
Process Variant Analysis Across Continuous
Features: A Novel Framework⋆

Ali Norouzifar1[0000−0002−1929−9992], Majid Rafiei1[0000−0001−7161−6927], Marcus
Dees2[0000−0002−6555−320X], and Wil van der Aalst1[0000−0002−0955−6940]

1 RWTH University, Aachen, Germany
{ali.norouzifar, majid.rafiei, wvdaalst}@pads.rwth-aachen.de

2 UWV Employee Insurance Agency, Amsterdam, Netherlands
Marcus.Dees@uwv.nl

Abstract. Extracted event data from information systems often contain
a variety of process executions making the data complex and difficult to
comprehend. Unlike current research which only identifies the variabil-
ity over time, we focus on other dimensions that may play a role in the
performance of the process. This research addresses the challenge of ef-
fectively segmenting cases within operational processes based on continu-
ous features, such as duration of cases, and evaluated risk score of cases,
which are often overlooked in traditional process analysis. We present
a novel approach employing a sliding window technique combined with
the earth mover’s distance to detect changes in control flow behavior
over continuous dimensions. This approach enables case segmentation,
hierarchical merging of similar segments, and pairwise comparison of
them, providing a comprehensive perspective on process behavior. We
validate our methodology through a real-life case study in collabora-
tion with UWV, the Dutch employee insurance agency, demonstrating
its practical applicability. This research contributes to the field by aid-
ing organizations in improving process efficiency, pinpointing abnormal
behaviors, and providing valuable inputs for process comparison, and
outcome prediction.

Keywords: process mining · process comparison · business process im-
provement.

1 Introduction

Process mining techniques are used to analyze event data generated by different
types of information systems. For instance, performance analysis using process
mining techniques has provided a range of new opportunities for business owners
to analyze and improve their processes. From the performance point of view, we
often observe that the execution policies may vary significantly for different
groups of process instances based on their characteristics.

⋆ This research was supported by the research training group “Dataninja” (Trustwor-
thy AI for Seamless Problem Solving: Next Generation Intelligence Joins Robust
Data Analysis) funded by the German federal state of North Rhine-Westphalia.

2 A. Norouzifar et al.

Cancel
application

Create
application

Check

documents

In-person
interview 1

Request
documents

In-person

interview 2

Cancel
application

Create
application

Create
application

Check

documents

In-person
interview 1

Create
application

Check

documents

In-person
interview 1

Request
documents

In-person

interview 2

3 risk score 100 100

(a) The BPMN on top shows a claim handling process in which each case has a
risk score and may have a different handling procedure based on the risk score.

Event Log

indicator

seg1 seg2 seg3

𝜅

case id risk
score

𝒄𝟏 𝑣1
𝒄𝟐 𝑣2
…

𝒄𝑁 𝑣𝑁
 ∀𝑗 ∈ 1,𝑁 :𝑣𝑗 ≤ 𝑣𝑗+1

𝑊𝑤 ,𝑖
𝑙 𝑊𝑤 ,𝑖

𝑟

EMD

peak1 peak2

... ...
𝑖 + 1

Control Flow Change Detection

seg1 seg2 seg3

Segmentation and Pairwise Comparison

Left window
consisting of w cases

Right window
consisting of w cases

risk score

0 10
0 0 10
03 10

𝑖

number of buckets
window size
segmentation threshold

risk score

(b) The proposed framework for process variant analysis based on the risk score.

Fig. 1: A claim handling process as a motivating example.

For example, in the claim handling process shown in Fig. 1a, a risk score
assigned to the cases affects the handling procedure. On top, the business process
explaining the whole process is shown without giving any clue that the process
could be different for cases in different ranges of the risk score. After creating an
application, cases with a risk score higher than 10 are canceled. The remaining
cases go through the check documents step and require an in-person interview,
then there is an exclusive choice that decides whether the cases are required to
submit more documents and have another interview, or they can skip these two
steps if the risk score is lower than 3.

Using the available data in information systems and process analysis tools,
different dimensions for each case in the event log can be extracted. The intro-
duced approach in Fig. 1b considers risk score as an example of a continuous
dimension and has two main parts. First, the control flow change detection is
designed by using a sliding window shifting over the dimension range. Then,
local peaks are used for segmentation and pairwise comparison.

In this paper, we have the following goals: 1) Motivating the problem of find-
ing process variants over the range of a continuous dimension, e.g., risk score or
case duration. 2) Introducing a sliding window approach using the earth mover’s
distance to find the changes in control flow. 3) Case segmentation based on con-
tinuous dimensions and control flow, and pairwise comparison of the segments.
4) Testing the usability of the framework with a real-life case study.

