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Abstract. Conformance checking is the �eld of process mining con-
cerned with the monitoring and reporting of discrepancies between event
logs and process models. An often overlooked issue is the entry barrier for
conformance checking techniques. On the one hand, constraint-checking
methods provide intuitive conformance diagnostics, yet require a signi�-
cant manual e�ort and expertise from the users to elicit the correspond-
ing constraints. On the other hand, procedurally-oriented techniques,
e.g., alignments, provide low-level conformance results that require a sig-
ni�cant interpretation e�ort from the end-user. Therefore, in this paper,
we propose to combine the best of both worlds and present an automated
method to generate conformance diagnostics in the form of higher-level
behavioral patterns, derived from a procedural model. The approach is
implemented as a standalone tool and evaluated against real-life datasets,
where it is shown to explain nearly all deviations with good scalability.

Keywords: Process Mining · Conformance Checking · Conformance Di-
agnostics · Declarative Process Mining.

1 Introduction

Process mining is the �eld of computer science combining traditional process
science with data science to analyze event data. A core task of process min-
ing is conformance checking, which consists of comparing desired behavior (i.e.,
modeled in some process modeling formalism) and observed behavior (i.e., as
captured in the event data) to quantify their di�erences and identify frequent
patterns of deviation. In conformance checking, process models may be of a
procedural or declarative nature. Procedural models, e.g., BPMN diagrams [8],
describe the exact sequence of steps that are allowed in a process, i.e., a closed-
world assumption. Declarative models, e.g., DECLARE [25], specify only the
constraints upon which a process must operate, i.e., an open-world assumption.

Procedural process models are widely available in organizations, e.g., the
SAP reference model [14]. Organizations maintain large repositories of procedu-
ral models that have been designed for enactment or documentation purposes.
Declarative models are used less frequently in practice. While their ease of use is
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Fig. 1: Overview of the framework steps. The constraint template library con-
tains a set of constraint templates capturing common behavioral patterns. The
template library is reusable across users and processes and is populated by the
tool provider/vendor, but it can be extended with user-de�ned patterns.

Table 1: Example log with all optimal alignments and violated constraints. An
optimal alignment returns the minimal number of activity insertions ( - ) and
deletions (�-) needed to make a trace �t the given model.

Trace Optimal Alignments Violated Constraints

t1 : ⟨a, a, b⟩ a �a b c a �a c b a c �a b �a a b c �a a c b Ca
2 , C

a,b
3 , Ca,c

3

t2 : ⟨b, a⟩ a b �a c a b c �a a c b �a �b a b c �b a c b Ca
1 , C

a,b
3 , Ca,c

3

graded positively by practitioners [27], their open-world assumption often yields
too �exible or incomplete models.

Both modeling formalisms can be used for conformance checking [1,17]. Con-
formance checking artifacts based on procedural models, e.g., trace alignments,
require a signi�cant cognitive e�ort from the user to be interpreted. To show that,
we consider the purchase process from Figure 1. The process starts with the ap-
proval of the purchase (a). After that, the payment must be booked (b) and the
goods must be collected (c), which can happen in any order. Only two activity
sequences are allowed: ⟨Approve Purchase,Book Payment ,Collect Goods⟩ and
⟨Approve Purchase,Collect Goods,Book Payment⟩. Even for this simple pro-
cess, state-of-the-art procedural techniques such as trace alignments produce
confusing results. To see that, consider optimal alignments from Table 1.

Trace t1 = ⟨Approve Purchase,Approve Purchase,Book Payment⟩, has 2 is-
sues: the purchase is approved twice and the goods are not collected. These are
indicated by constraints Ca

2 , C
a,b
3 , and Ca,c

3 . Techniques such as trace alignments
suggest edits to "�x" these constraints. Removing one Approve Purchase ( �a )

�xes Ca
2 and Ca,b

3 and inserting a Collect Goods ( c ) �xes Ca,c
3 , but these edits

can occur at di�erence places of the trace, leading to 5 optimal alignments.
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Similarly, trace t2 = ⟨Book Payment ,Approve Purchase⟩ has two issues: the
payment is booked before approval and the goods are not collected. These are
indicated by the violated constraints Ca

1 , C
a,b
3 , and Ca,c

3 . The trace also has �ve
optimal alignments. It can be "�xed" by either moving a to an earlier point
a · · · �a (�xes Ca

1 and Ca,b
3 ) and inserting c (�xes Ca,c

3 ), as in the �rst three

alignments; or moving b to a later point �b · · · b (�xes Ca
1 and Ca,b

3 ) and inserting
c (�xes Ca,c

3 ), as in the last two alignments.

In the examples above, multiple edit operations might be related to the �x
of a single constraint. Similarly, multiple constraints might be �xed by a single
edit operation. Furthermore, the same edit type might mean di�erent things de-
pending on the context, e.g. the deletion �a for t1 and t2. Consequently, the only
way of obtaining insights on the patterns of deviations is by manually inspecting
each trace. In summary, the diagnostics provided by trace-alignments are low-
level, non-deterministic, and its interpretation depends on context. In contrast,
the equivalent declarative model is able to directly explain the deviations in a
more understandable form by pointing out the violated business constraints.

