
Fast & Sound: Accelerating
Synthesis-Rules-Based Process Discovery

Tsung-Hao Huang1[0000−0002−3011−9999], Enzo Schneider2,
Marco Pegoraro1[0000−0002−8997−7517], and

Wil M. P. van der Aalst1[0000−0002−0955−6940]

1 Process and Data Science (PADS), RWTH Aachen University, Aachen, Germany
{tsunghao.huang,pegoraro,wvdaalst}@pads.rwth-aachen.de

http://www.pads.rwth-aachen.de/
2 RWTH Aachen University, Aachen, Germany

enzo.schneider@rwth-aachen.de

Abstract. Process discovery aims to construct process models describ-
ing the observed behaviors of information systems. It is an essential step
in process mining projects as most process mining techniques assume a
process model as input. While various process discovery algorithms ex-
ist, few provide desirable properties: soundness and free-choiceness. By
exploiting the free-choice net theory, the recently developed Synthesis
Miner not only guarantees the two desirable properties but also enables
a more flexible representation (non-block structures) of the discovered
process models. The flexibility allows the Synthesis Miner to discover
process models with potentially higher quality. Nevertheless, applying
the Synthesis Miner remains a challenge due to its lack of scalability.
In this paper, we identify the bottleneck and address it by introducing
various extensions that utilize the log heuristics and extract the minimal
sub-net of the process model. The evaluation using real-life event logs
shows that the proposed extensions improve the scalability of the Syn-
thesis Miner by reducing the computation time by 82.85% on average.

Keywords: Process Modeling · Process Mining · Process Discovery ·
Free-choice Workflow Net · Synthesis Rules

1 Introduction

Process mining is an emerging scientific discipline that bridges the gap between
process science and data science. It provides organizations with data-driven tech-
niques to improve operational processes. With the use of process models and
event data, process mining techniques help to identify and eliminate inefficien-
cies in processes.

Process discovery plays an essential role when executing process mining
projects because the output of process discovery, a process model, is a prereq-
uisite for many other process mining techniques such as checking conformance,
detecting concept drift, predicting performance, etc. The goal of process discov-
ery is to automatically construct a process model from event logs describing the

http://www.pads.rwth-aachen.de/

2 T. Huang et al.

observed behaviors in the corresponding information systems. In general, the
quality of a process model can be evaluated by four main criteria — namely
fitness, precision, generalization, and simplicity [4]. Additionally, process mod-
els with formal guarantees such as soundness and free-choiceness are prefer-
able [4,10]. On the one hand, soundness ensures that the process model does not
contain apparent anomalies [4] such as the existence of a dead transition, i.e., a
transition that can never be fired. On the other hand, free-choice process models
have several benefits. First, a free-choice net has a separate construct for choice
and synchronization by definition. Such a construct is also naturally embedded
in the widely used process model notation BPMN. Consequently, the property
enables easy conversion from free-choice nets to BPMN process models. More-
over, free-choice nets have an abundance of analysis techniques at hand from
theory [10].

Despite various algorithms being proposed, few provide the aforementioned
two properties. The Inductive Miner (IM) family [15] is one of the few algorithms
that ensure such properties. This is achieved by exploiting the representation of
process trees, whose converted Petri nets are sound and free-choice by construc-
tion. Nevertheless, such a representation is a double-edged sword, as process
trees can only represent process models with block structures. Using process
trees to represent a process with non-block structures often compromises model
quality.

The recently proposed discovery algorithm, the Synthesis Miner [13,14], can
discover models with non-block structures while providing the same guarantees
by applying the synthesis rules from the free-choice net theory [10]. Adopting an
iterative setting, the approach tries to find the best modification (w.r.t. F1-score)
to an existing workflow net by generating and evaluating various candidate nets.
The generation and evaluation steps require the application of synthesis rules [10]
and alignment-based conformance checking [3] respectively. Both operations in-
clude expensive computations [13,3]. As a result, adopting the Synthesis Miner
remains a challenge due to its scalability problem.

In this paper, we propose various extensions to address the identified bot-
tleneck. The extensions utilize the observation that the modification in each
iteration often only affects a subpart of the entire model. The subpart can be
extracted and isolated to accelerate the modification. First, log heuristics are ex-
ploited to prune the search space even further than the original approach [13,14].
Moreover, the generation and evaluation steps are decomposed into smaller prob-
lems by extracting the minimal subnet containing the affected nodes. The ex-
tracted subnet can be directly transformed into a sound free-choice WF-net so
that the predefined patterns based on synthesis rules can be applied as usual.
The experiment using real-life event logs shows that the extensions improve the
scalability of the Synthesis Miner by reducing the computation time by 82.85%
on average for both generation and evaluation steps.