The output of the framework is an automated segmentation of cases based
on key dimensions influencing the control-flow behavior which can be used as
input for other types of analysis, such as process comparison [13], outcome pre-

Process Variant Analysis Across Continuous Features 3

diction [14], or labeling the traces as desirable or undesirable in order to use
them in process discovery algorithms working with desirable and undesirable
traces [11,5].

2 Related Work

Extracted event logs from information systems often consist of a variety of pro-
cess executions containing deviating behaviors, manual interventions, infrequent
patterns, process drift over time, and many other inconsistencies resulting in
high complexity [6]. While filtering out infrequent behavior can mitigate data
complexity [4], it is important to note that infrequent behavior may sometimes
include significant deviations that need further investigation. In [8], the earth
mover’s distance is used to identify distinct cohorts of traces based on trace at-
tributes, offering a framework that explores all trace attributes to uncover com-
binations leading to the most diverse control-flow behavior. Unlike this paper,
we do not need the assumption that the dimensions are discretized in advance.

Trace clustering can also be considered as related work to our research. Dif-
ferent trace clustering approaches may use a control-flow perspective, other avail-
able attributes, or a combination of both [7]. In [1], different similarity measures
to cluster the traces based on the control flow are introduced and compared. In
[17], an event log is divided into sub-event logs considering an attribute value,
then hierarchical clustering is used to merge similar clusters. However, choos-
ing a distinctive attribute is not straightforward. In addition, when considering
continuous attributes it is even more challenging to set distinctive thresholds.
In [15], the active trace clustering framework is introduced which takes process
models explaining the clusters into account while doing trace clustering. The
trace clustering methods cannot directly provide solutions for our problem, i.e.,
considering the performance perspective.

Considering time as an important dimension in event data analysis, the iden-
tification of concept drift is an interesting research question [12]. These methods
usually use a feature space to characterize the control flow and use some tech-
niques to pinpoint the changes. If a change is not observable using the selected
feature space, these algorithms fail to detect it. In [16], a concept drift detec-
tion algorithm is introduced which leverages declarative constraints to represent
control-flow behavior. A multi-variate change point detection algorithm is imple-
mented to find the changes over time. In [10], another method is proposed which
is based on the statistical tests applied to the distribution of partially ordered
runs in two consecutive time windows. In [2], the earth mover’s distance is used to
find drifts in the control flow. The mentioned approaches only focus on changes
in control flow behavior over time and not on different continuous dimensions.
Similar to the framework proposed in [2], we employ a window-based approach
using the earth mover’s distance function to identify the changes across contin-
uous features. Our framework works effectively without a large feature space,
which might struggle to capture all potential changes in control flow. Addition-
ally, it does not use statistical tests that often rely on some assumptions.

4 A. Norouzifar et al.

3 Preliminaries

B(A) is the set of all multisets over some set A. Considering B ∈ B(A), B(a)
denotes the frequency of element a ∈ A. We write x ∈ B if B(x) > 0. The event
log is an important concept in our work, therefore we formally introduce it.

Definition 1 (Event Log). Let C, A, and T be the universe of case iden-
tifiers, the universe of activities, and the universe of timestamps respectively.
e=(c, a, t) is a tuple representing an event where πC(e)=c ∈ C, πA(e)=a ∈ A,
and πT (e)=t ∈ T . E=C × A × T is the universe of events. A trace is a fi-
nite sequence of events σ=⟨e1, e2, ..., en⟩ ∈ E∗ with size n ∈ N such that for each
1 ≤ i < n, πC(ei)=πC(ei+1)∧πT (ei) ≤ πT (ei+1). An event log L is a set of traces
such that each trace belongs to a different case. L is the universe of event logs. |L|
is the number of traces in event log L. In addition, we define cf : L → B(A∗) as
a function that extracts the control flow of L, i.e., the multiset of traces projected
on activities such that cf(L)=[⟨πA(e1), ..., πA(en)⟩|⟨e1, e2, ..., en⟩ ∈ L].

In addition to the control flow and time dimension, other dimensions could
be assigned to cases from other sources of information. We use κL : L → R to
show a case-level indicator. Case-level indicators assign a numerical value κL(σ)
to each trace σ∈L∈L. If the context is clear, we drop L from the notation κL(σ).

