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Abstract. In task mining, data captured by recording user interactions
in a desktop environment are stored in a user interaction log. A user
interaction log can be transformed into an event log, suitable for process-
mining techniques. If the desktop is captured during the recording pro-
cess, information about enabled activities is available (next to the exe-
cuted activity). This information can be extracted and added to an event
log, resulting in a so-called translucent event log. A translucent event log
can also be extracted from running information systems or created by
applying domain knowledge to existing non-translucent event logs. In-
formation about enabled activities is valuable for multiple reasons. For
example, one may use this information to discover process models that
capture the underlying behavior better. However, until now, only limited
work has been done on exploiting the information on enabled activities
for process discovery. In this work, we introduce translucent activity re-
lationships derived from translucent event logs. These relationships can
be embedded in various discovery algorithms. In this work, we focus on
the Inductive Miner. In this process, we derive a translucent directly-
follows graph. Based on this graph, we extend the Inductive Miner to
use translucent activity relationships. We create three different variants
and evaluate them on multiple translucent event logs by comparing them
with the Inductive Miner. Based on the evaluation, we show that con-
sidering these relationships, fewer recordings are needed to discover a
similar, if not even a superior, process model.

Keywords: Process Discovery · Translucent Event Log · Translucent
Directly-Follows Graph · Translucent Inductive Miner.

1 Introduction

Robotic Process Automation (RPA) aims to automate repetitive tasks in a desk-
top application environment by using software bots [31]. Traditionally, cost- and
time-intensive methods, such as interviews, are conducted to discover routines
that can be automatized. To lower boundaries for identifying routines, Robotic
Process Mining (RPM) [22] can be used, which is a subfield of task mining [16].

⋆ We thank the Alexander von Humboldt (AvH) Stiftung for supporting our research.
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Table 1: Example translucent event log.

Event Case Activity Enabled Activities Timestamp

e1 1 a a, b, c, d 2023-06-20 13:37:37
e2 1 b b, c 2023-06-20 13:37:38
e3 1 c c 2023-06-20 13:37:39
e4 2 d a, b, c, d 2023-06-20 13:37:40
e5 2 e e 2023-06-20 13:37:41
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(a) Petri net discovered by the IM [19].
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(b) Petri net discovered by the IMto.

Fig. 1: Petri nets discovered from the translucent event log shown in Table 1.

RPM performs its analysis on a user interaction log. These logs are created by
capturing a user’s desktop environment. Each entry in such a log represents an
event, for instance, clicking a button. Such user interaction logs can be converted
into event logs, used as input for process mining [1]. An event log is a collection
of events, and each event consists of at least three attributes: a case identifier,
an activity, and a timestamp. If screenshots linked to events are available, in-
formation on enabled activities, besides the executed activity, can be extracted
from interaction logs, as shown in [13]. Nonetheless, adding this information us-
ing domain knowledge or extracting it from running information systems is also
possible. If the information on enabled activities is included in an event log, we
call it a translucent event log. The information on enabled activities is valuable.
Dedicated process-mining techniques can be applied to these event logs [2,14].

To illustrate the value of enabled activities in process discovery, consider the
translucent event log shown in Table 1. By considering only the information on
enabled activities, we observe that there are two cases ⟨a,b, c⟩ and ⟨d, e⟩. The first
executed activity determines which trace is taken, and the behavior is sequential.
Applying the Inductive Miner (IM) [19] on the translucent event log results in
the Petri net shown in Figure 1a. However, when we consider the information
on enabled activities, we denote that activities a, b, and c are initially enabled
and are still enabled after executing each after another. This indicates that these
activities are parallel to each other. As we show in the remainder of this work,
we can utilize the information on enabled activities, leading to the Petri net
depicted in Figure 1b. Normally, more variants are needed to discover the same
model using the IM [19]. However, this example shows that less information is
needed to discover a well-describing process model using our methods. This is
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beneficial when analyzing behavior in desktop environments to create models
that are used to create bots for RPA.