The remainder of the paper is structured as follows. We review the related
work in Sec. 2 and introduce necessary concepts in Sec. 3. Sec. 4 introduces the
approach. Sec. 5 presents the experiment and Sec. 6 concludes the paper.

Fast & Sound: Accelerating Synthesis-Rules-Based Process Discovery 3

2 Related Work

We refer to [7] for a comprehensive overview of process discovery in general.
In this paper, we focus on process discovery algorithms that provide formal
guarantees, specifically, soundness and free-choiceness. While various discovery
algorithms have been proposed throughout the years, only a handful meet the
criteria. The Inductive Miner (IM) family [15] exploits the representation of pro-
cess trees to provide such guarantees. By definition, every process tree represents
a sound and free-choice WF-net. Nevertheless, process trees can only represent
processes with block structures, i.e., process models that can be separated into
parts with a single entry and exit [15]. As a matter of course, discovery algo-
rithms [16,9] using process trees as internal representation also suffer from the
same problem. Various algorithms [8,6] can discover process models with non-
block structures but cannot guarantee both free-choice and sound properties.

Another group of algorithms [11,13] utilizes the synthesis rules from free-
choice net theory [10] to guarantee both properties while having a more flexible
representation. The work in [11] adopts an interactive setting where user inputs
are required. However, the discovery process involves various steps of back-and-
forth application of synthesis/reduction rules without clear indications. In other
words, the users need to have extensive knowledge about the control flow of
the process to navigate the discovery. Additionally, although a variation of the
work in [11] can recommend the most prominent modifications, it still needs to
evaluate all possibilities. The exhaustive search of all the possible modifications
is computationally expensive and not feasible in practice.

To address the problems, the Synthesis Miner [13,14] automates the dis-
covery procedure used in [11] by introducing an additional synthesis rule and
predefined patterns. The additional rule reduces the need for the back-and-forth
steps in [11]. Moreover, using log heuristics, a search space pruning strategy is
proposed to locate the most likely position to add the respective transition. The
pruning strategy is effective in reducing the computation time [13] as opposed
to to evaluating all possibilities. Nevertheless, the Synthesis Miner is still not
scalable for process discovery in practice [13,14]. The problem stems from the
generation and evaluation steps of the candidates. First, unlikely/undesirable
modifications are still included in the set of generated candidates. Including
such candidates implies spending unnecessary computation time for evaluation.
In addition, there is room for improvement when evaluating the candidates as
the modification typically only concerns a subpart of the whole process.

3 Preliminaries

For some set A, B(A) denotes the set of all multisets over A. For some multiset
b ∈ B(A), b(a) denotes the number of times a ∈ A appears in b. For example,
given a set A = {x, y, z}, b = ⟨x5, y6, z7⟩ is a multiset over A. b(y) = 6 as y
appears 6 times in b. σ ∈ A∗ denotes that σ is a sequence over some set A. For
a sequence σ = ⟨a1, a2, a3, ..., an⟩, |σ| = n is the length of σ. For 1 ≤ i ≤ |σ|,

4 T. Huang et al.

σ(i) = ai ∈ A denotes the i-th element of σ. Given two sequences σ and σ′, σ ·σ′

denotes the concatenation.
Next, we introduce the projection function. Let A be a set and X ⊆ A

be a subset of A. For σ ∈ A∗ and a ∈ A, we define the projection function
↾X∈ A∗→X∗ recursively with ⟨⟩↾X = ⟨⟩, (⟨a⟩ · σ)↾X = ⟨a⟩ · σ↾X if a ∈ X and
(⟨a⟩ · σ)↾X = σ↾X otherwise.

Definition 1 (Activities, Traces, and Logs). Let A be the universe of ac-
tivities. A trace σ ∈ A∗ is a sequence of activities. A log L ∈ B(A∗) is a multiset
of traces.