Definition 2. (Ordering function) Let L ∈ L be an event log and κ be a case-
level indicator that assigns a value to each case in L. We define rankκ(L) =
⟨σ1, σ2, ..., σ|L|⟩ such that L={σ1, σ2, ..., σ|L|} and for 1≤i<j≤|L| : κ(σi)≤κ(σj).

For example, L = {⟨(c1, a, 13), (c1, b, 23)⟩, ⟨(c2, a, 14), (c2, b, 16), (c2, c, 20)⟩,
⟨(c3, a, 17), (c3, b, 20), (c3, c, 35)⟩} is an event log with cf(L)=[⟨a, b, c⟩2, ⟨a, b⟩1].
Consider κ as a function that calculates the duration of cases, therefore, κ =
{(σc1 , 10), (σc2 , 6), (σc3 , 18)} and rankκ(L) = ⟨σc2 , σc1 , σc3⟩.

Definition 3. (Stochastic Language) Given the universe on activities A, f :
A∗→[0, 1] is a stochastic language iff

∑
s∈A∗ f(s)=1. F is the universe of stochas-

tic languages.

Definition 4. (Stochastic Language of an Event Log) Let L ∈ L be an event
log. stoch : L → F is a function that extracts the stochastic language of an event

log such that stoch(L) = {(s, p)|s ∈ cf(L) ∧ p = cf(L)(s)
|L| }.

The earth mover’s distance calculates the distance between two stochastic
languages. We use this distance to compare the control flow in two event logs.

Definition 5. (The earth mover’s distance) Let L ∈ L, and L′ ∈ L be two event
logs, δ : A∗ ×A∗ → [0, 1] be a trace distance function, and r : L× L′ → [0, 1] be
a function that indicates the movement of frequency between two event logs. R
is the universe of all reallocation functions. The earth mover’s distance between
L and L

′
is defined by EMD(L,L′) = min

r∈R

∑
s∈cf(L)

∑
t∈cf(L′) r(s, t).δ(s, t) such

that ∀s ∈ cf(L) :
∑

t∈cf(L′) r(s, t) = stoch(L)(s), ∀t ∈ cf(L′) :
∑

s∈cf(L) r(s, t) =

stoch(L′)(t), and ∀s ∈ cf(L), ∀t ∈ cf(L′) : r(s, t) ≥ 0.

Process Variant Analysis Across Continuous Features 5

We use the Levenshtein distance δ to calculate the distance between the
traces. The calculation of the efficient reallocation amounts, i.e., r in Def. 5 is
solved as a linear programming problem. For more details, we refer to [9].

4 Process Variant Identification Framework

As illustrated in Fig. 1b, the framework proposed in this paper consists of two
main parts, a control flow change detection over the range of a case-level in-
dicator and a segmentation and comparison framework. Unlike concept drift
frameworks which focus on time dimension, we identify changes in control flow
across continuous dimensions. Our framework does not generate a large feature
set that might overlook certain types of changes. Instead, it leverages the earth
mover’s distance to effectively capture the variability in control flow.

4.1 Control Flow Change Detection

Our proposed method consists of a bucketing step and then moving a sliding
window. In Fig. 2a, three different event logs, i.e., L1, L2, and L3 are illustrated.
Each of the event logs has 150 cases and the cases are ordered based on a case-
level indicator. A bucketing strategy is used to divide the event logs into 15
buckets each containing 10 traces. The buckets are shown as patterned boxes
such that different patterns show that the traces are different. In this example,
two different window sizes w1=1 and w2=3 are used. Considering event log L1

and window size w1, we start from i = 1 and each time we move the central
point one unit to the right up to i = 14 and compare w1 bucket on the left-hand
side of the central point to w1 bucket on the right-hand side of it using the earth
mover’s distance. Comparative results for some combinations of the event logs
and time windows are illustrated in Fig. 2b using a color range proportional to
the difference level. Next, we formally define buckets and sliding windows.

= 𝑎, 𝑏, 𝑐 10

= 𝑎, 𝑏,𝑑 10

= 𝑎, 𝑒,𝑑 10

𝑤1 = 1

𝑤2 = 3

𝑖
=
1

𝐿1

𝐿2

𝐿3

𝑖
=
5

𝑖
=
6

𝑖
=
7

𝑖
=
8

𝑖
=
9

𝑖
=
10

𝑖
=
11

𝑖
=
12

𝑖
=
13

𝑖
=
14

𝑖
=
2

𝑖
=
3

𝑖
=
4

(a) Event logs L1, L2, and L3 with different
types of changes in the control flow.

