
Process Modeling With Large Language Models

Humam Kourani1,2 , Alessandro Berti1,2 , Daniel Schuster1,2 , and Wil M. P.
van der Aalst1,2

1 Fraunhofer Institute for Applied Information Technology FIT, Sankt Augustin,
Germany

2 RWTH Aachen University, Aachen, Germany
{humam.kourani, alessandro.berti, daniel.schuster,

wil.van.der.aalst}@fit.fraunhofer.de

Abstract. In the realm of Business Process Management (BPM), pro-
cess modeling plays a crucial role in translating complex process dy-
namics into comprehensible visual representations, facilitating the un-
derstanding, analysis, improvement, and automation of organizational
processes. Traditional process modeling methods often require extensive
expertise and can be time-consuming. This paper explores the integra-
tion of Large Language Models (LLMs) into process modeling to enhance
the accessibility of process modeling, offering a more intuitive entry point
for non-experts while augmenting the efficiency of experts. We propose a
framework that leverages LLMs for the automated generation and itera-
tive refinement of process models starting from textual descriptions. Our
framework involves innovative prompting strategies for effective LLM
utilization, along with a secure model generation protocol and an error-
handling mechanism. Moreover, we instantiate a concrete system extend-
ing our framework. This system provides robust quality guarantees on
the models generated and supports exporting them in standard model-
ing notations, such as the Business Process Modeling Notation (BPMN)
and Petri nets. Preliminary results demonstrate the framework’s ability
to streamline process modeling tasks, underscoring the transformative
potential of generative AI in the BPM field.

Keywords: Process Modeling · Business Process Management · Gener-
ative AI · Large Language Models

1 Introduction

Process modeling is an essential aspect of Business Process Management (BPM),
serving as a comprehensive toolkit for understanding, documenting, analyzing,
and improving complex business operations. Business process modeling covers
several formats – from textual representations to visual diagrams and executable
models – thus facilitating a multifaceted approach to capturing organizational
processes.

Business process modeling encompasses several key perspectives, each fo-
cusing on different process aspects. Traditionally, these perspectives include the

https://orcid.org/0000-0003-2375-2152
https://orcid.org/0000-0002-3279-4795
https://orcid.org/0000-0002-6512-9580
https://orcid.org/0000-0002-0955-6940

2 H. Kourani et al.

control-flow perspective, which outlines the flow of activities and their dependen-
cies; the data perspective, focusing on how data is generated, manipulated, and
consumed throughout the process; the resource perspective, detailing the human
and system resources involved in the process execution; and the operational per-
spective, which describes the operational rules and execution semantics. In this
paper, we focus on enhancing the control-flow perspective of process modeling
as the control-flow establishes the basic structure upon which the data, resource,
and operational perspectives are built.

Business process modeling traditionally involves extensive manual effort and
deep knowledge of complex process modeling languages like BPMN (Business
Process Model and Notation) [28] or Petri nets [25]. Additionally, process mod-
els often necessitate ongoing updates to reflect process changes. These challenges
create significant barriers to entry for users without expertise in modeling lan-
guages, underscoring the need for new, streamlined process modeling method-
ologies.

The advent of Large Language Models (LLMs) such as GPT-4 [22] and Gem-
ini [8] introduces a promising solution for enhancing the efficiency and accessibil-
ity of process modeling. Trained on diverse and extensive datasets, these LLMs
show advanced capabilities in performing different tasks, ranging from coherent
and contextually relevant text generation to solving complex problem-solving
queries and generating executable code [18,26,30]. Their ability to understand
and process complex textual information in natural language makes LLMs partic-
ularly well-suited for process modeling and other tasks that require generating
and refining structured outputs directly from textual descriptions. Therefore,
leveraging LLMs in process modeling heralds a transformative shift, potentially
reducing the dependence on manual effort and specialized knowledge.

Our paper introduces a novel framework that utilizes the power of LLMs to
automate the generation of process models. It incorporates advanced techniques
in prompt engineering, error handling, and code generation to transform textual
process descriptions into process models illustrating the described processes.
Additionally, our framework features an interactive feedback loop, allowing for
refining the generated models based on the user’s feedback. To demonstrate the
feasibility and practical application of our framework, we implement a concrete
system that instantiates it. This system leverages the Partially Ordered Workflow
Language (POWL) [16] for the intermediate process representation, providing
robust guarantees on the quality of the generated models. The generated POWL
models can then be viewed and exported in standard modeling notations such
as BPMN and Petri nets. We integrate the implemented system with state-of-
the-art LLMs, showing the framework’s ability to streamline process modeling
and underscoring the potential of generative AI in revolutionizing BPM.

The remainder of this paper is structured as follows. In Section 2, we discuss
related work. Section 3 outlines our LLM-based process modeling framework.
Section 4 evaluates the integration of our framework with state-of-the-art LLMs.
In Section 5, we discuss the limitations of our framework and propose ideas for
future work. Finally, Section 6 concludes the paper.