Definition 2 (Petri Net and Labeled Petri Net). A Petri net is a tuple
N = (P, T, F), where P is the set of places, T is the set of transitions, P ∩T = ∅,
F ⊆ (P × T) ∪ (T × P) is the set of arcs. A labeled Petri net N = (P, T, F, l) is
a Petri net with a labeling function l ∈ T ↛ A mapping transitions to activities.
For any x ∈ P ∪T ,

N•x = {y | (y, x) ∈ F} denotes the set of input nodes (preset)

of x and x
N• = {y | (x, y) ∈ F} denotes the set of output nodes (postset) of x.

The superscript N is dropped if it is clear from the context.

Note that l can be partial, which means if a transition t ∈ T is not in the
domain of l, it has no label. In such a case, we write l(t) = τ to denote that the
transition is silent or invisible.

Definition 3 (Free-choice Net). Let N = (P, T, F) be a Petri net. N is a
free-choice net if for any t, t′ ∈ T : •t = •t′ or •t ∩ •t′ = ∅.

Free-choice nets have separate constructs for choices and synchronizations as
any two transitions either have the same preset or don’t share any places in their
presets.

Definition 4 (Path). A path of a Petri net N = (P, T, F) is a non-empty
sequence of nodes ρ = ⟨x1, x2, ..., xn⟩ such that (xi, xi+1) ∈ F for 1 ≤ i < n.

Definition 5 (Workflow Net (WF-net)). Let N = (P, T, F) be a Petri net.
N is a workflow net if it has a dedicated source place i ∈ P : •i = ∅ and a
dedicated sink place o ∈ P : o• = ∅. Moreover, every node x ∈ P ∪ T is on some
path between i and o.

The soundness3 property is defined for WF-nets [1]. A sound WF-net guaran-
tees that (1) a process can always be finished and (2) a process can be properly
completed: once a process reaches the final state, it is not possible to fire any
transition (3) no inexecutable transitions exist.

Definition 6 (Incidence Matrix [10]). Let N = (P, T, F) be a Petri net. The
incidence matrix N : (P × T) → {−1, 0, 1} of N is defined as

N(p, t) =


0 if ((p, t) /∈ F ∧ (t, p) /∈ F) ∨ ((p, t) ∈ F ∧ (t, p) ∈ F)

−1 if (p, t) ∈ F ∧ (t, p) /∈ F

1 if (p, t) /∈ F ∧ (t, p) ∈ F

Fast & Sound: Accelerating Synthesis-Rules-Based Process Discovery 5

𝑝0 𝑡𝑒𝑡𝑠 𝑖 𝑝0 𝑜𝑡𝑒𝑡𝑠

a

𝑝1 𝑡0

𝑖 𝑝0 𝑜𝑡𝑒𝑡𝑠

a

𝑝1 𝑡0

𝑡1

𝑖 𝑝0 𝑜𝑡𝑒𝑡𝑠

a

𝑝1 𝑡0

𝑡1

abstraction rule 𝜓𝐴

linear dependent transition rule 𝜓𝑇

linear dependent transition rule 𝜓𝑃

dual abstraction rule 𝜓𝐷

𝑝0 𝑡𝑒𝑡𝑠

a

𝑝1 𝑡0𝑖 𝑜

𝑖 𝑝0 𝑜𝑡𝑒𝑡𝑠

a

𝑝1

𝑡0

𝑡1

𝑝2

𝑡0

𝑖 𝑝0 𝑜𝑡𝑒𝑡𝑠

a
𝑝1

𝑡0

𝑡1

𝑝2

𝑡0 𝑖 𝑝0 𝑜𝑡𝑒𝑡𝑠

a

𝑝1

𝑡0

𝑡1

𝑡0

b

𝑝2

𝑝3𝑡2

𝑡𝑠 𝑡𝑒 𝑡0 𝑡1
𝑖 -1 0 0 0

𝑝0 0 -1 1 1

𝑝1 1 0 -1 -1

𝑜 0 1 0 0

𝑡𝑠 𝑡𝑒 𝑡0 𝑡1
𝑖 -1 0 0 0

𝑝0 0 -1 1 1

𝑝1 1 0 -1 -1

𝑜 0 1 0 0

𝑝2 1 -1 0 0

𝑅

𝑆

𝑆

𝑅

initial net

Fig. 1: Examples of the synthesis rules applications, where the highlighted parts (in
green) indicate the newly added components.