𝐿1 ,𝑤2

𝐿2 ,𝑤2

𝐿3 ,𝑤1

𝐿3 ,𝑤2

𝑖
=
1

𝑖
=
5

𝑖
=
6

𝑖
=
7

𝑖
=
8

𝑖
=
9

𝑖
=
10

𝑖
=
11

𝑖
=
12

𝑖
=
13

𝑖
=
14

𝑖
=
2

𝑖
=
3

𝑖
=
4

(b) Visualised ldist value with moving
the sliding window.

Fig. 2: Some examples illustrating how the framework works considering three different
event logs, b = 15, and two time windows w1 = 1 and w2 = 3.

6 A. Norouzifar et al.

Definition 6. (Buckets) Let L∈L be an event log, κ be a case-level indicator,
σi = rankκ(L)(i), and b ∈ N[2,|L|] be the number of buckets given by the user.

For the sake of simplicity, we assume that |L| is divisible by b. Then, l= |L|
b is the

number of cases in each bucket such that Bi = ⟨σ(i−1).l+1, ..., σi.l⟩ for 1 ≤ i ≤ b.

Definition 7. (Left and Right Windows) Let L∈L be an event log, κ be a case-
level indicator, σi = rankκ(L)(i), b ∈ N[2,|L|] be the number of buckets given by

the user, and w ∈ N[1, b2] be a window size parameter. Considering a window size
w and i∈{w, ..., b−w}, we can create a left window W l

w,i={σ∈Bj |i−w < j ≤ i}
and a right window W r

w,i={σ∈Bj |i < j ≤ i+ w}.

To perform a comparative analysis, we move the sliding window over the
whole range of κ. We need at least w buckets on the left window. Therefore,
we start from i=w and each time move the sliding window for one bucket. We
repetitively continue until we reach a point where the number of buckets on the
right window is equal to the window size, i.e., i=b−w.

Definition 8. (Local Distance Function) Let L ∈ L be an event log, κ be a
case-level indicator, b ∈ N[2,|L|] be the number of buckets given by the user, and
w ∈ N[1, b2] be a window size parameter. We define the local distance function
ldistL,κ,w,b : {w, ..., b−w} → [0, 1] such that ldistL,κ,w,b(i)=EMD(W l

w,i,W
r
w,i). If

the context is clear, we show ldistL,κ,w,b as ldist.

In Fig. 2b, some analysis is performed based on different event logs and dif-
ferent window sizes. Using the event log L1 and the window size w2, from i=5
the change in behavior is detectable by calculating the earth mover’s distance
between the left and right windows. The earth mover’s distance value is visu-
alized with colors, i.e., darker color shows a higher distance. After shifting the
sliding window, the maximum difference between the left and right windows is
observed at i=7 and i=10. A similar pattern in changing ldist value is observed
using L2 and w2. However, the introduced framework does not give us any clue
whether the control flow behavior before i=7 and after i=10 are similar or dif-
ferent. Using L3 and the smaller window w1, it is observed that the change in
behavior is only observed sharply at i=7 and i=10. Using the larger window
w2, the change in behavior started to affect ldist from i=5 but with shifting
the sliding window, it cannot exactly identify the point in which the behavior
is changed. Therefore, the larger window size is more robust against noise but
may miss some important change points.

The running example introduced in Fig. 1a is simulated using the CPN tools
and the generated event log is used to explain how the framework works. This
event log consists of 10,000 cases and 31 trace variants1. The cases are ordered
based on their risk score value. In Fig. 3a, the results using b = 100, i.e., 1 % of
the cases in each bucket and different window sizes w ∈ {2, 5, 10, 15} are shown.
The numbers in the parenthesis show the raw risk score values. The experiment is

1 https://github.com/aliNorouzifar/process-variants-identification/blob/

main/event%20logs/test.xes

https://github.com/aliNorouzifar/process-variants-identification/blob/main/event%20logs/test.xes
https://github.com/aliNorouzifar/process-variants-identification/blob/main/event%20logs/test.xes

Process Variant Analysis Across Continuous Features 7

0%
 (0

.0
)

5%
 (0

.5
)

10
%

 (1
.0

)
15

%
 (1

.6
)

20
%

 (2
.2

)
25

%
 (2

.9
)

30
%

 (3
.5

)
35

%
 (4

.2
)

40
%

 (5
.1

)
45

%
 (6

.0
)

50
%

 (7
.0

)
55

%
 (8

.0
)

60
%

 (9
.2

)
65

%
 (1

0.
6)

70
%

 (1
2.