Process Modeling With Large Language Models 3

2 Related Work

An overview of various approaches for extracting process information from text
is provided in [1]. While [6] leverages Natural Language Processing (NLP) and
text mining techniques to derive process models from text, [11] combines NLP
with computational linguistics techniques to generate BPMN models. In [23],
the authors employ NLP techniques to extract structured relationship represen-
tations, termed fact types, from text, and the derived fact types are subsequently
transformed into BPMN components. The BPMN Sketch Miner [13] leverages
process mining [24] to generate BPMN models starting from text in a domain-
specific language. Commercial vendors are integrating AI into process modeling,
e.g., Process Talks (https://processtalks.com) provides an AI-powered sys-
tem for creating process models starting from textual descriptions.

The integration of LLMs in BPM has been explored recently. Several studies
[4,27] delve into the potential applications and challenges of employing LLMs for
BPM tasks. In [21], limitations of using GPT-4 in conceptual modeling are dis-
cussed. LLMs are evaluated on various process mining tasks in [3]. The proposed
approach in [5] employs BERT [7] for the classification and analysis of process
execution logs, aiming to improve process monitoring and anomaly detection.
In [14], the authors explore the novel concept of conversational modeling with
LLMs, proposing a method for generating process models through dialogue-based
interactions. The paper [12] demonstrates the capability of LLMs to translate
textual descriptions into procedural and declarative process model constraints.
Finally, [10] investigate the broader implications of LLMs in conceptual model-
ing, suggesting potential applications beyond traditional BPM tasks.

3 LLM-Based Process Modeling Framework

In this section, we detail our framework that leverages the power of LLMs for
generating process models starting from process descriptions in natural language.

3.1 Framework Overview

Figure 1 provides a schematic overview of our proposed framework. First, users
input a textual description of a process in natural language. Upon receiving the
textual description, we incorporate additional information to craft a compre-
hensive prompt (the employed prompt engineering techniques are detailed in
Section 3.3). This prompt is designed to guide the LLM to generate executable
code that can be used for the generation of process models (the selection of the
modeling language used for process representation is discussed in Section 3.2).
The code generation step leverages a set of functions we designed to facilitate
the creation of process models. After the prompt is generated, it is dispatched to
the LLM. Note that the framework is independent of the selected LLM; it can be
integrated with any advanced LLM that offers a large context window and code
generation capabilities. After receiving the LLM’s response, we extract the code

https://processtalks.com

4 H. Kourani et al.

Fig. 1: LLM-based process modeling framework.

snipped from the response and try to execute it (cf. Section 3.4). In instances
where the code extraction or execution encounters errors, we employ an error-
handling mechanism that involves sending a refined prompt back to the LLM,
exploiting LLMs’ self-refinement capabilities to fix the error (cf. Section 3.5).
Upon successful code execution and process model generation, users can view or
export the model using established process modeling notations, such as BPMN
and Petri nets. Moreover, the framework incorporates an interactive feedback
loop. Users can provide feedback on the generated model, which is subsequently
integrated into the model. This feature enables the continuous optimization and
refinement of the generated process model.

3.2 Process Representation

To better explain the different stages within our framework, we instantiate a
concrete system that utilizes the Partially Ordered Workflow Language (POWL)
[16] for intermediate process representation. The foundational principles of our
framework allow for the integration with other modeling languages tailored to
the requirements of process modeling. In this section, we motivate our choice of
the POWL language.

Our aim is to generate process models in standard notations familiar to most
professionals in the business process management field, such as BPMN and Petri
nets. However, such modeling languages are complex with a high potential for
quality issues. For example, it is possible to generate Petri nets or BPMN models
with dead parts that can never be reached. Therefore, the concept of soundness

Process Modeling With Large Language Models 5

is introduced, and many approaches for the automated discovery of process mod-
els use process modeling languages that guarantee soundness (e.g., [15,17]). Our
system for process modeling employs POWL for intermediate process representa-
tion, and the generated POWL models are then transformed into BPMN or Petri
nets. A POWL model is a partially ordered graph extended with control-flow op-
erators for modeling choice and loop structures. POWL represents a subclass of
Petri nets that allow for the generation of hierarchical models where sub-models
are combined to generate larger ones.

We have selected POWL as an intermediate process representation due to
the following reasons:

– Soundness Guarantees: Unlike BPMN models or Petri nets, POWL inher-
ently ensures soundness.

– Simplicity: POWL’s hierarchical nature enables a simplified model genera-
tion by recursively generating models and combining them into larger ones.
Moreover, POWL allows for combining sub-models as partial orders under
the assumption that tasks are inherently parallel unless explicitly defined
otherwise. This assumption of concurrent task execution mirrors the dynam-
ics of numerous real-life processes, and it facilitates the generation of process
models as the order of concurrent elements does not need to be specified.

– Expressive Power: While POWL and process trees [17] both guarantee sound-
ness, POWL supports a broader range of process structures [16]. POWL al-
lows for modeling intricate, non-hierarchical dependencies while maintaining
the quality guarantees of hierarchical process modeling languages.

3.3 Prompt Engineering

This section discusses the prompting strategies we employ to effectively utilize
LLMs for process modeling. We guide the LLM toward a precise comprehension
of the provided process descriptions and the subsequent generation of the tar-
geted process models. These strategies aim to leverage the inherent capabilities
of LLMs without the need for retraining or adjustments.