So far, only one process-discovery algorithm has been described that deals
with information on enabled activities [2]. This method is based on state-based-
region techniques and is not applicable to larger real-life datasets. To overcome
the limitations of the current translucent process-discovery technique, we intro-
duce translucent activity relationships. The relationships can be used in existing
process-discovery algorithms, thus allowing more information to be considered to
create better process models even if not all variants of a process are recorded. To
demonstrate the value of translucent activity relationships in process discovery
and to evaluate our approach, we implemented translucent relationships in the
IM [19] provided in PM4Py [12]. We created three different variants based on
the original IM [19] that use translucent relationships at different points in the
discovery algorithm. Our evaluation covers artificial and real-life scenarios. Us-
ing the IM [19], we demonstrate how translucent relationships enhance existing
process-discovery techniques. Furthermore, we show that we need fewer variants
of a process to discover better process models. This showcases the high value of
information on enabled activities and stresses their importance in creating bots
based on process models for RPA.

The remainder of this work is structured as follows. In Section 2, we present
related work. Subsequently, we introduce preliminaries of our work in Section 3.
In Section 4, we define and explain translucent activity relationships. To show
the value of the relationships, we embed them at various points in the IM as we
show in Section 5. We evaluate our translucent discovery algorithms inspired by
the IM in Section 6 and compare the results with the results of the original IM.
Finally, we provide a conclusion on our work in Section 7.

2 Related Work

Process discovery deals with discovering a comprehensive process model that
represents the underlying behavior in a given event log [1]. Multiple process-
discovery techniques do this, but all consider the relationships between the ac-
tivities that are recorded in a given event log. The Alpha algorithm [6] is the
pioneering method for concurrent process model discovery, utilizing the event
log’s footprint matrix. Similar to the Alpha algorithm, we introduce activity
relationships that are beneficial for process discovery and enable translucent
process discovery in a great manner. Another process-discovery technique is the
IM and its different variants [19,20,21]. A core concept of the IM is the usage
of directly-follows graphs (DFGs). The IM applies different cuts on a provided
DFG, thus creating multiple partitions, and based on these, sublogs are created.
For each partition, a DFG is created on which the method is recursively ap-
plied. A different technique that considers a DFG as input is the so-called Split
Miner [10,11]. The Split Miner consists of six steps: First, a DFG is constructed,
and self-loops and short-loops are identified. Second, concurrency relations are
discovered using the DFG. Third, the DFG is filtered by trying to balance fit-
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ness and precision of the final process model. In the fourth and fifth steps, split
and join gateways are discovered. Finally, OR-joins may be turned into either
an XOR-gateway or AND-gateways. We refer to [1,3,9] for more information on
various process-discovery techniques.

Nevertheless, all the previously mentioned techniques only consider informa-
tion based on executed activities; no information on enabled activities is used.
To our knowledge, only one process-discovery technique uses information on en-
abled activities. The indirect process-discovery technique is descibed in [2] and
is related to region theory [17,18] and state-based regions [5,15,28,29,30]. In gen-
eral, state-based region process-discovery techniques are a two-step approach.
First, a transition system is created. Second, minimal regions are extracted from
the created transition system. Each minimal region corresponds to a place of a
Petri net. In the only existing translucent process-discovery technique, each set
of enabled activities represents its own state. Arcs connecting different states
are labeled with the executed activity that leads from one set to the other, as
denoted in the given translucent event log. As the last step, such a system is
transformed into a Petri net. However, since this approach is based on state-
based regions and, therefore, region-based process discovery, it may have similar
limitations, such as the computation time or a too-large model. We propose a
more practical approach by defining translucent activity relationships that can
be implemented in existing process-discovery techniques. Furthermore, we show
how translucent activity relationships can be used in DFG-based approaches. As
a result, we enhance widely known and embedded techniques to work with more
information.