Next, we briefly illustrate the synthesis rules introduced in [13,10]. Given
a workflow net N , the abstraction rule (ψA) allows adding a place p and a
transition t between a set of transitions R ⊆ T and a set of places S ⊆ P if they
are fully connected, i.e., (R×S ⊆ F)∧ (R×S ̸= ∅). The linear transition/place
rule (ψT /ψP) allows adding a transition/place (t/p) if it is linearly dependent on
the other transitions/places in the corresponding incidence matrix. Lastly, the
dual abstraction rule (ψD) allows adding a transition t and a place p between
a set of places S and a set of transitions R if (S × R ⊆ F) ∧ (S × R ̸= ∅). All
four rules4 preserve sound and free-choice properties [10,13]. Fig. 1 (extracted
from [12]) shows examples of rules applications. From top to bottom, ψA adds
p1 and t0 with R = {ts} fully connected to S = {p1}. ψT adds t1 as it is linearly
dependent on t0. ψP adds p2 as it is a linear combination of p0 and p1. ψD adds
t2 and p3 with S = {p0, p2} fully connected to R = {te}.

4 Approach

In this section, we introduce the extensions that accelerate the computation. As
the proposed extensions build on top of the Synthesis Miner [13,14], we briefly
discuss the essential steps of the Synthesis Miner and point out limitations that
are addressed by the proposed extensions in this paper.

3 The precise definition of soundness is out of scope, we refer to [1]
4 The formal definition of the rules is out of scope, we refer to [13,10].

6 T. Huang et al.

a es

a es

b

a es

b

a es

b

a es

b

a es

b

a es

b

b a es

a b es

𝜓𝐴

b
a es

a
b

es

b
a es

a
b

es

𝜓𝐴 + 𝜓𝑇

a es

b

a es

b

𝜓𝑇

a es

b

a es

b

a es

b

𝜓𝑃 + 𝜓𝐴

𝐿 = [𝑠, 𝑎, 𝑏, 𝑒 6, 𝑠, 𝑎, 𝑒 6]

𝜓𝑃 + 𝜓𝐴 + 𝜓𝑇

a
b

es

generate
candidates

evaluate
candidates

Fig. 2: An example showing the generation and evaluation steps of the Synthesis Miner.
First, the candidates are generated using predefined patterns [13] based on synthesis
rules, as indicated by the symbols on top of each block. Then, each candidate is evalu-
ated by alignment-based conformance checking to retrieve the F1-score. Note that the
figure does not show the complete set of candidates.

4.1 The Synthesis Miner and its limitations

Both variations [13,14] of the Synthesis Miner adopt an interactive approach to
modify an existing WF-net that is sound and free-choice. The variation in [13]
starts with the initial net (as indicated in Fig. 1) containing only the artificial
start and end transitions whereas [14] starts from a WF-net discovered by IM.

In every iteration, both variations try to modify the existing net to max-
imize the model quality (F1-score). The modifications consist of adding new
nodes and/or removing existing nodes. Both the removal and addition opera-
tions preserve soundness and free-choiceness [14]. Nevertheless, the bottleneck
appears when adding new nodes to the existing WF-net. In the background, the
addition requires generating and evaluating the candidates. Fig. 2 shows an ex-
ample of the generation and evaluation steps. In Fig. 2, a transition labeled as b
is to be added to the existing net. First, various candidates are generated based
on predefined patterns [13] using synthesis rules. Using information from the log,
the generation is constrained to connect the new nodes only to the most likely
position (existing nodes). The log in Fig. 2 indicates that activity b is preceded
by activity a and followed by activity e. To generate the most prominent candi-
dates, the Synthesis Miner connects the new nodes only to the existing nodes on
the path between transitions labeled a and e. Any nets with unlikely connections
are not considered. For illustration purposes, such nets are still shown in Fig. 2
but grayed out. Then, the candidates are evaluated and the best one is selected
for the next iteration based on the F1-score. In this case, the transition labeled

Fast & Sound: Accelerating Synthesis-Rules-Based Process Discovery 7

b (with the option to skip) is placed in between transitions labeled a and e. The
selected candidate perfectly fits the log (high fitness) and does not allow any
unseen behaviors (high precision).