The following prompting strategies are employed within our process modeling
framework:

– Role Prompting: This strategy involves assigning a specific role to the LLM
to guide its responses or behavior in a particular direction [29]. We imple-
mented role prompting by instructing the LLM to act as an expert in process
modeling, familiar with common process constructs. The LLM is also tasked
to assume the role of a process owner and to use its expertise in the context
of the process to fill in any gaps in the provided process description.

– Knowledge Injection: This strategy involves providing the LLM with new,
specific information or context that it may not have been exposed to during
its initial training [19]. We provide comprehensive knowledge about POWL,
offering detailed insights into its hierarchical structure and the semantics of
the different POWL components. Moreover, our framework leverages LLM

6 H. Kourani et al.

Listing 1.1: Injecting the LLM with knowledge about POWL. Lines that extend
beyond the displayed text are abbreviated with “...” to keep it compact.
Use the following knowledge about the POWL modeling language: A POWL ...
Provide the Python code that recursively generates a POWL model. Save the ...
Assume the class ModelGenerator is properly implemented and can be ...
ModelGenerator provides the functions described below:
- activity(label) generates an activity. It takes 1 string argument , ...
- xor(*args) takes n >= 2 arguments , which are the submodels. Use it to ...
- loop(do , redo) takes 2 arguments , which are the do and redo parts. Use ...
- partial_order(dependencies) takes 1 argument , which is a list of ...

Note: for any powl model , you can call powl.copy() to create another ...

capabilities in generating executable code [26] by instructing the LLM to
generate Python code that utilizes a predefined set of functions we designed
for the safe generation of POWL models. We provide a detailed explanation
of these predefined methods and how they can be used to generate POWL
models. Listing 1.1 illustrates the injected knowledge about POWL.

– Few-Shots Learning: This method involves training the LLM on solving the
task by providing several example pairs of input and expected output [9].
This enhances the LLM’s ability to generate POWL models starting from
process descriptions. For instance, Listing 1.2 shows one the examples we
use for training. This example shows how to generate a POWL model for
the bicycle manufacturing process from [2].

– Negative Prompting: Negative prompting refers to instructing the LLM by
specifying what it should avoid in its response [20]. We implement negative
prompting by instructing the LLM to avoid common errors that can occur
using our predefined methods for generating POWL models (e.g., trying
to generate partial orders that violate irreflexivity). Moreover, we extend
our few-shot demonstrations with common mistakes that should be avoided
during the construction of each process. For example, a common mistake for
the bicycle manufacturing process (cf. Listing 1.2) is to create a local choice
between two activities “reject order” and “accept order” instead of modeling
a choice between the complete paths that are taken in each case.

3.4 Model Generation and Refinement

After receiving the LLM’s response, the Python code snippet is extracted from
the response, which might also include additional text (e.g., intermediate rea-
soning steps). If the code extraction is successful, then the extracted code is
executed to generate the model. Executing code generated by an LLM involves
multiple considerations to handle security risks and invalid results. The follow-
ing strategies are implemented to ensure a safe environment for producing valid
process models:

Process Modeling With Large Language Models 7

Listing 1.2: POWL model generation example used for few-shots learning, ex-
tended with instructions to avoid common errors. Lines that extend beyond the
displayed text are abbreviated with “...” to keep it compact.
Process description for example 1:
A small company manufactures customized bicycles. Whenever the sales ...

Process model for example 1:
‘‘‘python
from utils.model_generation import ModelGenerator
gen = ModelGenerator ()
create_process = gen.activity(’Create process instance ’)
reject_order = gen.activity(’Reject order ’)
accept_order = gen.activity(’Accept order ’)
inform = gen.activity(’Inform storehouse and engineering department ’)
process_part_list = gen.activity(’Process part list ’)
check_part = gen.activity(’Check required quantity of the part ’)
reserve = gen.activity(’Reserve part ’)
back_order = gen.activity(’Back -order part ’)
prepare_assembly = gen.activity(’Prepare bicycle assembly ’)
assemble_bicycle = gen.activity(’Assemble bicycle ’)
ship_bicycle = gen.activity(’Ship bicycle ’)
finish_process = gen.activity(’Finish process instance ’)

check_reserve = gen.xor(reserve , back_order)

single_part = gen.partial_order(dependencies =[(check_part , check_reserve)])
part_loop = gen.loop(do=single_part , redo=None)

accept_poset = gen.partial_order(
dependencies =[(accept_order , inform),

(inform , process_part_list),
(inform , prepare_assembly),
(process_part_list , part_loop),
(part_loop , assemble_bicycle),
(prepare_assembly , assemble_bicycle),
(assemble_bicycle , ship_bicycle)])

choice_accept_reject = gen.xor(accept_poset , reject_order)

final_model = gen.partial_order(
dependencies =[(create_process , choice_accept_reject),

(choice_accept_reject , finish_process)])
‘‘‘

Common errors to avoid for example 1:
creating a local choice between ’reject_order ’ and ’accept_order ’ instead ...

– In order to eliminate the risk of executing unsafe code, we restrict the LLM
to use the predefined functions we designed for the generation of POWL
models. We employ a strict process to verify that the code strictly complies
with the prompted coding guidelines, explicitly excluding the use of external
libraries or constructs that may pose security threats.

– We define validation rules to ensure that the code generates models that align
with the POWL specifications and requirements. For example, we validate
that all partial orders within the generated model adhere to the transitivity
and irreflexivity requirements.