3 Preliminaries

Given a set X, a sequence σ ∈ X∗ of length n ∈ N assigns an enumera-
tion to elements of the set, i.e., σ : {1, ..., n} → X. We denote this with
σ = ⟨σ1, . . . , σn⟩. ⟨⟩ is the empty sequence. σ↾X′ is the projection of σ onto
a set X ′, e.g., ⟨a, b, c, d, a, b⟩↾{a,b} = ⟨a, b, a, b⟩. In the remainder, we refer with
σi to the sequence’s i-th element. Given a sequence σ, |σ| denotes the length
of a sequence. Given two sequences σ = ⟨σ1, . . . , σ|σ|⟩ and σ′ = ⟨σ′

1, . . . , σ
′
|σ′|⟩,

a conjunction is denoted as σ · σ′ = ⟨σ1, . . . , σ|σ|, σ
′
1, . . . , σ

′
|σ′|⟩. We denote the

Cartesian product of two sets X and Y as X × Y = {(x, y) | x ∈ X ∧ y ∈ Y }.
Our work focuses on developing process-discovery techniques that consider

translucent event logs, i.e., for each event, information on enabled activities
besides the executed activity is available. Based on the characteristics of enabled
activities, the executed activity must also be enabled in the corresponding event.
Ucase is the universe of case identifiers, Uact is the universe of activity names,
and Utime is the universe of timestamps.

Definition 1 (Translucent Event Log). Uev is the universe of events. e ∈ Uev

is an event, πcase(e) ∈ Ucase is the case of e, πtime(e) ∈ Utime is the time of e,
πen(e) ⊆ Uact, and πact(e) ∈ πen(e) is the activity of e. Utrace = U∗

ev is the uni-
verse of traces. L ⊆ Utrace is an event log s.t. for all ⟨e1, . . . , en⟩ ∈ L, πtime(e1) <
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Fig. 3: Abstract overview of the Inductive Miner [19].

· · · < πtime(en), and, for i, j ∈ {1, . . . , n}, πcase(ei) = πcase(ej). Also, for
i, j ∈ {1, . . . , |σ|}, ei ̸= ej. In addition, for all σ, σ′ ∈ L, σ ̸= σ′, (

⋃
e∈σ{e}) ∩

(
⋃

e∈σ′{e}) = ∅. For simplicity, we define πact(L) =
⋃

σ∈L

⋃
e∈σ{πact(e)}

Let Lex = {⟨e1, e2, e3⟩, ⟨e4, e5⟩} be the translucent event log shown in Table 1.
Then, πact(e1) = a, πen(e1) = {a, b, c, d}, πact(e1) ∈ πen(e1), πtime(e1) =
2023-05-04 13:37:37, and πcase(e1) = 1. In addition, πact(Lex) = {a, b, c, d, e}.

Our work extends the IM [19] to consider information on enabled activities.
Therefore, we introduce directly-follows graphs and shortly explain the IM. A
directly-follows graph is derived from a (translucent) event log and shows three
aspects: start activities, end activities, and directly-follows relationships between
activities recorded in the provided event log. Directly-follows relationships show
which activities directly-follows an activity over all cases in an event log.

Definition 2 (Directly-Follows Graph). Let L ⊆ Uev be a (translucent)
event log with ■ /∈ πact(L) and ▶/∈ πact(L). A Directly-Follows Graph (DFG) of
L is a directed graph DFGL = (V,E) for which V = πact(L) ∪ {▶,■}, where
▶ is the start node, ■ is the end node, and E = ({▶} ×

⋃
σ∈L{πact(σ1)}) ∪

(
⋃

σ∈L{πact(σ|σ|)} × {■}) ∪ (
⋃

σ∈L

⋃
i∈{1,...,|σ|−1}{(πact(σi), πact(σi+1))}).

The DFG of the event log shown in Table 1 is provided in Figure 2.
As denoted in the DFG, activities a and d are start activities, and c and e are
end activities. Furthermore, a is connected to b, and b is connected to c.

b

d

a c

e

Fig. 2: DFG obtained from the
event log depicted in Table 1.

The IM [19] is a well-known state-of-the-
art process-discovery algorithm. An abstract
overview of the IM is provided in Figure 3.
The IM [19] works as follows. If the provided
event log is a base case, a model is gener-
ated. If not, a DFG is generated. It is checked
whether a cut on the graph is detected. There
are for cuts: exclusive-choice (×), sequence
(→), parallel (+), and redo-loop (⟲). The cuts
consider multiple arcs in the corresponding
DFG and capture the relationships between
various activities. If a cut is detected, the log is projected by considering the
created activity partitions. Each activity is only part of exactly one partition.
The final partition captures a single activity, resulting in a base case. If no cut
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is found, fall-throughs are applied. For more information, we refer to [19]. In the
following, we define a cut.