The example in Fig. 2 shows that the pruning strategy used in the existing
work [13,14] can reduce the search space to a certain degree. However, the strat-
egy is still unfeasible in real-life scenarios when the event log and the existing net
become larger. To discuss the limitations using a concrete example, we consider
the following log

Ls = [⟨a, b, c, d, e, f, g, h⟩10, ⟨a, b, e, c, d, f, g, h⟩10, ⟨a, b, e, c, f, g, d, h⟩10,
⟨a, b, e, c, f, d, g, h⟩10, ⟨a, b, c, e, d, f, g, h⟩10, ⟨a, b, c, e, f, d, g, h⟩10,
⟨a, e, b, c, d, f, g, h⟩10, ⟨a, e, b, c, f, g, d, h⟩10, ⟨a, e, b, c, f, d, g, h⟩10,

⟨a, b, c, e, f, g, d, h⟩10].

Limitation 1 (Generation): The main problem in generation is that the
search space (number of candidates) grows exponentially with the number of
nodes that are considered to be connected to the new node. In [13,14], log heuris-
tics are used to narrow down the search space. To be more precise, we first define
a few log properties used to determine the preceding and following activities.

Definition 7 (Log Properties [13]). Let L ∈ B(A∗) and a, b ∈ A.

– #(a, L) = Σσ∈L|{1 ≤ i ≤ |σ| | σ(i) = a}| is the times a occurred in L.
– #(a, b, L) = Σσ∈L|{1 ≤ i < |σ| | σ(i) = a ∧ σ(i + 1) = b}| is the number of

direct successions from a to b in L.

– caus(a, b, L) =

{
#(a,b,L)−#(b,a,L)

#(a,b,L)+#(b,a,L)+1 if a ̸= b
#(a,b,L)

#(a,b,L)+1 if a = b
is the strength of causal rela-

tion (a, b).
– Ap

θ (a, L) = {ap ∈ A | caus(ap , a, L) ≥ θ} is the set of a’s preceding activities,
determined by threshold θ.

– Af
θ(a, L) = {af ∈ A | caus(a, af , L) ≥ θ} is the set of a’s following activities,

determined by threshold θ.

The following sections assume the use of default value θ = 0.9 [13] to determine
the preceding and following activities. Once the sets of preceding and following
activities are identified using Def. 7, the corresponding labeled transitions can
also be found5. Then, every node on the path from the set of preceding transitions
to the set of following transitions is considered to be connected to the new
node [13].

In Fig. 3, a transition labeled e should be added to the net. Since activity e
is preceded by a and followed by f in Ls (Def. 7), the set of nodes on the path is
{t1, p2, t2, p3, t3, p9, t6}. As an example, using the linear dependent transition rule
(ψT), we have to check the linear dependency of 33=27 vectors as there are three
5 For the ease of reading, hereafter, we directly refer to the corresponding labeled

transitions of the preceding and following activities as the preceding and following
transitions.