Our framework converts the generated POWL models into Petri nets and
BPMN models. It offers functionalities for displaying and exporting the models in

8 H. Kourani et al.

these established notations, which are widely acknowledged within the business
process management community.

Refinement Loop. The framework supports model refinement based on user feed-
back. Users can provide comments on the generated model, and we prompt the
LLM to update the model accordingly. These feedback prompts are sent along
with the full conversation history. This interactive approach ensures continual
improvement and customization of the models.

3.5 Error Handling

Despite their advanced coding capabilities, LLMs do not always generate error-
free code. We employ a robust error-handling mechanism tailored to mitigate
potential inaccuracies and ensure the reliability of the generated process models.

Recognizing the variability in the severity and implications of errors, we
categorize them into two distinct groups:

– Critical Errors: This category covers errors that significantly disrupt the
system’s functionality or compromise security. These encompass execution
failures, security risks, and major model validation violations. Given their
potential impact, critical errors necessitate decisive action and cannot be
overlooked.

– Adjustable Errors: This category includes errors related to the model’s quali-
tative aspects, such as the reuse of submodels within the same POWL model.
Although they affect the model’s precision or quality, adjustable errors are
considered less critical. They can be adjusted automatically, allowing for a
degree of flexibility in their resolution. For example, the error of reusing
submodels within the same POWL model can be automatically resolved
by creating copies of the reused models. However, such intervention is ap-
proached with caution to prevent significant deviations from the behavior of
the intended process.

Our framework incorporates an iterative error-handling loop, engaging the
LLM in resolving identified errors. A new prompt that details the error and re-
quests the LLM to address it, along with the conversation history, are submitted
to the LLM. This iterative cycle facilitates dynamic correction, leveraging the
LLM’s capabilities to refine and improve the generated code.

For critical errors, the system persistently seeks resolution via the LLM up
to a predetermined number of allowed attempts. If the LLM fails to fix the
error after the allowed number of attempts, the system terminates the process
and marks the model generation as unsuccessful. In cases of adjustable errors,
the system initially attempts correction through iterative engagement with the
LLM. If the LLM fails to resolve adjustable errors after several attempts, then
the system automatically resolves these errors.

Process Modeling With Large Language Models 9

4 Evaluation

In this section, we evaluate our LLM-based process modeling framework. We
integrate the implemented system with state-of-the-art LLMs to demonstrate
the feasibility and practical application of our framework.

Research Questions

We structure the evaluation around the following two research questions:

– Q1: How does our framework perform when integrated with state-of-the-art
LLMs?

– Q2: How does our framework’s performance compare to other LLM-based
process modeling systems?

Q1 aims to investigate the capability of our framework to leverage the latest
advancements in LLM technology. We used two state-of-the-art LLMs: GPT-
4 and Gemini. We focus on the framework’s ability to generate accurate and
optimized process models based on initial descriptions and through the iterative
feedback loop. The assessment considers the quality of the generated models, the
efficiency in handling errors, and the effectiveness of integrating user feedback.

Q2 aims to compare our process modeling framework with other existing
approaches. Notably, we found no LLM-based techniques that directly produce
process models in the literature. The closest related work is the framework pro-
posed in [12], which utilizes LLMs to transform process descriptions in natural
language into textual abstractions in a pre-defined notation that captures BPMN
base components. We use this framework to generate process models with GPT-
4, and we manually transform the generated textual abstractions into BPMN
models for comparative analysis. We refer to this approach as the TA (Textual
Abstraction) framework throughout this paper.

Setup

We implemented an integration of our system with GPT-4 as a web application
available at https://promoai.streamlit.app/. As Gemini APIs are not avail-
able in Germany, direct integration of our framework with Gemini is not feasible;
we used the web interface (https://gemini.google.com/app), and we manu-
ally transferred the prompts and responses between Gemini and our framework.

Throughout our experiments, we set a threshold of two iterations for han-
dling adjustable errors through interaction with the LLM before automatically
resolving them, and we set a threshold of five iterations for critical errors before
terminating the process and marking the model generation as unsuccessful. Each
experiment was repeated three times to account for the non-deterministic nature
of LLM results.

We used two processes for our evaluation: the process described in [16] for
handling orders in an online shop and the hotel service process from the PET

https://promoai.streamlit.app/
https://gemini.google.com/app

10 H. Kourani et al.

Table 1: Process description and feedback comments for the online shop process.
Initial Process
Description

Consider a process for purchasing items from an online shop. The user starts an
order by logging in to their account. Then, the user simultaneously selects the
items to purchase and sets a payment method. Afterward, the user either pays or
completes an installment agreement. After selecting the items, the user chooses
between multiple options for a free reward. Since the reward value depends on the
purchase value, this step is done after selecting the items, but it is independent of
the payment activities. Finally, the items are delivered. The user has the right to
return items for exchange. Every time items are returned, a new delivery is made.

1st Feedback Model the item selection using an activity “Add Items” that can be repeated.
2nd Feedback The user may skip the reward selection.