Definition 3 (Cut). Let L ⊆ Utrace be a translucent event log. A cut
(⊕, A1, . . . , An) of L is a tuple of a control flow operator ⊕ ∈ {×,→,+,⟲}
and a partitioning of activities into n ≥ 2 subsets, i.e., πact(L) =

⋃
i∈{1,...,n} Ai

and Ai ∩Aj = ∅ for 1 ≤ i < j ≤ n.

In this work, we enhance DFGs to capture translucent information and, as a
result, enable the IM [19] to consider information on enabled activities. In the
remainder of this work, we show Petri nets as process model representations. An
introduction to Petri nets is provided in [1,27].

4 Translucent Activity Relationships

Translucent activity relationships are a key concept in incorporating information
on enabled activities in process mining. To discover translucent activity relation-
ships, we use a sequence-based approach. This means that we walk through the
cases of the provided translucent event log and compute the activity relation-
ships by considering the executed activity of an event and the event’s enabled
activities as well as the successor event’s enabled activities. We define three
translucent activity relationships: directly-follows, parallel, and exclusive-choice
relationships. We discuss their meaning and use for each of them. Furthermore,
we introduce translucent start and end activities. To illustrate our approach, we
refer to the example translucent event log provided in Table 1 that we denote in
the following as Lex.

4.1 Translucent Directly-Follows Relationship

The translucent directly-follows relationship is a natural extension of the tra-
ditional directly-follows relationship. Note that this relationship considers all
enabled activities after an activity’s execution, i.e., self-loops are considered,
even if they do not appear in the sequences of executed activities.

Definition 4 (Translucent Directly-Follows Relationship). Let L ⊆ Uev

be a translucent event log and act ∈ πact(L) be an activity. act has a translucent
directly-follows relationship to all activities that are enabled after its execution
and executed in L. The following defines the set of activities for an activity
for which the conditions hold, df L(act) = {en ∈ πen(σi+1) | σ ∈ L ∧ i ∈
{1, ..., |σ| − 1} ∧ πact(σi) = act} ∩ πact(L).

For Lex, we denote the following translucent directly-follows relationships:
dfLex(a) = {b, c}, dfLex(b) = {c}, dfLex(c) = ∅, dfLex(d) = {e}, and dfLex(e) =
∅.
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4.2 Translucent Parallel Relationship

The translucent parallel relationship extends the previously mentioned translu-
cent directly-follows relationship. Using the information on the executed activity
of an event, the event’s enabled activities, and the event’s succeeding enabled
activities, we conclude which activities are parallel to the executed activity. The
parallel activities of the executed activity are the ones that were enabled during
and after its execution.

Definition 5 (Translucent Parallel Relationship). Let L ⊆ Uev be a translu-
cent event log and act ∈ πact(L) be an activity. act has a translucent parallel
relationship to all activities that are enabled in its execution and are still enabled
after its execution and are executed in L. The following defines the set of activ-
ities for an activity for which the conditions hold, parL(act) = {en ∈ (πen(σi)∩
πen(σi+1)) \ {act} | σ ∈ L ∧ i ∈ {1, ..., |σ| − 1} ∧ πact(σi) = act} ∩ πact(L).

For Lex, we denote the following translucent parallel relationships: parLex(a) =
{b, c}, parLex(b) = {c}, parLex(c) = ∅, parLex(d) = ∅, and parLex(e) = ∅.

4.3 Translucent Exclusive-Choice Relationship

The idea of the translucent exclusive-choice relationship is similar to translucent
parallel relationships. Nevertheless, instead of focusing on “remaining” activities,
we concentrate on “removed” activities. To discover “removed” activities, we use
the information on the executed activity of an event and the difference between
the event’s enabled activities and the event’s succeeding enabled activities.

Definition 6 (Translucent Exclusive-Choice Relationship). Let L ⊆ Uev

be a translucent event log and act ∈ πact(L) be an activity. act has a translucent
exclusive-choice relationship to all activities that are not enabled anymore after
its execution and are executed in L. The following defines the set of activities
for an activity for which the conditions hold, excL(act) = {en ∈ (πen(σi) \
πen(σi+1)) \ {act} | σ ∈ L ∧ i ∈ {1, ..., |σ| − 1} ∧ πact(σi) = act} ∩ πact(L).