1)
75

%
 (1

3.
9)

80
%

 (1
6.

2)
85

%
 (1

9.
0)

90
%

 (2
2.

9)
95

%
 (2

9.
9)

10
0%

 (9
6.

4)

traces

15
%

10
%

5%
2%

wi
nd

ow
 si

ze

0.0

0.2

0.4

0.6

Control Flow Change Detection

(a) Results of applying the introduced framework us-
ing the simulated event log with b=100 and w ∈
{2, 5, 10, 15}.

se
g1

se
g2

se
g3

se
g1

se
g2

se
g3

0.0

0.2

0.4

0.6

0.8
segments comparison

(b) Pairwise compari-
son between the seg-
ments.

Fig. 3: Process variant identification framework for the claim handling process.

repeated for different window sizes. The colors show how high the earth mover’s
distance is between the left and right windows.

4.2 Segmentation and Pairwise Comparison

Based on the visualizations shown in Fig. 2, the control flow behavior may change
several times through the range of the indicator but with each change, we only
know that w buckets on the left are different from the w buckets on the right.
Therefore, we extend the proposed framework to make it more applicable to
obtain global insights. The idea is to use the peaks in the ldist values based on
specific b and w parameters to perform a segmentation. Each time we observe a
peak in ldist, we generate a segment consisting of the cases from the previous
change point to the current change point. Then, it is possible to compare non-
adjacent segments with the earth mover’s distance measure.

Definition 9. (Change Point in Control Flow) Let L ∈ L be an event log, κ be
a case-level indicator, b ∈ N[2,|L|] be the number of buckets given by the user, and
w ∈ N[1, b2] be a window size parameter. θ ∈ [0, 1] is a user-defined threshold to
check whether a high value of ldist is significant. p ∈ [w, b−w] is a change point
in the control flow behavior if ldist(p) ≥ θ, ldist(p−1) ≤ ldist(p) if p ∈ (w, b−w],
and ldist(p+ 1) ≤ ldist(p) if p ∈ [w, b− w).

Definition 10. (Segments) Let P = ⟨p1, ..., p|P |⟩ be the ordered sequence of
change points in ldist function such that ∀i, j ∈ {1, ..., |P |} : pi ≤ pj iff i < j.
Considering |P | as the number of peaks, we can generate |P |+1 segments which
we refer to as seg1 to seg|P |+1 such that seg1 = {σ ∈ Bx|x ≤ p1}, segi = {σ ∈
Bx|pi−1 < x ≤ pi} for i ∈ [2, |P |], and seg|P |+1 = {σ ∈ Bx|p|P | < x}.

Considering w = 10 in Fig. 3a and θ = 0.1, ldist has two peaks in i = 26
(risk score=3) and i = 63 (risk score = 10). We can use heatmaps to compare
the resulting segments pairwise to check if non-adjacent segments have similar

8 A. Norouzifar et al.

control flows. Using the identified peaks, the whole event log is divided into three
segments, and the segments are compared in Fig. 3b.

Next, we can hierarchically merge similar segments in case the control flow is
not significantly different with regard to the user-defined difference threshold θ.
We recursively merge two segments with the minimum ldist if this minimum
distance is lower than θ, i.e., a user-defined threshold to check whether the
distance is significant.

5 Case Study

The introduced framework is implemented and is publicly available2. To assess
the effectiveness of our framework, we conducted a comprehensive case study
in collaboration with UWV, the employee insurance agency of the Netherlands
responsible for executing social security in case of unemployment and disability.
UWV provided real-life event data for this case study. We worked closely with
experts from the agency, who provided invaluable guidance and insights. Their
expertise enabled us to align our research with practical, real-world scenarios,
ensuring that our algorithms are usable in real business contexts.

5.1 UWV event log

UWV has over 18000 employees and several branches all over the Netherlands.
One of the main processes of this governmental sector is investigated in this
paper. The duration of the cases in this process has been of particular interest.
UWV wants to know how the process is changed concerning the duration of the
cases and whether we can find the change points in the duration. The duration
of cases varies in the range of 1 day to 575 days. The event log has 144,096 cases,
1,026 variants, 29 activities, and 1,316,128 events. Among all the cases, 5,449
cases (3.8% of the cases) are rejected and 138,647 cases (96.2% of the cases) are
accepted.