Table 2: Process description and feedback comments for the hotel process.
Initial Process
Description

The Evanstonian is an upscale independent hotel. When a guest calls room service
at The Evanstonian, the room-service manager takes down the order. She then
submits an order ticket to the kitchen to begin preparing the food. She also gives
an order to the sommelier (i.e., the wine waiter) to fetch wine from the cellar and
to prepare any other alcoholic beverages. Eighty percent of room-service orders
include wine or some other alcoholic beverage. Finally, she assigns the order to
the waiter. While the kitchen and the sommelier are doing their tasks, the waiter
readies a cart (i.e., puts a tablecloth on the cart and gathers silverware). The
waiter is also responsible for nonalcoholic drinks. Once the food, wine, and cart
are ready, the waiter delivers it to the guest’s room. After returning to the room-
service station, the waiter debits the guest’s account. The waiter may wait to do
the billing if he has another order to prepare or deliver.

1st Feedback Include an activity “prepare food”.
2nd Feedback The guest may or may not tip the waiter after receiving the order.

Table 3: Number of error-handling iterations needed for the initial model gen-
eration and feedback integration for each process. We use * to indicate that
adjustable errors were resolved automatically, not through interaction with the
LLM. We use - to mark the cases where the model generation was unsuccessful
after five error-handling iterations.

Process Step GPT-4 Gemini
run 1 run 2 run 3 run 1 run 2 run 3

Online Shop
Initial Model 2 1 2 2* 2* 2*
1st Feedback 0 0 0 0 - -
2nd Feedback 0 0 0 - - -

Hotel
Initial Model 2 2* 1 5* - 3*
1st Feedback 0 2* 0 2* - 2*
2nd Feedback 0 2* 0 - - 2*

data set [2]. The process descriptions and feedback comments we used are re-
ported in Table 1 for the online shop process and in Table 2 for the hotel service
process. Note that we incorporated the feedback comments into the process de-
scription when applying the TA approach.

In Table 3, we report the number of error-handling iterations needed for
the initial model generation and feedback integration for each process. We show
the final models generated in the first run by both our framework and the TA
framework: Figure 2 for the online shop process and Figure 3 for the hotel

Process Modeling With Large Language Models 11

Login to account +

Set payment method

X

+

Select items X

X

+

Pay

Complete installment agreement

X

X

+

Choose free reward

X X

Delivery X

Return items for exchange

(a) BPMN generated by GPT-4 using our system.

+

Login

X

X

Pay

Complete installment agreement

X

Add item

X

+ Deliver items

Set payment method Select reward

X

Return items X

Deliver items

(b) BPMN generated by Gemini using our system.

Login + Set Payment Method

Select Items

X

X

Pay

Complete Installment Agreement

+ X

Choose Free Reward

+ Deliver Items

X

Return Items

(c) BPMN corresponding to the textual abstraction generated by GPT-4 using TA.

Fig. 2: BPMN models generated for the order handling process in the first run.
Although the models generated using our system show some deviations from the
original process description, the model generated by GPT-4 correctly captures
complex non-hierarchical dependencies. Unlike the models generated using our
system, TA led to an unsound model that is dead after the choice between paying
and completing an installment agreement.

Take down order +

Submit order to kitchen

Assign order to waiter

X

Prepare food

+

Prepare alcoholic beverages

Order wine from cellar

+

X

Ready cart

Prepare nonalcoholic drinks

Deliver order to room X

Tip waiter

X +

Wait to do billing

Debit guest's account

+

(a) BPMN generated by GPT-4 using our system.

X

+

Take room service order

X

+

Take room service order

Assign order to waiter

Guest ordered beverages
X

Submit order ticket to kitchen

Guest ordered beverages

Prepare food

+

Order wine/beverages from sommelier

Prepare room service cart

X

+

X Debit guest's account

Prepare food

Get non-alcoholic drinks +

X

Deliver order to guest room Debit guest's account

(b) BPMN generated by Gemini using our system.

Guest Calls Room Service Room-Service Manager Takes Order +

Submits Order Ticket to Kitchen

Gives Order to Sommelier

Assigns Order to Waiter

Prepare Food

+

Readies Cart

Waiter Delivers Order X

Proceeds Without Tip

Guest Tips Waiter

X X

Readies Cart

Debits Guest's Account

(c) BPMN corresponding to the textual abstraction generated by GPT-4 using TA.

Fig. 3: BPMN models generated for the hotel process in the first run. The model
generated by GPT-4 using our system provides a high degree of conformance with
the process description, significantly surpassing the model generated by Gemini.
The model generated using TA is unsound as the end event is not reachable after
the second instance of “Readies Cart”.

process. All generated models, along with an example detailing the complete
sequence of prompts and responses exchanged between our system and GPT-
4 until generating the final model, are available under https://github.com/
humam-kourani/LLM-Process-Modeling.

https://github.com/humam-kourani/LLM-Process-Modeling
https://github.com/humam-kourani/LLM-Process-Modeling

12 H. Kourani et al.

Addressing Q1

GPT-4 demonstrated strong performance in generating process models for both
processes. GPT-4 managed to deliver the initial models by the second error-
handling iteration at the latest in all cases. Notably, the errors encountered
during the generation of the model, which were classified as adjustable errors,
were successfully resolved by GPT-4 in five cases. Feedback integration was
notably efficient, with all feedback being accurately incorporated without any
additional iterations for error handling in all three runs.