For Lex, we denote the following translucent exclusive-choice relationships:
excLex(a) = {d}, excLex(b) = ∅, excLex(c) = ∅, excLex(d) = {a, b, c}, and
excLex(e) = ∅.

4.4 Translucent Start and End Activities

In addition to the previously defined translucent activity relationships, we in-
troduce translucent start and end activities.

Translucent start activities are all enabled activities in traces’ first events
and executed at some point in the log.

Definition 7 (Translucent Start Activities). Let L ⊆ Uev be a translucent
event log. Translucent start activities are activities that are enabled at the start
of traces, i.e., StartL =

⋃
σ∈L πen(σ1) ∩ πact(L).
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(a) IM only using tDFGs (IMto).
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(b) IM first using tDFG, then DFG (IMtf).
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(c) IM first using DFG, then tDFG (IMts).

Fig. 4: Abstract overview of the different approaches.

For Lex, we denote StartLex = {a, b, c, d} as translucent start activities. In the
classic setting, only a and d are start activities.

Similar to translucent start activities, translucent end activities are all en-
abled activities of traces’ last events of a translucent event log. Also, they have
to be executed at some point in the log.

Definition 8 (Translucent End Activities). Let L ⊆ Uev be a translucent
event log. Translucent end activities are activities that are enabled at the end of
traces and parallel to the executed activity, i.e., EndL =

⋃
σ∈L πen(σ|σ|)∩πact(L).

For Lex, we denote the following translucent end activities: EndLex = {c, e}.
This is similar to the classic setting.

5 Translucent Inductive Miner

After defining translucent activity relationships, we utilize them in process dis-
covery. Translucent activity relationships are a general concept usable in various
process-discovery algorithms. Despite their natural link to the Alpha algorithm
[6], we show how to use them in the state-of-the-art discovery technique, the IM
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[19]. We choose this algorithm based on its guarantees, such as soundness. More-
over, the IM [19] is fast compared to other methods, e.g., state-based regions.

b
d

a c

e

Fig. 5: tDFG obtained from the
translucent event log depicted in
Table 1.

We present three approaches, depicted in Fig-
ure 4, to incorporate the translucent informa-
tion. Note that the base case and cut detec-
tion work as defined by the IM [19]. The ap-
proach shown in Figure 4a replaces the DFG
with a tDFG; the rest stays the same. We call
this approach IMto. The approach shown in
Figure 4b first uses a tDFG, but if no cut
is detected, a DFG is constructed. We call
this approach IMtf. The approach shown in
Figure 4c first used a DFG, but if no cut is
found, a tDFG is constructed on which cuts
are searched. We call this approach IMts. Fall-throughs are applied as defined
in the IM [19]. In the following, we focus on two important aspects. First, how
to create a translucent DFG. Second, how logs are projected.

5.1 Translucent DFG

Similar to DFGs (see Definition 2), translucent DFGs are constructed using
activity nodes. However, to connect activity nodes, translucent information is
used, i.e., translucent start and end activities, and translucent directly-follows
and parallel relationships. We do not use translucent exclusive-choice relation-
ships since they do not add or delete arcs, but they can be valuable for other
techniques. Concerning translucent directly-follows relationships, we add an arc
from each activity to every activity in the corresponding directly-follows set.
Concerning translucent parallel relationships, we exploit the symmetry of par-
allel relationships, i.e., if an activity a is parallel to activity b, then b is parallel
to a. Thus, we create two arcs, one for each direction between activities in a
parallel relationship.

Definition 9 (Translucent Directly-Follows Graph). Let L ⊆ Uev be a
translucent event log with ■ /∈ πact(L) and ▶/∈ πact(L). A translucent Directly-
Follows Graph (tDFG) of L is a directed graph tDFGL = (V,E) for which V =
πact(L)∪{▶,■} and E = ({▶}×StartL)∪(EndL×{■})∪(

⋃
act∈πact(L){act}×

dfL(act)) ∪ (
⋃

act∈πact(L) par
L(act)× {act}) ∪ (

⋃
act∈πact(L){act} × parL(act)).