Therefore, while on the one hand procedural models are often preferred by
practitioners, the conformance diagnostics returned by declarative models are
better suitable for direct interpretation. To bridge this gap, this paper proposes
a novel conformance checking framework that generates declarative constraints
from a procedural input model, which are subsequently used to present confor-
mance diagnostics in a declarative fashion.

Figure 1 presents a schematic overview of our proposed framework. As in-
put, the user provides a procedural model and an event log. The tool internally
maintains a constraint template library consisting of high-level descriptions of
constraints, i.e., at the meta-level, to be checked against the reference model.
The procedural model is used to compute constraint instances based on the tem-
plate library (Steps A and B). For example, assume that the library contains
the template Init(x). If the procedural model speci�es that some activity, e.g.,
activity `a', should always be executed �rst, the constraint Init(a) is instanti-
ated. The result is an �equivalent� declarative version of the originally procedural
model. Then, techniques from the �eld of declarative process mining are used to
prune redundant constraints (C) and verify the log to provide diagnostics (D).

Using the discovered constraints to analyze the log ensures that the returned
diagnostics are on a higher level, and, thus, more understandable than other
automated techniques. Furthermore, the approach presents a series of interesting
properties such as determinism, monotonicity of the reported deviations, and
�exibility to add new patterns. The approach is implemented as a standalone
tool and evaluated on two real-life datasets, where it is shown to be scalable and
to generate nearly complete diagnostics. Our main contributions are:

1. We present the �rst framework to generate declarative-like conformance di-
agnostics on top of procedural models

2. We provide a method for the e�cient veri�cation of a subclass of constraint
patterns, ensuring the scalability of the approach
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The remaining of this paper is organized as follows: Section 2 introduces basic
de�nitions, Section 3 formalizes each step of the framework. Sections 4 and 5
present the tool and evaluates the approach, Section 6 presents related work.
Finally, Section 7 concludes the paper with directions for future work.

2 Preliminaries

This section �xes basic mathematical notations. We assume familiarity with
automata [10] and Petri net [5] theories. We use Ua to denote the universe of
activity labels and τ /∈ Ua to denote the invisible (empty) label. A trace is a �nite
sequence of activities σ ∈ U∗

a . An event log is a multi-set of traces L ∈ B(U∗
a )

describing the sequences of observed activities and their frequencies. Similarly,
a process model M is a set M ∈ P(U∗

a ) describing the set of allowed variants.
For this work, we consider models de�ned as Petri nets and note that BPMN
diagrams can be converted into Petri nets.

De�nition 1. (Labeled Accepting Petri Net) A labeled accepting Petri net
is a sextuple N = (P, T, F, l,m0,mf ) where P is the set of places, T the set
of transitions, F ⊆ (P × T ) ∪ (T × P ) is the �ow relation, l : T → Ua ∪ {τ}
is the labeling function, and m0,mf ∈ B(P ) are its initial and �nal markings.
Transitions t for which l(t) = τ are called invisible transitions.

The state of a labeled accepting Petri net N = (P, T, F, l,m0,mf ), called
marking, is a multiset of places m ∈ B(P ). It is possible to move from one state
into another by �ring enabled transitions using the occurrence rule [10]. For
a �ring sequence σ = ⟨t1, · · · , tn⟩ ∈ T ∗, we write m[σ⟩m′ to denote that σ is
enabled at m ∈ B(P ) and that �ring transitions in σ in sequence leads to m′ ∈
B(P ). The state space of a Petri net is the set R(N) = {m′|σ ∈ T ∗,m0[σ⟩m′} of
states reachable by �ring any enabled �ring sequence and its accepted language is
the set L(N) = {l(σ) | σ ∈ T ∗, m0[σ⟩mf}, where l(σ) ∈ U∗

a is the concatenation
of the labels of transitions in σ.

Figure 1 shows a Petri net N accepting the language {⟨a, b, c⟩, ⟨a, c, b⟩} with
|R(N)| = 6. This work focuses on the class of regular languages, which is the
class of languages that can be recognized by a Deterministic Finite Automaton.

De�nition 2. (Deterministic Finite Automaton (DFA)) A Deterministic
Finite Automaton (DFA) is a quintuple D = (Q,Σ, δ, q0, F ) where Q is the set
of states, Σ ⊆ Ua is the alphabet, δ : Q × Σ → Q is the transition function, q0
is the initial state and F ⊆ Q is the set of �nal states.