The model shown in Figure 3a provides a high degree of conformance with
the process description of the hotel process and the two employed feedback
comments, however, some parts of the model can still be improved for better
conformance. In the second run for the online shop process, GPT-4 was able to
discover an optimal model that fully conforms with the reference model from
[16], showcasing its robust understanding and modeling capabilities. This pro-
cess contains complex non-hierarchical dependencies between selecting the items,
setting a payment method, the reward selection, and the payment choice. While
conventional hierarchical process modeling languages, such as process trees, are
unable to capture such complex dependencies, POWL empowers our framework
with the capability to model these complex structures. The other models dis-
covered by GPT-4 show some deviations from the original process. As LLMs
continue to evolve, with ongoing advancements and enhancements, we expect
future models to offer more consistency in the outcomes.

In contrast to GPT-4, Gemini’s performance was significantly weaker. The
quality of the models generated by Gemini is markedly inferior to those produced
by GPT-4. Gemini struggled to properly resolve adjustable errors, and, although
the initial model generation was successful in five of the six cases, this was due to
the internal automatic error correction, not a resolution through the interaction
with Gemini. Furthermore, Gemini failed to integrate the feedback comments
in most cases, leading to the generation of critical errors. These errors included
attempting to use non-existent functions, attempting to use external libraries,
stopping the return of Python code, and ignoring instructions from the initial
prompt. These issues highlight Gemini’s limitations in understanding the task
requirements and error resolution within our framework.

Addressing Q2

Although some behaviors of the models produced by our framework deviate from
the initial process descriptions, all produced models are sound and executable.
The TA framework, in contrast, produces unsound models. For example, the
model in Figure 2c shows a choice between paying or completing an installment
agreement through an exclusive choice gateway. The process is dead afterward;
it requires both activities to be executed to proceed through the following par-
allel gateway. The model in Figure 3c is also unsound as the end event is not
reachable after the second instance of “Readies Cart”. This shows the advantages
of employing POWL as an intermediate process representation in ensuring the
soundness of all models produced by our framework.

Process Modeling With Large Language Models 13

Evaluation Summary

The comparative analysis between GPT-4 and Gemini demonstrates the supe-
rior capabilities of GPT-4 within our LLM-based process modeling framework.
GPT-4 not only excelled in generating high-quality process models with remark-
able efficiency but also showcased its adeptness at effectively resolving errors
and seamlessly integrating user feedback. Our framework’s comparison with the
TA approach highlights its superiority, particularly in producing sound and exe-
cutable models. This shows the robustness of our methodology and the strategic
use of POWL as an intermediate process representation.

5 Limitations and Future Directions

Our approach, while pioneering in leveraging LLMs for process modeling, has
limitations. In this section, we outline areas for improvement and propose ideas
for addressing them in future work.

Expanding Process Perspectives. Our framework addresses the control-flow per-
spective of process modeling, omitting the data, resource, and operational per-
spectives, which are crucial for a comprehensive understanding of business pro-
cesses. The inherent flexibility and understanding capabilities of LLMs present
a significant potential for extending our framework to incorporate additional
process perspectives.

Extended Evaluation and User Studies. While our evaluation demonstrates promis-
ing results with the datasets and process descriptions employed, we acknowledge
the need for a broader investigation to better assess the generalizability of the
framework. In our future work, we aim to extend the evaluation to encompass
a more diverse set of processes and domains. Moreover, we aim to conduct a
user study to evaluate the framework’s usability, efficiency, and learning curve
for both expert and non-expert users.

Direct BPMN Generation. The implemented system instantiating our framework
utilizes POWL for intermediate process representation. A possible direction for
future research is the exploration of the direct generation of BPMN models
without an intermediate process representation. This approach promises to offer
greater flexibility in representing intricate process structures and dynamics and
allows for the enrichment of process models with context-rich annotations. How-
ever, moving away from the structured guarantees provided by POWL necessi-
tates the development of more advanced process model generation and validation
techniques.

Enhanced Interactivity. We intend to enhance the model refinement loop to
support more nuanced and interactive feedback mechanisms. For example, we
aim to empower users to not only provide textual feedback on generated process
models but also to manually edit the generated models.

14 H. Kourani et al.

6 Conclusion

This paper introduces a novel framework that integrates LLMs with process
modeling. Our framework leverages the natural language understanding and text
generation capabilities of LLMs to generate and refine process models starting
from textual descriptions. Our framework employs innovative prompting strate-
gies for LLM utilization, a robust model generation protocol considering safety
and quality aspects, and a user feedback mechanism for model refinement. While
our framework enhances the accessibility and efficiency of process modeling, we
recognize that manual effort remains crucial for validating generated models
and providing effective feedback. Through preliminary results, we demonstrated
the practicality and effectiveness of our framework, paving the way for future
research and development.

References

1. Patrizio Bellan, Mauro Dragoni, and Chiara Ghidini. A qualitative analysis of the
state of the art in process extraction from text. In Giuseppe Vizzari, Matteo Pal-
monari, and Andrea Orlandini, editors, Proceedings of the AIxIA 2020 Discussion
Papers Workshop co-located with the the 19th International Conference of the Ital-
ian Association for Artificial Intelligence (AIxIA2020), Anywhere, November 27th,
2020, volume 2776 of CEUR Workshop Proceedings, pages 19–30. CEUR-WS.org,
2020.