The normative BPMN model shown in Fig. 4 represents a claim-handling
process at UWV. First, a claim from a customer is received. Then, either the
claim is accepted or blocked. A blocked claim indicates either some information
needs to be checked or corrected after which the claim is accepted, or the claim is
blocked and then immediately rejected. After a rejected claim, an objection can
be received by customers if they do not agree with the decision. The handling
of this objection is out of the scope of this process model. After an accepted
claim, which has received one or at most three payments, an objection can be
received. This is due to customers who in hindsight find that they do not need
the payments. A claim withdrawal process is started that results in repayment
of the total sum of received benefits. In case the customer is still entitled to
one or more payments, the Block Claim activity is executed. This prevents any
new payments from being automatically made. This normative model has an
alignment fitness of 99.3% with respect to the event log [3].
2 https://github.com/aliNorouzifar/process-variants-identification

https://github.com/aliNorouzifar/process-variants-identification

Process Variant Analysis Across Continuous Features 9

Fig. 4: The normative BPMNmodel representing the investigated UWV claim handling
process.

5.2 Process variant analysis using UWV event log

The first experiment is performed using the complete event log and the results
are shown in Fig. 5. In this experiment, b=100 and the window sizes 2, 5, 10, and
15 are considered. The comparative results are illustrated in Fig. 5a which shows
that the cases with a very short duration or very long duration are different from
other cases. Considering θ=0.1, w=5, and i referring to the central point of the
sliding window, two peaks are observed at i=3 (17 days) and i=95 (78 days)
which can be used to generate three segments, i.e., [0,17] days, [18,77] days and
[78,575] days. In Fig. 5b, the three generated segments are compared to each
other using the earth mover’s distance.

The number of cases in each segment and their alignment fitness with re-
spect to the normative model is reported in Table. 1. All the segments have a
high fitness value implying that the observed behavior in the segments fits the
normative model. According to the replay results, Fig. 6 shows the normative
BPMN model where the parts of the model that cover each of the segments are
highlighted. The colors are proportional to the frequencies and the transition
labels are colored as gray if the frequency is lower than 5%. For segment 1 in
Fig. 6a, the activities Receive Claim, Start Claim, Block Claim, Reject Claim
and Receive Objection are highlighted. Segment 1 represents the claims that are
rejected and optionally UWV receives an objection to the decision. Segment 2
shows claims that are accepted, i.e., the customer receives three payments and
then the process finishes. Finally, segment 3 represents again accepted cases.
However, after the payments an objection is received, and optionally a block

0%
 (1

)
5%

 (2
1)

10
%

 (2
9)

15
%

 (3
7)

20
%

 (4
6)

25
%

 (5
0)

30
%

 (5
6)

35
%

 (6
1)

40
%

 (6
3)

45
%

 (6
4)

50
%

 (6
5)

55
%

 (6
5)

60
%

 (6
6)

65
%

 (6
6)

70
%

 (6
7)

75
%

 (6
7)

80
%

 (6
7)

85
%

 (6
7)

90
%

 (6
7)

95
%

 (7
8)

10
0%

 (5
75

)

traces

15
%

10
%

5%
2%

wi
nd

ow
 si

ze

0.0

0.2

0.4

0.6

Control Flow Change Detection

(a) Control flow change detection with b=100 and
w∈{2, 5, 10, 15}.

se
g1

se
g2

se
g3

se
g1

se
g2

se
g3

0.0

0.1

0.2

0.3

0.4

segments comparison

(b) Segmentation and
pairwise comparison.

Fig. 5: Applying the introduced framework to the complete UWV event log.

10 A. Norouzifar et al.

Table 1: Using alignment fitness as a conformance checking metric to check whether
the event logs fit the process model or not.

Event log Number of traces Alignment fitness

UWV
complete log

segment 1: [0,17] days
144096

4323
99.3%

99.6%
segment 2: [18,77] days 132572 99.7%
segment 3: [78,575] days 7201 93.4%

UWV
rejected claims

segment 1: [0,15] days
5449

3888
98.4%

99.7%
segment 2: [16,83] days 1350 97.3%
segment 3: [84,550] days 211 81.7%

is executed. For these claims, the customer withdraws the claim. The customer
then pays the received sum back to UWV. Blocking is done to prevent new
payments from being made while the claim withdrawal process has not finished
yet.

(a) Segment 1 in the complete event log with duration in the range [0,17] days.

(b) Segment 2 in the complete event log with duration in the range [18,77] days.

(c) Segment 3 in the complete event log with duration in the range [78,575] days.

Fig. 6: The normative BPMN model is highlighted based on the frequency of the
transitions in replaying the segments from the complete event log experiment.