A trace σ = ⟨a1, · · · , an⟩ ∈ U∗
a is accepted by a DFA D = (Q,Σ, δ, q0, F ) if

there exists a sequence of states ⟨s0, · · · , sn⟩ s.t. s0 = q0, ∀1≤i≤nqi = δ(qi−1, ai)
and sn ∈ F . We call the set L(D) = {σ ∈ U∗

a | σ is accepted by D} its language.
In general, for a Petri net N , if |R(N)| < ∞, i.e., its state space is �nite, then
L(N) can be expressed by a DFA called its behavioral automaton.

De�nition 3. (Behavioral Automaton) The behavioral automaton of a bounded
labeled accepting Petri net N = (P, T, F, l,m0,mf ) is the unique (up to state re-
naming) minimal DFA BN = (Q,Σ, δ, q0, F ) such that L(N) = L(BN ).
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3 Mining Behavioral Patterns

This section details the framework steps from Figure 1. For the remainder, we
consider Ua = {a, b, c} and the event log L1 = [⟨a, a, b⟩, ⟨b, a⟩]. We �rst formalize
the concepts of constraint, constraint template and constraint template library :

De�nition 4. (Constraint) A constraint c is an object describing a language
L(c) ⊆ U∗

a . A trace σ ∈ U∗
a satis�es c if σ ∈ L(c). We denote the universe of all

constraints as UC .

The core idea of this work is centered around the automatic instantiation of
constraints from a set of constraint templates (called a template library).

De�nition 5. (Constraint Template) A constraint template is a function C :
Uk
a → UC returning a constraint for each k-tuple of activities (a1, · · · , ak) ∈ Uk

a ,
where k is the number of template parameters. We write Ca1,··· ,ak = C(a1, · · · , ak).

De�nition 6. (Constraint Template Library) Let C be the universe of con-
straint templates. A template library L, is a set of templates L ⊆ C.

This work focuses on models expressed as bounded Petri nets and constraints
expressing regular languages. The DECLARE [25] language is an example of a
set of constraints that can be expressed using regular expressions. Table 2 shows
an example constraint template library containing three constraint templates
L1 = {C1, C2, C3} (in practice, more extensive libraries are used). Replacing
the template parameters x, y with concrete activities yields a constraint. For
example, C3(a, b) returns C

a,b
3 ∈ UC describing all traces where a and b occur in

one-to-one succession. Furthermore, each constraint is associated to a verbaliza-
tion describing it in human-understandable way.

3.1 Step A: Instantiating Constraints

The �rst step of the framework is to instantiate candidate constraints from the
template library following an instantiation strategy. The most straightforward
strategy is the brute force instantiation of all templates using all parameter
combinations, but notice that more sophisticated instantiation strategies are also
possible. For Ua = {a, b, c} and L1 = {C1, C2, C3}, the brute force instantiation
yields the set of constraints Inst = {Ca

1 , · · · , Cc
1, C

a
2 , · · · , Cc

2, C
a,b
3 , · · · , Cc,b

3 }.

3.2 Step B: Computing Satis�ed Constraints

From the set of instantiated constraints in the previous step, we are interested
in the constraints that are satis�ed by the model. A constraint is satis�ed by
a process model if and only if the constraint holds for all traces in the model's
accepted language. For the Petri net of Figure 1 and the instantiated set Inst ,
the set of satis�ed constraints is Sat = {Ca

1 , C
a
2 , C

b
2, C

c
2, C

a,b
3 , Ca,c

3 }.
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Table 2: Example constraint template library L1 = {C1, C2, C3} with templates
expressed as regular expressions. x, y denote the constraint parameters and k
the number of template parameters.

Template k Verbalization RegEx

C1 Init(x) 1 The case must start with {x} x.∗

C2 AtMost1(x) 1 {x} occurs at most [1] times (!x)∗x(!x)∗

C3 AltSucc(x, y) 2 {x}, {y} occur in 1:1 alternating succession (!(x|y)|(x(!(x|y))∗y))∗

De�nition 7. (Satisfying Constraint) Let c ∈ UC be a constraint and let M
be a process model. c is said to be satis�ed by M ⇐⇒ L(M) ⊆ L(c).

For a bounded Petri net N with behavioral automaton BN and constraint c
expressed as a regular expression with associated minimal DFA Bc, it holds that
L(N) ⊆ L(c) ⇐⇒ L(BN ) ⊆ L(Bc). Checking this condition is in O(|BSN | ∗
|Bc| ∗ |Ua|) [10]. Therefore, one can check if a constraint is satis�ed by a model
as long as the model and the constraint's corresponding DFAs can be obtained.

3.3 Scalable Conformance Diagnostics with Γ -invariant Constraints

As discussed in the previous section, it is possible to check if a constraint is
satis�ed by computing the Petri net's behavioral automaton. This becomes ex-
pensive for large Petri nets due to the state explosion problem. In this section,
we introduce a class of constraints for which constraint checking is signi�cantly
accelerated. The method consists of reducing the Petri net's state space by prun-
ing irrelevant activities. We start with the de�nition of Γ -invariance for a con-
straint's language, which intuitively means that modifying a trace by inserting
or removing activities in Γ does not in�uence language inclusion.

