove all associated
information, such as the cached analysis results.

Process Discovery. This component aims to discover an OC-DFG from a
selected OCEL. Figure 7(a) is the OC-DFG that is discovered from an uploaded
OCEL. Each node in the OC-DFG represents an activity that occurred in the

https://github.com/gyunamister/Explori
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Fig. 7. A screenshot of Explori (Color figure online)

event log, while the edges indicate the directly-follows relation between the
source activity and target activity. Multiple edges between two nodes signify the
involvement of multiple object types in both activities, with each edge color rep-
resenting a specific object type. For instance, Fig. 7(b) indicates the involvement
of MATERIAL (represented as the yellow-colored edge) and PURCHREQ (rep-
resented as the green-colored edge) in Create Purchase Requisition and Create
Purchase Order. The graph can be panned, zoomed, and nodes can be reposi-
tioned for better visualization.

OCELs often contain a mix of typical process behavior and outlier cases,
which can complicate the model. To filter the graph and display only the most
frequent behavior, users can adjust threshold slider at the bottom of the page
(cf. Fig. 7(c)). The threshold represents the proportion of objects shown in the
model. Moreover, users can also filter the graph by selecting specific object types
of interest through the “Object Types” button in the top right corner shown in
Fig. 7(d).

Conformance Checking. This component aims to compute alignments. The
information dropdown in the navigation bar (cf. Fig. 7(e)) allows users to display
alignment information within the process model. Log moves are visualized as
dotted edges, while model moves are visualized as double-line edges.

Performance Analysis. This component aims to compute various performance
measures. Users can click on nodes and edges to display the information box that
contains object-centric performance metrics for the selected element, as shown
in Fig. 7(f). The performance metrics include the flow, sojourn, synchronization,
pooling, and lagging time.
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6.2 Real-Life Use Case: Loan Application Process

Using the implementation, we analyze a real-life loan application process of a
Dutch Financial Institute [13]. The process encompasses two types of objects:
applications and offers, where an application may include multiple offers.
Figure 8(a) depicts a process model of 1, 317 applications and 4, 457 offers that
describe the cancellation of the applications under various scenarios. The process
initiates when a customer submits an application, which, upon acceptance, leads
to the bank generating and communicating loan offers to the customer, followed
by the eventual cancellation of both the application and any associated offers.

Fig. 8. (a) A OC-DFG representing the loan application process, (b) conformance
checking visualization, and (c) performance analysis of cancel application activity

Conformance Checking. A conformance check was performed using an event
log comprising 31, 010 events related to the 2, 302 applications and 5, 128 offers.
Figure 8(b) visualizes the conformance checking outcomes. Model moves at 1©
indicate the omission of the submit application activity for 548 applications,
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attributed to in-person customer visits negating the need for this activity. Log
moves at 2© highlight 325 applications where an additional handle leads activity
was necessary prior to acceptance. Model moves at 3© show 274 offers being
canceled immediately after creation, bypassing the send offer and call after offers
activities. Log moves at 4© and 5© illustrate additional activities required for
261 offers (i.e., return offer) and 107 applications (i.e., call incomplete files),
respectively, following cancellation.

Performance Analysis. The cancellation process for applications engages a
variable number of offers along with their corresponding applications. As per
the process model, three activities precede the action of canceling applications.
Within the lifecycle of applications, the preceding activity is consistently create
offer, whereas the preceding activities for offers encompass create offer, send
offer and call after offers activities.

The average sojourn time, i.e., the duration from the initiation of the preced-
ing activities until the cancellation of an application, is approximately 26 days
and 23 h. Thus, it suggests that, on average, about 26 days elapse to cancel appli-
cations following the execution of create offer, send offer, and call after offers.
The synchronization time, i.e., the duration between completing the first and last
of these activities before cancelling an application, averages at 5 days and 7 h,
suggesting a coordination time taken for completing all necessary prerequisites.

Furthermore, the average pooling time for offers, defined as the period from
when the first to the last offer is prepared for cancellation, is 5 days and 6 h. The
average lagging time of applications at 5 days and 6 h, contrasts with a notably
shorter lagging time of offers, merely 4 min. This indicates that applications are
typically cancelled only after consolidating all related offers.

6.3 Discussion

The use case study conducted offers valuable insights into the practical appli-
cation of OC-DFGs for conformance checking and performance analysis in a
real-life loan application process. The application of our approach has demon-
strated its utility in simplifying complex process models and making them more
accessible for analysis.