5.3 A deeper analysis considering rejected cases

The extracted segments are highly correlated with the process outcome, i.e.,
the rejection or acceptance of a claim. However, the correlation between the
extracted segments with specific duration is less clear. Another experiment using
the 5,449 rejected cases is performed to get more understanding of the relation

Process Variant Analysis Across Continuous Features 11

between duration ranges and specific process variants3. The alignment fitness of
the rejected cases is 98.04% with respect to the normative model.

An overview of the results for the rejected cases is shown in Fig. 7. Based
on Fig. 7a considering w = 2 and θ=0.1, four segments are found, with duration
periods of [0,13] days, [14,15] days, [16,83] days, and [84,550] days respectively.
Segments 1 and 2 are merged into one segment, with a duration period of [0,15]
days, since the distance between them is lower than θ=0.1. This can be observed
in the heatmap in Fig. 7b. Segments 1 and 2 have very similar colors when
compared to each other in comparison to the other segments.

0%
 (1

)
5%

 (2
)

10
%

 (2
)

15
%

 (3
)

20
%

 (3
)

25
%

 (4
)

30
%

 (4
)

35
%

 (5
)

40
%

 (5
)

45
%

 (6
)

50
%

 (8
)

55
%

 (1
3)

60
%

 (1
4)

65
%

 (1
4)

70
%

 (1
4)

75
%

 (1
8)

80
%

 (2
4)

85
%

 (3
1)

90
%

 (4
2)

95
%

 (6
1)

10
0%

 (5
50

)

traces

15
%

10
%

5%
2%

wi
nd

ow
 si

ze

0.00

0.05

0.10

0.15

0.20

Control Flow Change Detection

(a) Control flow change detection with b=100 and
w∈{2, 5, 10, 15}.

se
g1

se
g2

se
g3

se
g4

seg1

seg2

seg3

seg4
0.0

0.1

0.2

0.3

0.4
segments comparison

(b) Segmentation and
pairwise comparison.

Fig. 7: Applying our framework to the rejected cases in the UWV event log.

The number of cases in each segment and alignment fitness values of the
identified segments are shown in Table 1. These results show that segment 3 does
not fit the normative model well with an alignment fitness value of 81.7%. Fig. 8
contains the highlighted normative model for each of the three segments. Fig. 8a
shows the first segment with a duration period of [0,15] days and contains cases
that are rejected and no objection is received. This segment represents customers
who file a claim even though they know that they most likely will not be entitled.
In the second segment, with a duration period [16,83] days, in Fig. 8b cases are
described that are rejected and some also have an objection. Finally, the third
segment, with a duration period of [84,550] days, in Fig. 8c consists of claims
that are first accepted and end as rejection with a full repayment, or claims that
are first rejected and are accepted after an objection is received and granted.

6 Conclusion

In this study, we delved into the concept of segmenting a continuous dimension
concerning changes in control flow. While our framework primarily focuses on
identifying segments with differing control flows, it may not directly imply the

3 The analysis of accepted cases is explained in the supplementary ma-
terial https://github.com/aliNorouzifar/process-variants-identification/

blob/main/supplementary%20material/supplementary%20material.pdf.

https://github.com/aliNorouzifar/process-variants-identification/blob/main/supplementary%20material/supplementary%20material.pdf
https://github.com/aliNorouzifar/process-variants-identification/blob/main/supplementary%20material/supplementary%20material.pdf

12 A. Norouzifar et al.

(a) Segment 1 in the rejected cases event log with duration in the range [0,15] days.

(b) Segment 2 in the rejected cases event log with duration in the range [16,83] days.

(c) Segment 3 in the rejected cases event log with duration in the range [84,550] days.

Fig. 8: The normative BPMN model highlighted based on the frequency of the transi-
tions in replaying the segments from the rejected event log experiment.

desirability or undesirability of individual cases. For instance, with a dimension
like duration, cases within segments featuring either very short or very long du-
ration could be associated with undesirability or efficiency. This approach holds
promise for extension, particularly in identifying and labeling cases as unde-
sirable, taking the broader process context into account. The interconnections
between different dimensions may also play a role in the changes in behavior
which is highly relevant for future investigations. Considering them may lead
to some interesting analyses. For instance, the duration of cases could corre-
late with the workload of the process, potentially generating delayed yet normal
cases during high workload periods. Considering only one dimension may not
show whether cases are normal or problematic. The output of our framework
can be used as input for various process mining tasks like process comparison,
outcome prediction, and process discovery using desirable and undesirable cases.