De�nition 8. (Γ -Invariance) Let c ∈ UC and let Γ ⊆ Ua. c is Γ -invariant if
for any σ, σ̂ ∈ U∗

a s.t. σ↾Ua\Γ = σ̂↾Ua\Γ , it holds that σ ∈ L(c) ⇐⇒ σ̂ ∈ L(c).

Γ -invariance is closely related to the notion of stutter-invariance and next-
free formulas in model checking [24]. In DECLARE, Γ -invariant constraints are
essentially constraints that do not express a directly-follows relation. In our
running example, constraint Ca

2 is {b, c}-invariant, i.e., inserting or removing
activities b and c to a trace does not change whether Ca

2 holds for that trace.
Meanwhile, Ca

1 is not Γ -invariant for any Γ ⊆ Ua. Lemma 1 below shows that
one can compute the maximal set Γ for which a constraint c is Γ -invariant by
looking into the self-loops of c's corresponding minimal DFA.

Lemma 1. (Γ -Invariance and Self Loops) Let c ∈ UC be a constraint and
let Dc = (Q,Ua, δ, q0, F ) be the unique minimal DFA such that L(c) = L(D). c
is Γ -invariant ⇐⇒ ∀q ∈ Q, γ ∈ Γ : δ(q, γ) = q.
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Proof. The ⇐ direction is straightforward to see. We prove the ⇒ direction by
contradiction. Assuming that c is Γ -invariant but ∃q, q′ ∈ Q, γ ∈ Γ, q ̸= q′ s.t.
δ(q, γ) = q′. Let x ∈ U∗

a be a pre�x leading to state q. Then xγ leads to state
q′. From the minimality of Dc, it follows that q and q′ correspond to di�erent
equivalence classes of the Nerode equivalence. Therefore, there exists a su�x
z ∈ U∗

a such that either xz ∈ L(Dc) and xγz /∈ L(Dc) or xz /∈ L(Dc) and
xγz ∈ L(Dc). But this contradicts Γ -invariance. ⊓⊔

De�nition 9. (Projecting Petri nets) Let N = (P, T, F, l,m0,mf ) be a la-
beled accepting Petri net and A ⊆ Ua a set of activities. The projection of N into

A is the net NA = (P, T, F, lA,m0,mf ) with lA(t) =

{
l(t) if l(t) ∈ A

τ otherwise

It holds that L(NA) = {σ↾A | σ ∈ L(N)}, i.e., the accepted language of
the projected Petri net is the projection of the language of the original net in
A. Furthermore, oftentimes BNA

≪ BN . We can use this fact to speed up the
validity check of Γ -invariant constraints using the lemma below.

Lemma 2. (Validity Check for Γ -invariant Constraints) Let c ∈ UC be
Γ -invariant and N a Petri net. Then L(N) ⊆ L(c) ⇐⇒ L(NUa\Γ ) ⊆ L(c)

Proof. ⇒ follows from L(NUa\Γ ) ⊆ L(N). ⇐ follows from Γ -invariance of c. ⊓⊔

a

a

Fig. 2: Projected and re-
duced nets N1{a} and N ′

1{a}
.

Lemma 2 means that we can check if a Γ -
invariant constraint c is satis�ed by a Petri net
N by checking if it is satis�ed by NUa\Γ . For the
template library of Table 2, constraint Ca

2 is {b, c}-
invariant. By projecting Petri net N1 from Fig-
ure 1 into {a}, we obtain the Petri net N1{a} from
Figure 2. By applying language preserving reduc-
tion rules [23], we obtain the reduced net N ′

1{a}
.

Ca
2 is satis�ed by N ′

1{a}
. Therefore, it follows from

Lemma 2 that it is also satis�ed byN1. Notice that
|R(N1)| = 6, while |R(N ′

1{a}
)| = 2. This reduc-

tion in the state space size can lead to dramatic
speedups as will be shown in Section 5.1.

3.4 Step C: Pruning Redundant Constraints

The result of the previous step is the set of satis�ed constraints for the given
model. However, some constraints are redundant. For the satis�ed constraints
Sat, Ca

2 ({a} occurs at most [1] times) and Ca,b
3 ({a}, {b} occur in 1:1 alternat-

ing succession) imply Cb
2 ({b} occurs at most [1] times). Redundant constraints

produce redundant diagnostics. Therefore, we add a redundancy resolution step.

De�nition 10. (Redundant Constraints) Let C ⊆ UC . A constraint c is

redundant in C if ∃ C ′ ⊆ C \ {c} s.t .
(⋂

c′i∈C′ L(c′i)
)
⊆ L(c). We write C ′ → c.
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Algorithm 1: An approximate model minimization algorithm.