▶ is the start node, ■ is the end node.

The tDFG of the event log shown in Table 1 is provided in Figure 5. As we
observe in Figure 2, the DFG shows only sequential relationships and a choice
between starting with either a or d, resulting in different paths. However, the
tDFG depicted in Figure 5 reveals parallelism between a, b, and c, more start
activities, but the same end activities as the DFG.
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5.2 Log Splitting

The cuts of the IM [19] find disjoint sets of activities. The sets are used to split
an event log into sub-logs. However, the splitting is only defined on event logs,
not translucent event logs. Therefore, we have to create projected translucent
sub-logs in which only events are included for which the executed activities fit
the given set of activities. In the following, we list the definitions for splitting
translucent event logs. These are based on the pre-existing definition [19].

Definition 10 (Exclusive-Choice Split). Let L ⊆ Utrace be a translucent
event log and (×, A1, . . . , An) be an exclusive-choice cut. Then, the exclusive-
choice split is for i ∈ {1, . . . , n} defined as Li = {σ ∈ L | ∀e∈σπact(e) ∈ Ai}

Definition 11 (Sequence Split). Let L ⊆ Utrace be a translucent event log
and (→, A1, . . . , An) be a sequence cut. Then, the sequence split is for j ∈
{1, . . . , n} defined as Lj = {σj ∈ L | σ1 · σ2 · . . . · σn ∈ L ∧ i ≤
n ∧

⋃
k∈{1,...,|σi|}{πact(σ

i
k)} ⊆ Ai}

Definition 12 (Concurrency Split). Let L ⊆ Utrace be a translucent event
log and (×, A1, . . . , An) be a concurrency cut. Then, the concurrency split is for
i ∈ {1, . . . , n} defined as Li = {σ↾Ai

| σ ∈ L}

Definition 13 (Redo-Loop Split). Let L ⊆ Utrace be a translucent event
log and (⟲, A1, . . . , An) be a redo-loop cut. Then, the redo-loop split is for i ∈
{1, . . . , n} defined as Li = {σ2 | σ1 · σ2 · σ3 ∈ L ∧

⋃
j∈{1,...,|σ2|}{πact(σ

2
j )} ⊆

Ai ∧ (σ1 = ⟨⟩ ∨ (πact(σ
1
|σ1|) /∈ Ai)) ∧ (σ3 = ⟨⟩ ∨ (πact(σ

3
1) /∈ Ai))}

Note that the nodes of the tDFG consider only executed, not enabled, activi-
ties. Also, note that the translucent activity relationships are only defined on
executed activities. Hence, activities that are not executed in a sub-log but are
only being enabled do not cause issues. Applying the IM [19], IMtf, and IMts on
the translucent event log contained in Table 1 results in the Petri net depicted
in Figure 1a. Applying the IMto on the same translucent event log returns the
Petri net depicted in Figure 1b. As we observe, the latter captures the behavior
that we encountered in the tDFG and in the underlying translucent event log.

6 Evaluation

In this section, we evaluate our different approaches. As introduced in [13], en-
abled activities can be extracted from screenshots using template matching.
However, to evaluate different scenarios and increase data availability and re-
producibility, we create artificial translucent event logs. The method is similar
to the approach in [13]. An overview is depicted in Figure 6. As shown, a process
model is discovered from an existing event log. The process model and the event
log are aligned, and by only considering fitting traces, we add the information
on enabled activities by considering the replay state in the model. For details,
we refer to [13].
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Fig. 6: Overview of creating translucent event logs.
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Fig. 7: Overview of our evaluation concept.

To evaluate whether translucent activity relationships provide value for pro-
cess discovery, we compare the IM that does not use information on enabled
activities with our three versions. Also, we evaluate e whether our approaches
discover similar or better models with fewer variants than the IM [19]. To evalu-
ate these aspects, we need to create such scenarios. An overview of how we cre-
ate the evaluation scenarios is depicted in Figure 7. We split a translucent event
log into multiple sublogs, each representing a certain number of variants. For
each sublog, the IM [19] and our approaches discover process models. To check
whether a more representative process model is discovered with less information,
we compute fitness, precision, and F1 scores using the unsplit translucent event
log. We use alignments with a standard cost function to compute fitness scores
[7]. To compute precision scores, we use a modified approach of the escaping
arcs approach, presented in [4,8,26]. Instead of only focusing on arcs represent-
ing behavior enabled in the log by considering executed activities and arcs based
on behavior allowed in the model, we also consider the enabled activities as log
behavior. Only fitting traces are considered. More information can be found in
[14]. The F1 score is the harmonic mean between fitness and precision.