2. Patrizio Bellan, Han van der Aa, Mauro Dragoni, Chiara Ghidini, and Si-
mone Paolo Ponzetto. PET: an annotated dataset for process extraction from nat-
ural language text tasks. In Cristina Cabanillas, Niels Frederik Garmann-Johnsen,
and Agnes Koschmider, editors, Business Process Management Workshops - BPM
2022 International Workshops, Münster, Germany, September 11-16, 2022, Re-
vised Selected Papers, volume 460 of Lecture Notes in Business Information Pro-
cessing, pages 315–321. Springer, 2022.

3. Alessandro Berti, Daniel Schuster, and Wil M. P. van der Aalst. Abstractions,
scenarios, and prompt definitions for process mining with LLMs: A case study. In
Jochen De Weerdt and Luise Pufahl, editors, Business Process Management Work-
shops - BPM 2023 International Workshops, Utrecht, The Netherlands, September
11-15, 2023, Revised Selected Papers, volume 492 of Lecture Notes in Business
Information Processing, pages 427–439. Springer, 2023.

4. Kiran Busch, Alexander Rochlitzer, Diana Sola, and Henrik Leopold. Just tell me:
Prompt engineering in business process management. In Han van der Aa, Dominik
Bork, Henderik A. Proper, and Rainer Schmidt, editors, Enterprise, Business-
Process and Information Systems Modeling - 24th International Conference, BP-
MDS 2023, and 28th International Conference, EMMSAD 2023, Zaragoza, Spain,
June 12-13, 2023, Proceedings, volume 479 of Lecture Notes in Business Informa-
tion Processing, pages 3–11. Springer, 2023.

5. Song Chen and Hai Liao. Bert-log: Anomaly detection for system logs based on
pre-trained language model. Appl. Artif. Intell., 36(1), 2022.

6. João Carlos de A. R. Gonçalves, Flávia Maria Santoro, and Fernanda Araújo Baião.
Let me tell you a story - on how to build process models. J. Univers. Comput.
Sci., 17(2):276–295, 2011.

Process Modeling With Large Language Models 15

7. Jacob Devlin, Ming-Wei Chang, Kenton Lee, and Kristina Toutanova. BERT:
pre-training of deep bidirectional transformers for language understanding. In Jill
Burstein, Christy Doran, and Thamar Solorio, editors, Proceedings of the 2019
Conference of the North American Chapter of the Association for Computational
Linguistics: Human Language Technologies, NAACL-HLT 2019, Minneapolis, MN,
USA, June 2-7, 2019, Volume 1 (Long and Short Papers), pages 4171–4186. Asso-
ciation for Computational Linguistics, 2019.

8. Rohan Anil et al. Gemini: A family of highly capable multimodal models. CoRR,
abs/2312.11805, 2023.

9. Tom B. Brown et al. Language models are few-shot learners. In Hugo Larochelle,
Marc’Aurelio Ranzato, Raia Hadsell, Maria-Florina Balcan, and Hsuan-Tien Lin,
editors, Advances in Neural Information Processing Systems 33: Annual Confer-
ence on Neural Information Processing Systems 2020, NeurIPS 2020, December
6-12, 2020, virtual, 2020.

10. Hans-Georg Fill, Peter Fettke, and Julius Köpke. Conceptual modeling and large
language models: Impressions from first experiments with ChatGPT. Enterp.
Model. Inf. Syst. Archit. Int. J. Concept. Model., 18:3, 2023.

11. Fabian Friedrich, Jan Mendling, and Frank Puhlmann. Process model generation
from natural language text. In Haralambos Mouratidis and Colette Rolland, edi-
tors, Advanced Information Systems Engineering - 23rd International Conference,
CAiSE 2011, London, UK, June 20-24, 2011. Proceedings, volume 6741 of Lecture
Notes in Computer Science, pages 482–496. Springer, 2011.

12. Michael Grohs, Luka Abb, Nourhan Elsayed, and Jana-Rebecca Rehse. Large
language models can accomplish business process management tasks. In Jochen De
Weerdt and Luise Pufahl, editors, Business Process Management Workshops - BPM
2023 International Workshops, Utrecht, The Netherlands, September 11-15, 2023,
Revised Selected Papers, volume 492 of Lecture Notes in Business Information
Processing, pages 453–465. Springer, 2023.

13. Ana Ivanchikj, Souhaila Serbout, and Cesare Pautasso. From text to visual BPMN
process models: design and evaluation. In Eugene Syriani, Houari A. Sahraoui,
Juan de Lara, and Silvia Abrahão, editors, MoDELS ’20: ACM/IEEE 23rd Inter-
national Conference on Model Driven Engineering Languages and Systems, Virtual
Event, Canada, 18-23 October, 2020, pages 229–239. ACM, 2020.

14. Nataliia Klievtsova, Janik-Vasily Benzin, Timotheus Kampik, Juergen Mangler,
and Stefanie Rinderle-Ma. Conversational process modelling: State of the art,
applications, and implications in practice. In Chiara Di Francescomarino, Andrea
Burattin, Christian Janiesch, and Shazia W. Sadiq, editors, Business Process Man-
agement Forum - BPM 2023 Forum, Utrecht, The Netherlands, September 11-15,
2023, Proceedings, volume 490 of Lecture Notes in Business Information Process-
ing, pages 319–336. Springer, 2023.