1 input A set of constraints C, a total ordering criterion <c, a maximum
intersection size m

2 output A set of constraints C′ ⊆ C s.t. C′ ⇒ C
3 C′ ← C;
4 foreach (c1, c2, · · · , cm, cm+1) ∈ Cm+1 s.t. ci <c cj ∀1 ≤ i < j ≤ m+ 1 do
5 if {c1, · · · , cm} → cm+1 then C′ ← C′ \ {cm+1} ;
6 return C′

We are interested in a minimal set of redundancy-free constraints (in our

example, M ′ = {Ca
1 , C

a
2 , C

a,b
3 , Ca,c

3 } is such a set). Formally, for C ⊆ UC , we
want to solve the optimization minC′⊆C |C ′| s.t . ∀c ∈ C, C ′ → c. In the declar-
ative process mining literature, there exist approaches to prune redundant con-
straints [6, 13]. However, existing techniques require the intersection of all con-
straints' DFAs, which is in O

(∏
c∈C |Bc|

)
. Instead, to ensure the scalability of

the pipeline, we use an approximated approach speci�ed in algorithm 1. The
approach orders all constraints according to a prede�ned order [6] 3 and checks
all combinations (c1, c2, · · · , cm, cm+1) ∈ Cm+1 s.t. ci <c cj for all 1 ≤ i < j ≤
m+1. If cm+1 is found to be redundant, it is removed. The algorithm's correct-
ness follows directly from the fact that we use a total ordering criterion, which
ensures that we do not introduce cycles of constraint implications. Furthermore,
its complexity is in O

(
(max{c∈C} |Bc|m+1) ∗ |C|m+1

)
, i.e. a polynomial with ex-

ponent m in the maximum constraint DFA size and the number of constraints.

3.5 Step D: Verifying the Log and Verbalizing Deviations

The previous step produces a set of redundancy-free constraints that must be
satis�ed by all traces in the model. If a trace violates a constraint, the trace is
also deviant. Hence, we can use the discovered constraints as a way to provide
higher-level diagnostics to the user and use the constraint's associated verbaliza-
tion to explain the trace's deviation. For that, standard constraint monitoring
techniques can be leveraged such as replay-based or alignment-based [17]. As
discussed in Section 1, using the set of discovered constraints leads to more
understandable diagnostics.

3.6 Runtime and Properties

If a trace violates a constraint c, then it must also violate the model (since
L(M) ⊆ L(c)). Therefore, the approach produces only �correct� diagnostics.
Also, given the same template library, the computed set of satis�ed constraints
is always the same and only depends on L(M). Therefore, the approach is deter-
ministic. Moreover, given models M1 and M2, with satis�ed constraints SatM1

3The order is speci�c to the template library and hence con�gured by the tool
provider/vendor.
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and SatM2
, it holds that L(M1) ⊆ L(M2) ⇒ SatM2

⊆ SatM1
, i.e., monotonicity

holds for the provided set of diagnostics. This last property ensures that the di-
agnostics are consistent as the user edits the model. Adding/removing behavior
to a model can only prune/extend the set of reported violations. These proper-
ties do not hold after the pruning step. However, this is not harmful as the set of
satis�ed constraints can be logically inferred from the set of minimal constraints.

The method instantiates O(|Ua|k) constraints. The validity check depends on
the size of the model's behavioral automaton, which is worst-case exponential.
However, for Γ -invariant constraints the state-space can be reduced to make
it manageable in practice. The pruning step performs O(|Ua|mk+k) DFA op-
erations. By limiting the maximum size of a constraint's DFA, we can ensure
a constant time for this operation, therefore the pruning step can be made in
O(|Ua|mk+k) too. Last, checking the constraints is in O(|E| ∗ |Ua|k) where |E|
is the number of events in the log. At �rst, the exponents look too high, but as
shown by the experiments in Section 5.1 they are tractable in practice.

4 Implementation and Qualitative Evaluation

The proposed framework is implemented as a web app using the PM4Py [4]
and automata-lib [11] libraries for the backend (both written in pure Python)4.
Figure 3 shows an overview of its UI. On the sidebar, the user can set the
framework's parameters. The tool displays the model, the set of discovered con-
straints, and the log. Furthermore, it has a trace explorer that allows the user
to drill down on single traces of the log. As a template library, we implement
the set of control-�ow behavioral patterns presented in [26], which includes all
DECLARE [25] templates as well as templates with more than two parameters.
For the minimization step, we adapt the DECLARE constraint ordering criteria
proposed in [6] to this library.

We demonstrate how the framework can be used to gain insights into the
well-known Italian Road Fines [18] process. We extract the normative description
provided in [20]. The process starts with the creation of a �ne. In at most 90
days, the �ne is sent to the o�ender's address. The date on which the o�ender is
noti�ed is inserted into the system. From the moment of noti�cation, the o�ender
has 60 days to appeal to the judge or the prefecture, which might dismiss the
case. After these 60-days, no further appeal is possible and the o�ender must
pay the �ne. If the payment takes too long, a penalty is added to the total
amount. Payments are possible at any moment and the case can also terminate
at any point if the owned amount is fully paid. Otherwise, if it takes too long,
the process also terminates with the case being sent for credit collection. The
entire case must be completed within a year of the �ne creation.

