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Abstract. Process mining offers methods to analyze the actual control-
flow behavior of a process. The two main available methods are process
discovery and variant analysis. While process discovery aggregates all
variants into one model, the models often suffer from high complexity
and lack detailed granularity. Conversely, variants are simple and offer
fine granularity but their sheer number makes them difficult to compre-
hend. To bridge this gap, we introduce the concept of super variants.
These represent a middle ground between the complexity of discovered
process models and the simplicity of variants, offering an aggregation of
closely related variants. We propose a super-variant mining framework
based on object-centric variants, evaluate its scalability, and demonstrate
its utility through a practical use case. This new approach promises to
enhance control-flow analysis by striking a new balance between com-
plexity and aggregation.

Keywords: Process Mining · Variant Analysis · Process Variants · Object-
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1 Introduction

Process mining allows process owners to analyze event logs extracted from the
information systems supporting their business processes [18]. Control-flow analy-
sis is a main task in process mining aiming to uncover the precedence constraints
between different activities of a process. Control-flow analysis primarily focuses
on two key tasks: process discovery and variant analysis [2].

Variants are sequences of activities observed in process executions and repre-
sented as a frequency-sorted list of activity sequences [12]. The resulting variant
list is a simple, disaggregated representation of the control flow. Process dis-
covery aims to provide a comprehensive overview that aggregates all (frequent)
variants into one process model [9]. The resulting model is a complex, aggregated
representation of the control flow. While the aggregation of process models is de-
sirable, they are often overly complex or underfitting [1] and while the simplicity
of variants is desirable, their number exceeds the capacity of human comprehen-
sion [35]. Considering alternative combinations of simplicity and aggregation,
the following problem is apparent: Simple, aggregated models are utopic, and
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Fig. 1: Super variants to hierarchically aggregate variants into a comprehensive
notation. The example depicts an order-to-cash process with one order (o1) and
items (i1, i2, i3). We show the traditional variants labeled from i) through x).
Object-centric variants a)-d) aggregate traditional variants and are the starting
point for super variants. The first variant (a) contains two items while the second
variant (b) contains three. These are merged into one super variant (e) with an
arbitrary number of items, indicated with the *-symbol. This super variant is
further merged with another super variant (f) with an optional clearance activity,
leading to a final super variant (g) aggregation. We depict the cost per item (CPI)
next to each super variant.

complex, disaggregated representations are impractical. A balance between com-
plexity and simplicity needs to be achieved, increasing the aggregation of variants
while preserving part of their simplicity.

A middle ground between aggregation and complexity is necessary for the
visualization and bottom-up construction of behavioral clusters in business pro-
cesses. Next to a more comprehensible way of understanding the overall control-
flow composition of the process, such a representation also allows businesses to
drill down performance issues to conduct root-cause analysis for process redesign
and consolidation. Currently, process owners can find behavioral clusters using
trace clustering [45]. While some trace clustering techniques do refine clusters in
a top-down approach [33], they do not offer a bottom-up approach that connects
clusters to individual variants. A bottom-up approach allows process owners to
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decompose and visualize clusters in a transparent analysis. On the other hand,
techniques that incorporate variants and visualization, i.e., variant analysis [34],
do not aggregate individual variants into behavioral clusters.

Object-centric variants have recently been introduced as a generalization of
traditional variants [8]. These are composed of multiple traditional variants,
where each traditional variant is an instantiation of a certain subprocess, i.e.,
an object. This composition of traditional variants allows for shared activities,
such that the resulting object-centric variant forms a graph, i.e., a partial order
of activities. Therefore, one object-centric variant aggregates several traditional
variants as it is able to encode concurrency between objects. An example of this
is depicted in the lower two boxes of Figure 1. An object-centric variant consists
of lanes that each describe the traditional variant of an object of a specific
type indicated by the color. Activities with multiple colors are shared between
objects. Non-shared activities do not underlie direct ordering constraints, i.e.,
they are concurrent. All realizations of the concurrency between objects are the
traditional variants an object-centric variant aggregates. As an object-centric
variant already functions as an aggregation of traditional variants, this capacity
leads to object-centric variants as a natural starting point for the contributions
of this paper.