References

1. Back, C.O., Simonsen, J.G.: Comparing trace similarity metrics across logs and
evaluation measures. In: Advanced Information Systems Engineering, CAiSE 2023,
Proceedings. Lecture Notes in Computer Science, vol. 13901, pp. 226–242. Springer
(2023)

2. Brockhoff, T., Uysal, M.S., van der Aalst, W.M.P.: Time-aware concept drift de-
tection using the earth mover’s distance. In: 2020 2nd International Conference on
Process Mining (ICPM). pp. 33–40. IEEE (2020)

Process Variant Analysis Across Continuous Features 13

3. Carmona, J., van Dongen, B.F., Solti, A., Weidlich, M.: Conformance Checking -
Relating Processes and Models. Springer (2018)

4. Chapela-Campa, D., Mucientes, M., Lama, M.: Understanding complex process
models by abstracting infrequent behavior. Future Gener. Comput. Syst. 113,
428–440 (2020)

5. Chesani, F., Francescomarino, C.D., Ghidini, C., Grundler, G., Loreti, D., Maggi,
F.M., Mello, P., Montali, M., Tessaris, S.: Shape your process: Discovering declar-
ative business processes from positive and negative traces taking into account user
preferences. In: Enterprise Design, Operations, and Computing, EDOC 2022, Pro-
ceedings. Lecture Notes in Computer Science, vol. 13585, pp. 217–234. Springer
(2022)

6. De Leoni, M., van der Aalst, W.M.P., Dees, M.: A general process mining frame-
work for correlating, predicting and clustering dynamic behavior based on event
logs. Information Systems 56, 235–257 (2016)

7. Hompes, B., Buijs, J., van der Aalst, W.M.P., Dixit, P., Buurman, J.: Discovering
deviating cases and process variants using trace clustering. In: Proceedings of the
27th Benelux Conference on Artificial Intelligence (BNAIC). pp. 5–6 (2015)

8. Leemans, S.J., Shabaninejad, S., Goel, K., Khosravi, H., Sadiq, S., Wynn, M.T.:
Identifying cohorts: Recommending drill-downs based on differences in behaviour
for process mining. In: Conceptual Modeling: 39th International Conference, ER
2020, Proceedings 39. pp. 92–102. Springer (2020)

9. Leemans, S.J., Syring, A.F., van der Aalst, W.M.P.: Earth movers’ stochastic con-
formance checking. In: Business Process Management Forum: BPM Forum 2019,
Proceedings 17. pp. 127–143. Springer (2019)

10. Maaradji, A., Dumas, M., Rosa, M.L., Ostovar, A.: Detecting sudden and gradual
drifts in business processes from execution traces. IEEE Trans. Knowl. Data Eng.
29(10), 2140–2154 (2017)

11. Norouzifar, A., van der Aalst, W.M.P.: Discovering process models that support de-
sired behavior and avoid undesired behavior. In: SAC ’23: The 38th ACM/SIGAPP
Symposium on Applied Computing (2023)

12. Sato, D.M.V., Freitas, S.C.D., Barddal, J.P., Scalabrin, E.E.: A survey on concept
drift in process mining. ACM Comput. Surv. 54(9), 189:1–189:38 (2022)

13. Taymouri, F., La Rosa, M., Dumas, M., Maggi, F.M.: Business process variant
analysis: Survey and classification. Knowledge-Based Systems 211, 106557 (2021)

14. Teinemaa, I., Dumas, M., Rosa, M.L., Maggi, F.M.: Outcome-oriented predictive
process monitoring: Review and benchmark. ACM Trans. Knowl. Discov. Data
13(2), 17:1–17:57 (2019)

15. Weerdt, J.D., vanden Broucke, S.K.L.M., Vanthienen, J., Baesens, B.: Active trace
clustering for improved process discovery. IEEE Trans. Knowl. Data Eng. 25(12),
2708–2720 (2013)

16. Yeshchenko, A., Ciccio, C.D., Mendling, J., Polyvyanyy, A.: Visual drift detection
for event sequence data of business processes. IEEE Trans. Vis. Comput. Graph.
28(8), 3050–3068 (2022)

17. van Zelst, S.J., Cao, Y.: A generic framework for attribute-driven hierarchical trace
clustering. In: Business Process Management Workshops - BPM 2020 International
Workshops, Revised Selected Papers. Lecture Notes in Business Information Pro-
cessing, vol. 397, pp. 308–320. Springer (2020)

	Process Variant Analysis Across Continuous Features: A Novel Framework