The original model from [20] is designed as a data Petri net. Since our ap-
proach can only handle control �ow, we enrich the original event log with events
to capture temporal marks (90 Days After Creation, 1 Year After Creation, and

4Evaluation code is available at https://zenodo.org/doi/10.5281/zenodo.10824798
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60 Days After Noti�cation) and data attributes such as dismissal type (Dismissed
by Judge and Dismissed by Prefecture) and payment status (Partial Payment
and Full Payment). A reference BPMN model is drawn from the process descrip-
tion (model view in Figure 3). For the alignment cost function, we assign very
high costs to the removal and addition of temporal marks. Since these are not
proper process steps, we do not want to allow them to be edited. The data is
loaded into the implemented tool. We consider a max parameter of two, and the
proposed "approximated" constraint minimization method from Section 3.4.

The most frequently violated constraint is 65: Each {Add Penalty} must be
preceded by {60 Days After Noti�cation}, occurring in 40% of the cases. The
constraint description suggests that penalties are being added too early. To drill
down on that, the tool provides a set of frequently co-occurring constraints that
positively correlate (i.e., lift >1) with this violation. Among them, constraint
60:Each {Send �ne} must be followed by a {90 Days After Creation} suggests
a causal relation. If �nes are sent too late, then the penalty is also added earlier
than it should. This is plausible since the time to add a penalty is computed
considering the time elapsed since the �ne creation. So a delay in sending the
�ne also causes the penalty to be added too early. This suggests that sending
the �nes more speedily will also improve other areas of conformance.

Another interesting violation refers to constraint 3:{Full Payment} occurs
at most [1] times. The enriched log distinguishes between Partial and Full pay-
ments, so repeated full payments can only occur in situations where the out-
standing amount is fully paid, but further payments are still e�ectuated. This
only happens for 5% of the cases but is arguably a serious problem. To under-
stand its root cause, we again look into the constraints that co-occur with it and
see that constraint 117:{Full Payment} cannot be followed by {Add Penalty} has
a strong correlation with it (lift > 10). Constraints 3 and 117 are violated in only
5% and 2.5% of the cases, but constraint 117 is violated with a 50% chance if 3
is also violated. This suggests that double payments mostly happen to pay the
added penalty. A possible root cause for that are communication delays between
the agents adding the penalty and processing the payment.

Overall, this analysis shows how the high-level diagnostics combined with un-
derstandable constraint descriptions help the analyst to make sense of deviations
and formulate potential root causes and improvement areas. In principle, similar
insights could be obtained by following the methodology proposed in [26]. How-
ever, the analyst would need to guess and manually con�gure each pattern of
interest. By mining the constraints from the process model, our approach saves
the analyst signi�cant time. To the best of our knowledge, [12] is the only existing
work that generates natural-language diagnostics from procedural models. The
approach works by matching a series of hard-coded patterns in the synchronized
error-correcting product of the event log and process model.

Table 3 shows a snippet of the behavioral statements produced by [12]. While
our approach produces 143 constraints (out of which only 76 are violated), [12]
produces 703 distinct behavioral statements. The log contains 995 violating vari-
ants, i.e. there is almost one unique statement for every violating variant. The
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Table 3: Snippet of diagnostics produced by [12] (simpli�ed to �t the table) for
the enriched road �nes dataset. In total, 703 statements are produced.
ID Statement

S1 {Creation + 60 Days } occurs after {Add Penalty} and before {Creation + 1 Year}
S2 After {Partial Payment}, {Full Payment} is repeated
S3 After {Send Fine}, {Full Payment} is repeated
S4 {Add Penalty} occurs after {Full Payment} and before {Creation + 60 Days }

high number of distinct statements make it di�cult for users to understand com-
mon deviation patterns. Many statements are slight variations of each other, e.g.
statements S2 and S3 only di�er in their "reference point". The tool from [12]
does not provide the frequency of each violation and does correlate violations,
making it di�cult to drill down through them. Among the returned set of behav-
ioral statements, S1 is equivalent to constraint 65 reported by our tool (unfor-
tunately, we could not �nd an equivalent statement to constraint 60). Similarly,
constraints 3 and 117 are (indirectly) re�ected by statements S2/S3 and S4.

In summary, the method described in [12] requires more extensive drill-down
e�orts (due to the higher number of violations) to obtain similar insights. Fur-
thermore, our approach di�ers from [12] in three key ways: First, we o�er a �ex-
ible method for de�ning new patterns; second, we can explain deviations caused
by long-term dependencies, e.g. via the "AlternatingSuccession" template; last,
we provide better runtime guarantees. A merit of [12] is to identify precision
issues, i.e. behaviors allowed by the model but absent in the log. This could be
achieved in our framework by "swapping" the roles of the log and the model.