In this paper, we introduce super variants. Super variants are aggregations of
multiple traditional variants and, thus, situated in between variants and process
models. An event log can be represented as a hierarchical representation of super
variants as depicted in Figure 1. We depict the traditional variants at the low-
est level. These can be aggregated using object-centric variants. The next layer
of the hierarchy shows how two object-centric variants are aggregated into one
super variant. The super variant of Figure 1 e) contains an arbitrary number
of item objects inferred from the varying number of items in a) and b). The
super variant in f) depicts the optionality of the clearance activity for the order,
inferred from the clearance activity missing in one of the two input variants. The
final super variant in g) depicts an arbitrary number of items and an optional
clearance activity. The number of variants reduces from ten traditional variants
to four object-centric variants to two super variants and one final super variant.
From a business perspective, this super variant hierarchy allows us to drill down
performance issues. The example also depicts the average cost per item next to
each super variant. Going to the second highest hierarchy level, we observe a
significant difference between average item costs. Since there are two differences,
item multiplicity and clearance optionality, these could both be the source of
that difference. Investigating the individual object-centric variants, we can see
that the optionality is not the contributing factor but the number of items re-
duces individual unit cost. Based on this insight, business actions could be taken
to increase the number of items per order. Such an analysis would not be pos-
sible using top-down trace clustering since clusters are not traced to individual
variants.

The main contribution of this paper is introducing super variants to process
mining. This contribution boils down to the following individual contributions:
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C1 We introduce the concept of super variants.
C2 We propose a super variant mining framework.
C3 We present a super variant visualization.
C4 We evaluate our implementation of the super-variant mining framework.
C5 We provide a super variant use case as a proof of concept.

The remainder of this paper is structured as follows. We introduce prelim-
inary concepts in Section 2 and define super variants in Section 3 along with
a super variant mining framework in Section 4. Section 5 provides details on
our implementation of the framework. We depict a proof of concept in Section 6
and evaluate the scalability in Section 7. We compare our contributions to the
related work in Section 8 and conclude this paper in Section 9.

2 Preliminaries

We introduce some concepts used throughout the paper. The superset of a set
X is denoted with P(X) and contains all subsets. Pi+(X) is the power set of
all subsets of size i ∈ N or larger. The universe of events is denoted with E , the
universe of activities with A, and the universe of timestamps with T . Events are
related to objects, which are denoted with O. Each object is of a certain type of
the universe of object types OT . The type mapping is given by πtype : O → OT .

The starting point for our concepts is an Object-Centric Event Log (OCEL).
We define an OCEL as follows:

Definition 1 (Event Log). An object-centric event log is a tuple L = (E,O,
OT, πobj , πact , πtime) with

• events E ⊆ E, objects O ⊆ O of types OT = {πtype(o) | o ∈ O},
• a mapping of events to object πobj : E → P(O),
• an activity mapping for events πact : E → A, and
• timestamps for events πtime : E → T .

≺L is the set of precedence constraints in the event log such that ≺L= {(e, e′) ∈
E×E | e ̸= e′∧∃o∈O o ∈ πobj (e)∧o ∈ πobj (e

′)∧πtime(e) ≤ πtime(e
′)∧¬∃e′′∈E o ∈

πobj (e
′′) ∧ πtime(e) ≤ πtime(e

′′) ≤ πtime(e
′)}.

An OCEL consists of events that have an activity and a timestamp. Furthermore,
each event is associated with a set of objects of potentially different types. Please
note that an OCEL where each event is only associated with one object and all
objects are of the same type corresponds to a traditional event log.