We implemented our approaches in Python using PM4Py [12]1. We evaluate
our process-discovery technique in two scenarios. First, an artificial scenario with
a focus on parallelism. Second, three real-life scenarios.

1 Our code, as well as the data, are provided here: https://github.com/hherbertb/
TranslucentActivityRelationships

https://github.com/hherbertb/TranslucentActivityRelationships
https://github.com/hherbertb/TranslucentActivityRelationships
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Fig. 8: Score comparison between the IM [19] and the different translucent vari-
ants using an artificial parallel scenario.

6.1 Artificial Scenario

In the evaluation based on an artificial parallelism scenario, we want to evaluate
how fitting the discovered process models from the IM [19] and our approaches
are. Since our various algorithms use translucent parallel relationships, we want
to ratify their usefulness in process discovery. Besides parallelism, we want to
check whether our approaches discover as least as good models as the IM [19].

To evaluate the usefulness of parallel translucent relationships, we created
a scenario of four activities. Each activity has to be executed once per variant
and in different orders, resulting in 4! = 24 variants. We created 24 sublogs,
each covering the first variant. The other variants in a sub-log are added in
incremental order, i.e., the first sub-log consists of variant one, the second sub-
log of variants one and two, the third sub-log of variants one, two, and three, etc.
Each variant appears exactly once. For each sub-log, we discover four process
models, one per algorithm. For each model, we compute its fitness, precision,
and F1 score by considering the unsplit translucent event log. The results of the
parallel scenario are shown in Figure 8. The IM and IMts share the same fitness
values. The IMto has a perfect fitness score. The IMtf achieves a higher fitness
score with fewer variants than the IM and IMts. When considering three variants,
the fitness score for the IMtf is more than 0.1 higher than for the IM and IMts.
In addition, only seven variants are needed to achieve a perfect fitness score; the
IM and IMts need ten variants, nearly 42% of behavior. The interpretation of
the F1 scores is the same as for fitness due to the same precision for all settings.

6.2 Real-life Scenario

To evaluate the performance of our approaches in comparison to the IM [19] in
a real-life scenario, we use various event logs. An overview of the event logs is
provided in Table 2. As shown in Figure 6 and discussed earlier, we preprocess
the logs using process models, which we discover for each log. We use a Petri
net discovered by the IM infrequent [20] using a 40% noise threshold. We do not
use the IM [19] since this algorithm produces models that lead to translucent
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Table 2: Overview of the evaluation event logs.

Event Log Translucent Event Log

Name of the event log # traces #variants #traces #variants

Road Traffic Fine Management [23] 150,370 231 18,981 35
Sepsis [24] 1050 846 20 17
Hospital Billing [25] 100,000 1020 146,748 52

event logs with a high amount of enabled activities per event. We selected this
noise threshold because the preprocessing required to create synthetic translu-
cent event logs would be too time-consuming with a lower value. Moreover, a
smaller threshold provided no value to our insights. As done in the artificial
scenario, we consider only variants of the translucent event log. The first sub-log
contains all traces of the most frequent variant, and the second sub-log contains
all traces of the most and second most frequent variant, etc. Again, we compute
the scores by using the unsplit translucent event log. Our result is depicted in
Figure 9. In the following, we focus on the results for each log and provide a
general statement at the end.