5 Quantitative Evaluation

This section evaluates the approach for its scalability and completeness. We
compare two scenarios: considering all constraints (ALL) and considering only
Γ -invariant constraints (Γ ). For each scenario, we vary the maximum number
of template parameters maxk from 2 to 4. The framework is evaluated on two
real-world datasets : The enriched Italian road �nes dataset (RF) described in
Section 4 and the BPI Challenge 2015 event log [9] (BPI-15) with a model dis-
covered with the Inductive Miner-infrequent variant [15] with a noise threshold
of 0.9. We �lter the BPI-15 log for municipality 1, and subprocess 8, and re-
move repeated activities. This is needed as otherwise the used process discovery
method would only return �ower constructs. The models are of small to middle
size. Both contain 20 transitions and 21 resp. 561 states in their behavioral au-
tomata. The experiments are run single-threaded on a Ubuntu 22.04 notebook
with an Intel Xeon E-2276M processor and 32Gigabytes of main memory.

5.1 Scalability and Pruning E�ciency

This experiment evaluates the scalability of the approach and the e�ectiveness
of the pruning step. The results are summarized in Table 4. For both datasets,
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Table 4: Evaluation of constraint check and minimization steps measuring the
number of instantiated constraints (#inst), and the number of satis�ed/minimal
constraints (#sat/#min) and the time in seconds to compute them (tsat/tmin).

DS maxk
ALL Templates Γ -Invariant Templates

#inst tsat(s) #sat tmin(s) #min #inst tsat(s) #sat tmin(s) #min

R
F

2 8531 2.58 1295 11.8 227 3386 0.75 511 7.9 143
3 50075 17.0 19653 87.7 223 13772 3.74 1244 13.2 145
4 683315 285 336991 1699 454 140420 46.4 21927 830 468

B
P
I-
1
5 2 9442 16.8 444 6.02 242 3763 0.75 148 1.31 109

3 49042 71.3 11147 83.4 1112 13663 3.45 170 1.38 109
4 555922 1328 221355 3281 1953 115039 35.7 9632 1075 555

increasing the maximum number of template parameters maxk from 3 to 4 leads
to a signi�cant increase in the number of instantiated constraints (#inst), which
causes a signi�cant increase in the total runtime for the satis�ability check (tsat).
Nevertheless, increasing maxk only slightly increases the number of satis�ed
constraints. For the road �nes dataset, the average time to check if a constraint
is satis�ed (= tsat/#inst) is approximately the same for both scenarios (ALL
and Γ ). For the BPI-15 dataset, the check of each constraint takes signi�cantly
longer for the ALL than for the Γ scenario. This is explained by its larger state
space, for which the techniques presented in Section 3.3 pay o�.

In all experiment setups, the constraint minimization step takes a signi�cant
portion of the total time, with up to an hour for BPI-15 when maxk = 4.
This might sound high, but in comparison, the method proposed in [6] goes out
of memory for certain scenarios. Still, the approximated minimization step is
very e�ective at pruning redundant constraints, pruning 99.999% of the satis�ed
constraints for the road �nes dataset in the ALL scenario withmaxk = 4. Finally,
when considering the absolute runtime numbers, all experimental setups could be
computed within two hours, with the majority of them being computed within
two minutes. Last, notice that the approach is implemented in pure Python.
A more careful implementation in a compiled language is expected to bring at
least an order of magnitude of improvement, making the approach applicable to
interactive scenarios.

5.2 Completeness and Redundancy

We measure the completeness of the produced diagnostics, i.e., the share of de-
viations that can be explained, and the amount of redundancy of the returned
diagnostics. For each scenario, we align the event log and the process model and
pinpoint constraints to model/log moves using the method presented in [17].
Constraints associated with a move explain the move, i.e., the constraints jus-
tify the insertion/deletion at the given position. Table 5 summarizes the results.

On the trace level, most non-conforming traces violate at least one discovered
constraint. On the alignment move level, the discovered constraints explain most
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Table 5: Completeness and redundancy results. dev and mov are the numbers
of deviant variants and non-synchronous moves. We report the number of traces
violating at least one constraint (det), the number of moves explained by at least
one constraint (expl), and the average number of constraints per move (avg)

DS dev
det

mov
expl avg

k=2 k=3 k=4 k=2 k=3 k=4 k=2 k=3 k=4

RF
ALL

995
994 995 995

4489
4448 4489 4489 3.79 4.34 9.47

Γ 992 995 995 3914 4238 4238 3.49 3.88 8.76

RF Γ+ 995 992 995 995 4489 3914 4238 4489 3.42 3.97 8.14

BPI-15
ALL

70
70 70 70

110
108 108 108 2.34 2.46 7.30

Γ 70 70 70 108 108 108 2.17 2.17 5.86

of the moves, with the road �nes dataset performing the worst with 13% of its
moves unexplained for the Γ scenario with k = 2. The experiment also shows
that by using ALL constraints or increasing the maximum number of template
parameters, more moves can be explained.