The subject of traditional process analysis are typically end-to-end executions
of the process called cases. This concept was generalized to the domain of object-
centric process mining with the introduction of process executions [8].

Definition 2 (Process Executions). Let L = (E,O,OT, πobj , πact , πtime) be
an OCEL. A process execution is a set of events and precedence constraints
p = (E′,K) with E′ ⊆ E and K ⊆ (E′ × E′)∩ ≺L.
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A process execution is a directed graph of events. The edges describe the prece-
dence constraints between events given by objects. Therefore, it is a generaliza-
tion of a traditional case, which is a sequence of events. A sequence is a special
case of a graph.

Process executions need to be extracted from the event log. In general, an
extraction technique builds a set of process executions from extracted events and
their corresponding precedence constraints.

Definition 3 (Process Execution Extraction). Let L = (E,O,OT, πobj ,
πact , πtime) be an OCEL. Given any extraction technique ext(L) ⊆ P(E) we
construct process executions from the extracted sets of events πext(L, ext) =
{(E′,K) ∈ P(E)× P(E × E) | E′ ∈ ext(L) ∧K = (E′ × E′)∩ ≺L}.

There are different strategies for the extraction of process executions. Connected-
component extraction and leading-type extraction are defined in [8]. Connected-
components extraction is free of convergence, divergence, and deficiency prob-
lems [20], as proven in [6]. Other techniques have to be employed in cases of
a fully connected event log. However, our concepts work independently of the
chosen extraction technique.

Each process execution describes a specific control-flow behavior. The class of
control-flow behavior is called the variant. As a process execution is a graph, an
object-centric variant is a graph of activities associated with objects of different
types.

Definition 4 (Object-Centric Variant). An object-centric variant is a di-
rected graph v = (A,P, πnact , πnobj ) of nodes A, edges P ⊆ A×A, node activities
πnact : A → A, and node objects πnobj : A → P(O). πvo(v) = {πnobj (a) | a ∈ A}
are the variant objects.

Whether two process executions exhibit the same object-centric variant is a
graph isomorphism problem. An approach to calculating object-centric variants
is described in [8]. We assume the variants to be given in the beginning, therefore,
we do not describe the algorithm to determine the object-centric variants of an
event log here. An example of object-centric variants is depicted in Figure 1
(a)-(d). The visualization is explained in subsection 5.2.

3 Super Variants

Super variants aim to fill the gap in control-flow representation between variants
and process models to enable hierarchical variant analysis. We introduce the
concepts expressible by variants and object-centric process models to find a
middle ground for super variants.

Traditional variants can express a sequential ordering of activities. Object-
centric variants are a generalization of traditional variants [8]. An object-centric
variant consists of a traditional variant per object where some activities can be
shared between objects, i.e., it resembles a graph or partial order of activities.
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As such, it can express sequentiality within an object and concurrency between
objects.

Discoverable process models can cover a wider range of behavior. We will
focus on Object-Centric Petri Nets (OCPNs) as it is one of the most established
modeling techniques for which a discovery algorithm exists [3]. OCPNs are com-
posed of Petri nets for each object type, therefore, they can express choice and
concurrency within objects. OCPNs add two main constructs on top of Petri
nets that allow further behavior: Typed places and variable arcs. Transitions
can have input places from multiple types, acting as a synchronization point be-
tween objects. The non-shared transitions model concurrency between objects.
The variable arcs allow for certain object types to participate in the transition
with an arbitrary cardinality, modeling object multiplicity.

A super variant aims to represent two (or more) variants. It should incorpo-
rate additional concepts into variants that are discoverable when comparing two
variants. OCPNs are able to capture three concepts that object-centric variants
do not capture: concurrency within an object, choice, and object multiplicity.
Only two of them can be detected when comparing two variants: choice and
object multiplicity. Concurrency within an object needs large data amounts, it
is equivalent to the problem of traditional process discovery [3]. Therefore, we
define super variants as object-centric variants with added choice and object
multiplicity.