Concerning the road traffic fine management log [23] (see Figure 9a), we
denote that the IMto achieves a higher fitness score earlier than the other ap-
proaches, followed by the IMtf. IM and IMts perform equally in terms of fitness.
After six variants, the fitness value for all models across the different approaches
is the same. Concerning precision, we observe more variation. The IMto performs
worst when only a limited number of variants are considered. There is a drop for
the IM when six or seven variants are included, caused by fall-throughs. When
14 variants are considered, a significant drop in precision is denoted for the IM,
from 1 to roughly 0.61. The reason for this is the fall-throughs taking place af-
ter that point. Also, we denote that the IMtf and IMts perform similarly while
the IMto performs slightly worse. The F1 score shows similar insights due to
the heavy influence of precision. In Figure 10, two process models are depicted.
Based on the translucent event log containing 14 variants, the IM and IMts
discovered these models. While the model discovered by the IMts (Figure 10b)
contains sequential behavior, the model discovered by the IM (Figure 10a) has
a lot of parallel behavior. This is the reason for the lower precision score.

Concerning the sepsis log [24] (see Figure 9b), we observe that considering
translucent variants boosts the fitness again from the start on. After considering
eight variants, the IM achieves the same fitness. As before, the IMto starts with
the highest fitness value, followed by the IMtf. The IMts performs better than
the IM. Regarding precision, the IMtf and IMts perform equally with a score
of 1. The IMto also provides a constant score of roughly 0.98. When including
at least four variants, the precision score drops significantly and is never again
close to the other approaches. When considering the F1 score, we observe that
the IM performs the worst. IMtf and IMts perform equally after four variants.
The IMto is the best choice when only one variant is available.
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Concerning the hospital billing log [25] (see Figure 9c), we observe that the
fitness values are the same for all approaches. Thus, the F1 score differences are
only caused by precision. The IMts performs like the IM, which is precise most of
the time. The IMto and IMtf perform similarly. However, after inducing variant
24, the score for the IMtf increases to 1, while the precision of the IMto drops.

In general, including translucent relationships boosts performance, especially
precision. Relying only on translucent relationships may increase fitness, but
when only a limited number of variants are available, the precision score is lower.
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(a) Results for the road traffic fine management log [23].
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(b) Results for the sepsis log [24].
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(c) Results for the hospital billing log [25].

Fig. 9: Results of different translucent event logs based on real-life data.
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(a) Model discovered by the IM.

Create
Fine Send

Fine
Insert

Fine ...

Payment

Add
penalty

Insert
Date ...

Receive
Result ...

Notify
Result ...

Send for
Credit ...

(b) Model discovered by the IMts.

Fig. 10: Models discovered by considering 14 variants of the modified road traffic
fine management log [23].

Including translucent relationships in addition to the existing method (IMtf and
IMts) prevents fall-throughs of the IM, which lowers the precision significantly.
Overall, the IMts seem to be the most stable solution.

7 Conclusion

This paper presents how information on enabled activities can be used in state-of-
the-art process-discovery techniques so that fewer variants are needed to discover
an equivalent, if not even better, process model. We defined three translucent
activity relationships based on information on enabled activities. These relation-
ships are a general concept that can be introduced in existing process-discovery
techniques. We used these relationships in combination with translucent start
and end activities to construct a tDFG. The tDFG can be used by existing
DFG-based techniques, like the IM, to use the information on enabled activities.
We implemented the creation tDFGs and their usage at various points in the
IM. As we conclude from our experiments, embedding these relationships boosts
fitness and precision. However, only relying on these relationships may not be as
beneficial as a mixed approach, combining DFG and tDFG. As observed in our
experiments, using translucent relationships after the cut detection on a DFG
fails (IMts) is the most stable solution. Since translucent event logs can be cre-
ated when observing tasks done in a desktop environment, the process models
discovered by using information on enabled activities provide a solid foundation
for creating RPA bots. There are still pointers for future work. As we observed
in our evaluation, information on enabled activities is valuable for process dis-
covery. Thus, extending existing process-discovery techniques to incorporate this
information is beneficial. In addition, we defined three relationships; however, it
is possible to design more relationships, e.g., to capture causal relationships. It is
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also possible to design relationships beneficial for solving discovery problems such
as long-term dependencies. Moreover, a stand-alone discovery technique besides
the state-based region approach seems promising since the existing techniques
are not designed to exploit information on enabled activities. Furthermore, ana-
lyzing activities that are enabled but never executed seems interesting since a log
is a sample of real-world behavior. Overall, there is a need to incorporate infor-
mation on enabled activities in process discovery by enhancing existing discovery
techniques, defining more relationships, or designing new discovery techniques.
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