Finally, Table 5 also shows the average number of constraints explaining
each alignment move. The method must report as few constraints per move as
possible, to not overwhelm the user. For the BPI-15 dataset, in all but two
scenarios, the average number of constraints per alignment move is below three.
Furthermore, we observe only a slight variation in the number of constraints per
move when varying maxk. In contrast, for the road �nes dataset, all scenarios
report over three constraints per move, with a peak of 9 constraints per move
for the ALL scenario with maxk = 4.

In summary, the experiments show the scalability of the method, with Γ -
invariant constraints being particularly e�cient for models with large state
spaces. This increased e�ciency of Γ -invariant constraints comes at the cost
of a slight decrease in completeness. By increasing the maximum number of
constraint parameters, more deviations can be explained, but this comes at the
expense of an increase in the total runtime. This exposes the tradeo� between
scalability, completeness, and redundancy, which the user can select.

Enriching the Template Library As shown in the section above, the dis-
covered constraints provide nearly complete diagnostics. Still, some violations
cannot be explained by any constraint. One example is the alignment displayed
in Figure 3. No constraint explains the insertion of Send for Credit Collection .
However, the template library can be easily extended to become more complete.

By analyzing the model, one notices that the insertion happens because at
least one of the activities "Full Payment", "Send for Credit Collection", "Dis-
missed by Judge" or "Dismissed by Prefecture" must occur. By adding the con-
straint template .∗(α1|α2|α3|α4).

∗ to the library, meaning �either α1, α2, α3, or
α4 must happen in the case�, all moves are explained (see Γ+ in Table 5). Of
course, this does not mean that the library is complete, but shows that it can
be easily extended to capture new patterns.
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6 Related Work

The most basic form of conformance diagnostics consists of quantifying behav-
ioral di�erences between process models and event logs in terms of a single
metric [1, 16, 22, 28, 29]. Some methods go beyond that to provide insights into
the nature of deviations. In [28] and [29], diagnostics are provided as a set of
di�erences in the behavioral pro�les of the log and the model. Techniques based
on alignments [1] provide diagnostics as a set of moves (insertions or deletions)
on a trace, corresponding to undesired or missing behavior. In [22], decomposi-
tion techniques are used to detect regions of the model that are non-conforming.
Similarly, [16] detects problematic subsets of activities by comparing log and
model projections. These techniques o�er too low-level feedback, often limited
to a set of activities/edits, and do not e�ectively explain the deviations.

The issue with low-level feedback has been known for long. In [2], the authors
of the alignment technique present a method to detect higher-level deviation
patterns via high-level alignments. However, this requires users to specify each
pattern to be detected, which is a similar drawback as in [26] (discussed in
section 4). In comparison, our method requires no further user input besides the
model and the log. Other methods focusing on returning high-level deviations
are [12] (discussed in section 4) and [21]. The latter proposes a set of deviation
patterns that can be detected on top of a purpose-built multi-layer synchronous
product net using trace alignments. The approach incorporates the resource and
privacy perspectives and can provide the context in which deviations occur.
Both techniques are based on alignments, therefore they su�er from some of
its limitations such as non-determinism and poor scalability. Furthermore, it is
unclear how these approaches can be extended to support new patterns.

Finally, our work closely relates to the �eld of declarative process mining.
Our framework leverages multiple declarative techniques such as automatically
computing constraint vacuity conditions [7], constraint discovery [19] (for steps
A & B), constraint minimization [6, 13] (step C), and monitoring [17] (step D).
Our setup is di�erent in that we use procedural models as a starting point.
Moreover, both approaches are complementary. For example, the declarative
model generated after step C could be loaded into tools such as RuM [3] for
further analysis (but one would lose the procedural perspective).

7 Conclusion and Future Work

We presented a method to generate understandable conformance diagnostics
based on behavioral patterns. The method automatically instantiates the con-
straints from a template library, checks for satisfying constraints, and prunes
redundant constraints. It presents a series of interesting properties such as re-
turning higher-level diagnostics, absence of false positives, and monotonicity of
the reported diagnostics. The qualitative evaluation demonstrates how it can be
applied to analyze an event log, uncovering drill-down directions. The quanti-
tative evaluation shows that it can cover most of the deviations in real-world
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logs in a feasible runtime. The user can control the scalability of the method by
restricting the set of deviation patterns and varying the maximum number of
template parameters at the expense of slightly less complete diagnostics.

In future work, we plan to improve the di�erent steps of the framework with
smarter constraint instantiation strategies, and more e�cient constraint satis�-
ability checking and minimization techniques. Another direction is to consider
time and data-aware models and constraint templates, to overcome the limi-
tation to the control �ow only, but this requires more sophisticated reasoning
techniques. Last, we would like to explore root-cause analysis techniques to ex-
plain and correlate deviations.

Acknowledgements We thank the Alexander von Humboldt (AvH) Stiftung
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