Definition 5 (Super Variant). A super variant is a tuple sv = (A,P, πnact ,
πobj , Osup) consisting of nodes A, edges P ⊆ A×A, node activities and choices
πnact : A → A ∪ C, node objects πnobj : A → P(O), and super objects Osup ⊆
πvo(sv) where πvo(sv) = {πnobj (a) | a ∈ A}. C = P2+(A∗) denotes the uni-
verse of choices, i.e., sets of at least two activity sequences including the empty
sequence for optionality.

We introduce the concept of object multiplicity through so-called super objects,
i.e., objects that are a placeholder for an arbitrary number of actually instanti-
ated objects. Choices are implemented by mapping a node to a set of activity
sequences instead of a single activity. Every sequence is one option of the choice.
If the empty sequence is part of this set, there is the option to skip. We define
super variant equivalence as graph isomorphism under equivalence of activity
and choice labels when mapping objects and super objects.

Definition 6 (Super Variant Equivalence). Let sv1=(A1, P1, πnact,1 , πobj ,1 ,
Osup,1 ) and sv2 = (A2, P2, πnact,2 , πobj ,2 , Osup,2 ) be super variants. These are
equivalent iff there exists a mapping varmap = (πobjmap , πnmap) consisting of
a bipartite object mapping πobjmap : πvo(sv1) → πvo(sv2), and a bipartite node
mapping πnmap : A1 → A2 such that

• (a, a′) ∈ P1 ⇔ (πnmap(a), πnmap(a
′)) ∈ P2 (graph isomorphism),

• ∀a∈A1 πnact,1 (a) = πnact,2 (πnmap(a)) (activity and choice equivalence),
• ∀a∈A1 o ∈ πnobj ,1 (a) ⇔ πobjmap(o) ∈ πnobj ,2 (πnmap(a)) (equivalent objects),
• o ∈ Osup,1 ⇔ πobjmap(o) ∈ Osup,2 (equivalent super objects).
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Fig. 2: Overview of our super variants mining framework. In the first step, po-
tential super variants SVpot for each variant are calculated and a minimal set
of super variants SV to cover all initial variants is selected. In the second step,
super variants are recursively matched and summarized to create the different
hierarchy levels of the final super variant hierarchy.

This problem formulation is graph isomorphism under equality of node labels and
object associations. We denote super-variant equivalence by sv1 ∼ sv2.

Please note the close resemblance to variant equivalence. With the only dif-
ferences being a subset of super objects and some activities being replaced by
choices, one can reduce the problem of super variant equivalence to variant
equivalence by creating new object types for super objects of each type and by
sorting choices lexicographically and transforming them into an activity label.
This enables the employment of labeled graph isomorphism techniques to deter-
mine super variant equivalence, as described in [8] for variant equivalence, which
leads to efficient computation.

4 Super Variant Mining Framework

Our proposed super variants mining framework (cf. Figure 2) is split into two
main steps: intra-variant summarization and inter-variant summarization. In
the intra-variant summarization, we compute potential initial super variants for
each variant and choose the minimal set of super variants to cover all variants.
In the inter-variant summarization, we recursively merge the most similar super
variants into a combined super variant to generate a super variant hierarchy.

4.1 Intra-Variant Summarization

Intra-variant summarization consists of two main steps: generating potential
super variants and selecting an initial set of super variants. The first step has a
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central function that can generate potential super variants given a variant, i.e.,
super variants that generalize the behavior seen in a variant.

Definition 7 (Intra-Variant Summarization). Let v = (A,P, πnact , πnobj )
be an object-centric variant. An intra-variant summarization maps the object-
centric variant to a set SV = {sv1, . . . , svn} of super variants that constitute a
generalization of the variant’s control flow intra(v) = {sv1, . . . , svn}.