However, the proposed approach has limitations that stem from the “decom-
pose and recombine” paradigm, particularly in the recombination phase, where a
coherent global alignment is needed. Currently, the approach lacks a systematic
way to ensure that shared transitions across local alignments are treated con-
sistently. This can lead to incoherencies in the global view of the process when
different object views suggest different local alignments of the same transition.
For instance, consider the transition cancel application, which occurs in the life
cycle of both offers and applications. In the local alignment for the offer, we
might decide to model skip the cancel application. However, this same transi-
tion, when viewed from the application perspective, could be critical and thus
included in the alignment. This discrepancy leads to an incoherent global view
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where the offer is canceled, but the application is not, resulting in a conflicting
representation of the process.

Such inconsistencies are particularly problematic in performance analysis.
For example, if the cancel application is skipped in one object view but not in
another, it would be unclear how to calculate metrics such as synchronization
time related to cancel application activity within the broader context of the
application process.

Additionally, the simplification of synchronization semantics in the transla-
tion from DFGs to workflow nets is a limitation. This overlooks the dynamics of
concurrent processes and may lead to a misrepresentation of performance met-
rics that are subject to the sequencing of interdependent activities. For instance,
in our case study involving the loan application process, activities such as send
and call may occur in parallel. However, if we were to represent this scenario
in a simplified DFG, the concurrency will be depicted as a series of sequential
steps.

This sequential representation could significantly skew performance analysis.
Suppose call typically takes longer than send. In that case, the time between
the start of send and its completion is not just the execution time of that single
activity but also includes the waiting time until call is completed.

To address these challenges, a systematic approach should be developed for
the recombination phase, which can reconcile the local alignments into a coher-
ent global alignment, thereby aligning shared transitions consistently across all
object views. Moreover, future work should explore simple, but richer process
modeling formalisms that can capture the concurrent nature of business pro-
cesses. This could involve incorporating elements from other process modeling
languages that include explicit constructs for concurrency and synchronization.

7 Conclusion

In this paper, we address the gap in the literature concerning OC-DFGs for
conformance checking and performance analysis in object-centric process min-
ing. OC-DFGs, while noted for their simplicity and practical applications, have
previously lacked comprehensive support for these essential tasks. We devel-
oped and presented an approach that utilizes OC-DFGs for both conformance
checking and performance analysis. By translating each directly-follows graph
in an OC-DFG to a workflow net, we compute alignments for improved con-
formance checking. Additionally, we utilize these alignments for performance
analysis, computing object-centric performance metrics. The proposed approach
is fully implemented as a web application and is further validated through a case
study on a real-life loan application process.
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convergence in event data. In: Ölveczky, P.C., Salaün, G. (eds.) SEFM 2019. LNCS,
vol. 11724, pp. 3–25. Springer, Cham (2019). https://doi.org/10.1007/978-3-030-
30446-1 1

2. van der Aalst, W.M.P.: Object-centric process mining: the next frontier in business
performance. White paper, Celonis (2023)

3. van der Aalst, W.M.P., Adriansyah, A., van Dongen, B.F.: Replaying history on
process models for conformance checking and performance analysis. WIREs Data
Min. Knowl. Discov. 2(2), 182–192 (2012)

4. van der Aalst, W.M.P., Berti, A.: Discovering object-centric Petri nets. Fundam.
Informaticae 175(1–4), 1–40 (2020)

5. van der Aalst, W.M.P., Li, G., Montali, M.: Object-centric behavioral constraints.
CoRR abs/1703.05740 (2017)

6. van der Aalst, W.M.P., De Masellis, R., Di Francescomarino, C., Ghidini, C.: Learn-
ing hybrid process models from events - process discovery without faking confi-
dence. In: Carmona, J., Engels, G., Kumar, A. (eds.) BPM 2017. LNCS, vol. 10445,
pp. 59–76. Springer, Cham (2017). https://doi.org/10.1007/978-3-319-65000-5 4

7. Adams, J.N., van der Aalst, W.M.P.: Precision and fitness in object-centric process
mining. In: ICPM 2021, pp. 128–135 (2021)

8. Adams, J.N., Park, G., van der Aalst, W.M.P.: ocpa: A Python library for object-
centric process analysis. Softw. Impacts 14, 100438 (2022)

9. Barenholz, D., Montali, M., Polyvyanyy, A., Reijers, H.A., Rivkin, A., van der
Werf, J.M.E.M.: There and back again - on the reconstructability and rediscov-
erability of typed Jackson nets. In: Gomes, L., Lorenz, R. (eds.) PETRI NETS
2023. LNCS, vol. 13929, pp. 37–58. Springer, Cham (2023). https://doi.org/10.
1007/978-3-031-33620-1 3

10. Berti, A., van der Aalst, W.: Extracting multiple viewpoint models from relational
databases. In: Ceravolo, P., van Keulen, M., Gómez-López, M.T. (eds.) SIMPDA
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