15. Humam Kourani, Daniel Schuster, and Wil M. P. van der Aalst. Scalable discovery
of partially ordered workflow models with formal guarantees. In 5th International
Conference on Process Mining, ICPM 2023, Rome, Italy, October 23-27, 2023,
pages 89–96. IEEE, 2023.

16. Humam Kourani and Sebastiaan J. van Zelst. POWL: partially ordered workflow
language. In Chiara Di Francescomarino, Andrea Burattin, Christian Janiesch, and
Shazia Sadiq, editors, Business Process Management - 21st International Confer-
ence, BPM 2023, Utrecht, The Netherlands, September 11-15, 2023, Proceedings,
volume 14159 of Lecture Notes in Computer Science, pages 92–108. Springer, 2023.

16 H. Kourani et al.

17. Sander J. J. Leemans. Robust Process Mining with Guarantees - Process Discovery,
Conformance Checking and Enhancement, volume 440 of Lecture Notes in Business
Information Processing. Springer, 2022.

18. Junyi Li, Tianyi Tang, Wayne Xin Zhao, and Ji-Rong Wen. Pretrained language
model for text generation: A survey. In Zhi-Hua Zhou, editor, Proceedings of the
Thirtieth International Joint Conference on Artificial Intelligence, IJCAI-21, pages
4492–4499. International Joint Conferences on Artificial Intelligence Organization,
8 2021. Survey Track.

19. Ariana Martino, Michael Iannelli, and Coleen Truong. Knowledge injection to
counter large language model (LLM) hallucination. In Catia Pesquita, Hala Skaf-
Molli, Vasilis Efthymiou, Sabrina Kirrane, Axel Ngonga, Diego Collarana, Renato
Cerqueira, Mehwish Alam, Cássia Trojahn, and Sven Hertling, editors, The Se-
mantic Web: ESWC 2023 Satellite Events - Hersonissos, Crete, Greece, May 28 -
June 1, 2023, Proceedings, volume 13998 of Lecture Notes in Computer Science,
pages 182–185. Springer, 2023.

20. Daiki Miyake, Akihiro Iohara, Yu Saito, and Toshiyuki Tanaka. Negative-prompt
inversion: Fast image inversion for editing with text-guided diffusion models.
CoRR, abs/2305.16807, 2023.

21. Fabian Muff and Hans-Georg Fill. Limitations of chatgpt in conceptual modeling:
Insights from experiments in metamodeling, 2024.

22. OpenAI. GPT-4 technical report. CoRR, abs/2303.08774, 2023.
23. Sholiq Sholiq, Riyanarto Sarno, and Endang Siti Astuti. Generating BPMN dia-

gram from textual requirements. J. King Saud Univ. Comput. Inf. Sci., 34(10 Part
B):10079–10093, 2022.

24. Wil M. P. van der Aalst. Process Mining - Discovery, Conformance and Enhance-
ment of Business Processes. Springer, 2011.

25. Kees M. van Hee, Natalia Sidorova, and Jan Martijn E. M. van der Werf. Business
process modeling using Petri nets. Trans. Petri Nets Other Model. Concurr., 7:116–
161, 2013.

26. Andy Vidan and Lars H. Fiedler. A composable just-in-time programming frame-
work with LLMs and FBP. In IEEE High Performance Extreme Computing Con-
ference, HPEC 2023, Boston, MA, USA, September 25-29, 2023, pages 1–8. IEEE,
2023.

27. Maxim Vidgof, Stefan Bachhofner, and Jan Mendling. Large language models
for business process management: Opportunities and challenges. In Chiara Di
Francescomarino, Andrea Burattin, Christian Janiesch, and Shazia W. Sadiq, ed-
itors, Business Process Management Forum - BPM 2023 Forum, Utrecht, The
Netherlands, September 11-15, 2023, Proceedings, volume 490 of Lecture Notes in
Business Information Processing, pages 107–123. Springer, 2023.

28. Mark von Rosing, Stephen White, Fred Cummins, and Henk de Man. Business
process model and notation - BPMN. In Mark von Rosing, Henrik von Scheel, and
August-Wilhelm Scheer, editors, The Complete Business Process Handbook: Body
of Knowledge from Process Modeling to BPM, Volume I, pages 429–453. Morgan
Kaufmann/Elsevier, 2015.

29. Benfeng Xu, An Yang, Junyang Lin, Quan Wang, Chang Zhou, Yongdong Zhang,
and Zhendong Mao. Expertprompting: Instructing large language models to be
distinguished experts. CoRR, abs/2305.14688, 2023.

30. Yongchao Zhou, Andrei Ioan Muresanu, Ziwen Han, Keiran Paster, Silviu Pitis,
Harris Chan, and Jimmy Ba. Large language models are human-level prompt
engineers. In The Eleventh International Conference on Learning Representations,
ICLR 2023, Kigali, Rwanda, May 1-5, 2023. OpenReview.net, 2023.

	Process Modeling With Large Language Models