The potential super variants generated in this stage can cover object multiplicity
that can already be observed by looking at one variant or choices that happen
for different objects of the same type within a variant. An example of a possible
intra-variant summarization can be seen in Figure 1. Since some objects within
the first (a) and second (b) variant show exactly the same dependencies and
control flow, they can be merged into a super object.

With multiple potential super variants per variant, we need to select a set
of initial super variants. A super variant can be a potential super variant for
two different variants. We choose an initial set of super variants with the goal of
minimizing the size of the set of initial super variants.

Definition 8 (Intra-Variant Summarization Matching). Let v1, . . . , vm be
object-centric variants with summarizations intra(vi) = {sv i,1, . . . , sv i,n} for 1 ≤
i ≤ m, providing a set of potential super variants SVpot =

⋃
1≤i≤m intra(vi).

The variant summarization matching is the smallest set of summarizations that
contains a summarization of each variant:

min
l∈N

{SV = {sv1, . . . , sv l} ⊆ SVpot | ∀1≤i≤m ∃1≤j≤n ∃1≤k≤l sv i,j ∼ svk}

This can be reduced to a hitting-set problem [25].

We end up with a problem that can be reduced to a hitting set problem, i.e.,
finding a subset of given size that covers an element of each set. Please note,
this is an NP-complete problem [25].

4.2 Inter-Variant Summarization

We generate a super variants hierarchy based on the initial super variant set.
This happens in the inter-variant summarization step. We recursively merge two
super variants into a new one that covers the control-flow behavior of both.

The central step of inter-variant summarization is the merging of two super
variants into a new super variant covering the behavior of both. This step is
called the inter-variant summarization itself. We define an abstract function
that fulfills these requirements.

Definition 9 (Inter-Variant Summarization). Let sv1 = (A1, P1, πnact,1 ,
πobj ,1 , Osup,1 ) and sv2 = (A2, P2, πnact,2 , πobj ,2 , Osup,1 ) be two super variants.
An inter-variant summarization constructs a super variant sv3=(A3, P3, πnact,3 ,
πobj ,3 , Osup,3 ) that constitutes a generalization of the control flow of both vari-
ants inter(sv1, sv2) = sv3.
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An inter-variant summarization function enables us to merge two super variants
into a new one. However, it does not tell us which super variants to merge. We
would like to merge the most similar super variants to minimize the amount of
newly-added operators. To this end, we define a distance function that measures
the similarity of two super variants.

Definition 10 (Super Variant Distance). Let sv1 = (A1, P1, πnact,1 , πobj ,1 ,
Osup,1 ) and sv2 = (A2, P2, πnact,2 , πobj ,2 , Osup,2 ) be super variants. A function
δdist(sv1, sv2) ∈ N is a super variant distance function such that δdist(sv1, sv2) =
0 iff sv1 ∼ sv2, i.e., equivalent super variants have a distance of 0.

The closest variants need to be matched such that they can be summarized
together. We define a matching problem for that. Additionally, we allow for
some variants to be not matched, given a penalty to allow for an uneven number
of super variants and outlier behavior.

Definition 11 (Inter-Variant Matching). Let SV = {sv1, . . . , svn} be a set
of super variants. Given a non-assignment penalty β ∈ R+ the matching between
super variants is a minimization problem:

argmin
M⊆(SV×SV )

∑
(svi,svj)∈M

δdist(svi, svj) + βC

subject to |{(svi, svj)∈M | svi≁svj ∧ (svi∼sv′ ∨ svj∼sv′)}|≤1 ∀sv′∈SV,

D =
⋃

(svi,svj)∈M

{svi, svj} ,

C = |SV \D| .

Our framework consists of five main steps: intra-variant summarization, sum-
marization matching, inter-variant summarization, variant distance function,
and matching. While both matchings are defined as optimization problems, the
summarizations and the distance function provide design choices. In the following
section, we briefly describe the choices for our initial framework implementation.

5 Implementation

We implemented our framework based on the ocpa library [7]. The code and
all following experiments are publicly available‡. We provide a description of the
intra-variant summarization, inter-variant summarization, and distance function
we use. We refer to the repository for the detailed computations. Furthermore,
we provide a description of our visualization technique.

5.1 Computation

In the intra-variant summarization (cf. Definition 7), we merge objects into super
objects and introduce possible choices observed between objects of the same type.

‡https://github.com/EmilieHK/Object-Centric-Super-Variants

https://github.com/EmilieHK/Object-Centric-Super-Variants
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To begin with, we find all objects with the same dependencies as other objects.
Only such objects can be merged into a super object or used to infer choices,
as we would otherwise introduce different object dependencies. Note that object
dependency is a transitive relationship. In the retrieved sets of objects with the
same dependencies, we check for equivalence of paths to form super objects.
Furthermore, we check for the existence of choices to merge two objects into a
super object under the introduction of a choice.

We define the distance function (cf. Definition 10) between super variants us-
ing Levenshtein distance [27]. We go through different object mappings between
two super variants that preserve object dependencies. We find the object map-
ping that provides the minimal aggregated Levenshtein distance for all objects.
This minimal Levenshtein distance is the distance between two super variants.

In the inter-variant summarization (cf. Definition 9), we find a super vari-
ant that covers the behavior of both input super variants. To do this, we find
a mapping between the objects of both super variants with respect to the de-
pendencies between objects and behavioral closeness per object, i.e., the same
mapping found through the calculation of the distance. Using this mapping, we
can identify additional (optional) objects as well as choices that are happening
between two mapped objects.

5.2 Visualization

We use a visualization close to the initially proposed visualization for object-
centric variants [8]. First, we explain the basic concept behind the visualization
of object-centric variants, and second, we introduce the additional visualization
elements that are used for super variants. We refer to the example in Figure 1.

An object-centric variant is visualized using three main components: object
colors, activity chevrons and object lanes. Every object type has a different base
color and every object of that type has a different shade of that base color. An
activity chevron symbolizes the occurrence of an activity. It can be colored in
multiple colors if multiple objects are involved in this activity. An object lane
contains all activity chevrons associated with an object ordered by time, i.e.,
it is a traditional variant for one specific object. If an activity is shared, it is
placed in all involved object lanes on the same horizontal position. Only shared
activities impose an ordering between activities of different objects. Activities of
different objects before and after a shared activity are concurrent.

We incorporate the additional concepts of choice and object multiplicity in
the following way. For object multiplicity, i.e., super objects, we use a notation
of a star instead of an object identifier, indicating the arbitrary number of times
an object can be instantiated. We visualize choice using a vertical split of the
choice within a chevron. If one option of the choice is empty, i.e., the choice
expresses optionality, we draw the chevron of the activity using a dotted border.
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Fig. 3: Part of the super variant hierarchy mined from the procure-to-pay event
log. From levels 1 to 2, the variants are summarized with super objects for
material objects. From levels 2 to 3, the variants are summarized with a choice
between approving or delegating a purchase order. The resulting super variant
covers 20% of the control flow.

6 Proof of Concept

We apply our proposed super variants mining framework to an event log to
mine a super variant hierarchy. We use a procure-to-pay event log [37]. The
event log contains 516 process executions that have 314 different object-centric
variants. There are 5128 objects of 7 object types. We depict a sub-hierarchy of
the generated super variant hierarchy to ensure readability of the results. The
remaining super variants can be found in the repository. The corresponding sub-
hierarchy is depicted in Figure 3. The hierarchy shows how four object-centric
variants are summarized into one super variant over three hierarchy levels.

The underlying process is a procure-to-pay process. A purchase request as-
sociated with multiple materials is created. This purchase request triggers the
creation of a quotation object which itself will create a purchase order. After the
order arrives, a good receipt will be created for the purchase order. An invoice
is created and the order is paid.

The first level of the hierarchy contains four variants. These variants are
pairwise matched and summarized. From the first to the second level, the intra-
variant summarization algorithm introduces super objects for material since the
variants show different numbers of material objects. From the second to the
third level, the two super variants are summarized under introduction of the
choice operator. The inter-variant summarization algorithm uncovers the choice
between approving or delegating the purchase order as the difference between
the super variants. This choice is propagated to the connected material super
object. We end up with one super variant with a material super object and a
choice between delegating and approving the purchase order that covers 20%
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(a) Decomposed computation time.

(b) Summarization generation time based
on the number of summarizations.

(c) Summarization generation time based
on the number of events.

Fig. 4: Intra-variant summarization computation time decomposed into individ-
ual parts and analyzed on the variant level. We analyze the relationship to the
number of generated intra-variant summarizations and events.

of the control-flow behavior of the whole event log while it only adds minimal
additional elements to the initial variants, namely an object multiplicity operator
(*) and a choice between two activities. This shows super variants’ usefulness in
summarizing several variants into one understandable representation.

7 Scalability Evaluation

Since the super-variant mining framework is composed of computationally de-
manding problems we evaluate the scalability of our approach to ensure its real-
life feasibility. We drill down the scalability of intra- and inter-variant sum-
marization into the different compounding factors. We use the procure-to-pay
event log and different numbers of variants as input to evaluate the scalability.
We generate five super variant hierarchies of five levels with thirty-two randomly
selected variants and average the computation times.

7.1 Intra-Variant Summarization

Figure 4a depicts the decomposed average computation time of the intra-variant
summarization. We observe that the largest part of the computation is used
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Fig. 5: Decomposition of the inter-variant summarization running times into the
three steps.

for generating the potential super variants, i.e., the possible summarizations.
Since the summarization exhibits a larger share of the computation time, we
investigate factors that influence the computation time of the summarization for
individual variants. The results are depicted in Figure 4b and Figure 4c. There
are two main findings: the more potential super variants we compute and the
more events (nodes) a variant has, the longer the computation time. Since the
number of events is a non-changeable parameter, one could limit the number of
generated summarizations to limit the computation time.

7.2 Inter-Variant Summarization

Figure 5 depicts the decomposed average computation time of inter-variant com-
putation depending on the hierarchy level. Hierarchy level 1 is the lowest hierar-
chy level, i.e., the level using the intra-variant summarization as input. We ob-
serve that a larger number of super variants leads to higher computation times in
the distance calculation and inter-variant matching. These computation times
decrease with lower numbers of variants in the corresponding hierarchy level.
In the last hierarchy level, the inter-variant summarization time dominates all
other times. For super variant hierarchies with many more variants, this can
pose a scalability problem. This inter-variant summarization is the first of the
introduced problems that needs scalability solutions to ensure applicability to
large event logs.

8 Related Work

In this section, we discuss process discovery, variant analysis, and related ap-
proaches to finding super variant hierarchies. First, we discuss object-centric
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event data, the starting point for our work. Second, we introduce relevant work
on variant analysis and object-centric process discovery. Third, we introduce
related approaches to super variants.

Real-life processes often consist of objects with complex co-dependencies [19].
This is a generalization of traditional process mining: Instead of one object per
end-to-end execution of the process there are now multiple objects involved.
Forcing the event data of such object-centric processes into a traditional event
log format leads to quality issues [36]. Therefore, we base our work on object-
centric event data.

A variant is a sequence of activities that is a viable process execution ac-
cording to the event log. Variant analysis is the exploration of all individual
control-flow variants to derive insights into the process [34]. It is a key technique
in most practical process assessment and auditing frameworks [24,15], analyzing
variant characteristics [44] in a mostly visual way [19,41,11]. Several approaches
have been proposed to incorporate higher-level concepts into variants, such as
parallelism of non-atomic events [4,40], concurrency between objects in object-
centric variants [8] or other structures control-flow [39]. However, no approach
has been introduced to mine variants that are summarizations of multiple vari-
ants.

Process discovery has the opposite approach of variant analysis: All vari-
ants are summarized into one single model. A plethora of object-centric process
discovery approaches have been proposed: Object-centric Petri nets [3], pro-
clets [32,31], cardinality and declarative constraints [28], and discovery with
object-type clustering [23]. While comprehensive, they lack the granularity and
simplicity of variants as they can grow overly complex [1].

The idea of super variants has two main components: Finding similar pat-
terns between variants and constructing a hierarchical control-flow from them.
There are two main categories of techniques that relate to these ideas: Local
process models [43] and hierarchical process models [21]. These two have oppos-
ing approaches: Local process models explicitly discover frequent patterns across
variants while hierarchical process models mine models that abstract frequent
patterns away to show them in a lower level of the hierarchy.

Local process model mining offers techniques to discover local behavior in
variants that contain concurrency [26,43], exclusive choices [14,30] as well as
loops [43,22]. An iterative construction of local models based on joining existing
patterns yields a set of defining structures present in the process [38,5]. The
main differentiation to our work is the focus on end-to-end behavior: While we
preserve end-to-end behavior of a process execution, local process model mining
focuses on only local behavior.

Hierarchical process discovery aims to discover a process model that is com-
posed of multiple different submodels arranged in a hierarchy [21,33] by utilizing
pattern mining [10,29]. The models are mined through a bottom-up construction
of a lattice structure [17,16]. There are two main differentiations to our work:
First, the variants are still summarized into one single process model. Second, the
complexity of the model is still the same, sub-behavior is only abstracted away
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in the hierarchy. Therefore, no approach equivalent to super variants has been
proposed, constituting a middle ground between variants and process models in
terms of summarization and complexity.

Trace clustering methods follow the objective of grouping behaviorally close
traces together [45,42,13]. Few clustering approaches use a top-down strategy
to discovery hierarchies by checking the conformance of clusters to discovered
process models [21,33]. While such an approach allows a decomposed exploration
of the control flow, the connection to specific variants is lost and the clustering
is not inherently tied to specific control-flow differences that are considered in a
visualization.

9 Conclusion

We introduced the concept of super variants in this paper. Super variants aggre-
gate closely related variants into relatively simple models, less complex than pro-
cess models but more comprehensive than variants. To discover super variants,
we proposed a super-variant mining framework consisting of two main steps and
five main problems: intra-variant summarizations, intra-variant summarization
matching, inter-variant summarization, super variant distance, and inter-variant
matching. With each of these problems being computationally demanding, we
evaluated the scalability of the super-variant mining framework to investigate
real-life applicability and uncover potential points of future improvement. We
proposed a super variant visualization and applied the framework to a procure-
to-pay event log to mine a super variant hierarchy. The results show promising
levels of control-flow aggregation for little added complexity, providing a proof
of concept. While super variants are defined on object-centric event data, the
concept is equally applicable to case-centric event data as case centricity is a
special case of object centricity.

Two main limitations can be addressed in future work: technical limitations
and more elaborate evaluations of added value. Technical limitations include the
inter-variant summarization scalability and vagueness of super variants. Inter-
variant summarization has shown to be the part of our framework with the
highest computation time. A scalable practical application necessitates an ef-
ficient inter-variant summarization. Highly optimized code or heuristics could
help to reduce the computation time. With respect to object multiplicity, super
variants are similar to object-centric Petri nets. If there is multiplicity, the num-
ber of objects is arbitrary and it is not defined whether objects are batched or
not. A more restrictive formalization of super variants can address this. However,
the generalization of super variants would suffer from this. This paper has pro-
vided the general concept and a brief proof of concept where we could aggregate
a large part of the control-flow information in one super variant. However, we
would like to assess the added benefit to the end user in future research, proofing
the real-life value of super variants.
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