8 T. Huang et al.

𝑝14
a h

cb d

f
𝑝1

𝑝2 𝑝3 𝑝5 𝑝6

𝑝9

𝑝15

𝑡1

𝑡2 𝑡3 𝑡4

𝑡6

𝑡8

g
𝑝10𝑡9

𝑡1 𝑡2 𝑡3 𝑡4 𝑡6 𝑡8 𝑡9 𝑡𝑥
𝑝1 -1 0 0 0 0 0 0 0

𝑝2 1 -1 0 0 0 0 0 0 1 -1

𝑝3 0 1 -1 0 0 0 0 0 1 -1

𝑝5 0 0 1 -1 0 0 0 0

𝑝6 0 0 0 1 0 -1 0 0

𝑝9 0 0 1 0 -1 0 0 0 1 -1

𝑝10 0 0 0 0 0 -1 1 0

𝑝14 0 0 0 0 0 1 0 0

𝑝15 0 0 0 0 1 0 -1 0

𝑡1 𝑡2 𝑡3 𝑡4 𝑡6 𝑡8 𝑡9
𝑝1 -1 0 0 0 0 0 0

𝑝2 1 -1 0 0 0 0 0

𝑝3 0 1 -1 0 0 0 0

𝑝5 0 0 1 -1 0 0 0

𝑝6 0 0 0 1 0 -1 0

𝑝9 0 0 1 0 -1 0 0

𝑝10 0 0 0 0 0 -1 1

𝑝14 0 0 0 0 0 1 0

𝑝15 0 0 0 0 1 0 -1

𝑝𝑥 1 0 0 0 -1 0 0

1 1

-1 -1

𝑒 is preceded by 𝑎 and followed by 𝑓 in the log

Adding a transition by linear dependent t rule

Adding a place by linear dependent p rule

a h

cb d

f g
𝑝𝑥

𝑝14𝑝1

𝑝2 𝑝3 𝑝5 𝑝6

𝑝9

𝑝15

𝑡1

𝑡2 𝑡3 𝑡4

𝑡6

𝑡8

𝑝10𝑡9

𝑝14
a h

cb d

f ge
𝑡𝑥

𝑝1

𝑝2 𝑝3 𝑝5 𝑝6

𝑝9

𝑝15

𝑡1

𝑡2 𝑡3 𝑡4

𝑡6

𝑡8

𝑝10𝑡9

Fig. 3: Adding a transition or a place using the linear dependent rules. The columns
and rows outside of the incidence matrix indicate the three possible connections be-
tween the new and the existing nodes. Consider the set of nodes {t1, p2, t2, p3, t3, p9, t6}
on the path between activity a and f , linear dependency has to be checked on 33+32=36
vectors. Note that we only illustrate the basic linear dependent rules in this figure, the
best candidate (not shown) in this case combines the linear dependent place rule ψP

and the abstraction rule ψA.

connecting possibilities (corresponding to -1, 1, and 0 in the incidence matrix)
for every place in {p2, p3, p9}. In addition, there are 32=9 vectors to be evaluated
when using the linear dependent p rule (ψP) to add a place. Furthermore, the
predefined patterns are built based on these rules. The example shows that the
number of candidates to be evaluated grows exponentially as the number of
nodes that are considered for connection. A clear direction for improvement is
to further reduce the number of nodes considered for connection.

Limitation 2 (Evaluation) The alignment-based conformance checking is
known to be reliable yet computationally expensive [5]. As alignment-based con-
formance checking is applied to every single candidate for evaluation in [13,14], it
introduces a bottleneck in the evaluation phase. Based on observations in [13,14],
the change in every iteration often only affects a subpart of the model. Fig. 2
shows an example, where the transition labeled s is not involved in any mod-
ification, i.e., no candidates connect new nodes to the transition. The example
shows an opportunity to extract and isolate a subnet to speed up the alignment
computation.

4.2 Extensions

Extension 1: Log Heuristics As shown in Sec. 4.1, the most likely po-
sition (nodes) to place the new node can be identified using heuristics. Al-

Fast & Sound: Accelerating Synthesis-Rules-Based Process Discovery 9

though the search space reduction strategy in [13,14] already reduces the com-
putation time significantly, we propose to further reduce the search space by
only considering the sets of preceding/following transitions (Def. 7) and their
post/pre-sets (Def. 2). Once the sets of preceding/following transitions (Tp/Tf)
are identified, the set of nodes to be considered for connection would only be
Tp ∪Tf ∪Tp •∪ •Tf . Hereafter, we denoted the set of nodes pending for connec-
tion as Vs = Tp ∪ Tf ∪ Tp • ∪ • Tf . The assumption for the extension is that the
other nodes are either in an independent or concurrent relationship with the new
node. Thus, there is no need to consider the possibility of adding any connection
to the rest of the nodes.

a h

cb d

f ge
𝑡𝑥

a h

cb d

f g
𝑝𝑥

𝑡1 𝑡2 𝑡3 𝑡4 𝑡6 𝑡8 𝑡9 𝑡𝑥
𝑝1 -1 0 0 0 0 0 0 0

𝑝2 1 -1 0 0 0 0 0 0 1 -1

𝑝3 0 1 -1 0 0 0 0 0

𝑝5 0 0 1 -1 0 0 0 0

𝑝6 0 0 0 1 0 -1 0 0

𝑝9 0 0 1 0 -1 0 0 0 1 -1

𝑝10 0 0 0 0 0 -1 1 0

𝑝14 0 0 0 0 0 1 0 0

𝑝15 0 0 0 0 1 0 -1 0

𝑡1 𝑡2 𝑡3 𝑡4 𝑡6 𝑡8 𝑡9
𝑝1 -1 0 0 0 0 0 0

𝑝2 1 -1 0 0 0 0 0

𝑝3 0 1 -1 0 0 0 0

𝑝5 0 0 1 -1 0 0 0

𝑝6 0 0 0 1 0 -1 0

𝑝9 0 0 1 0 -1 0 0

𝑝10 0 0 0 0 0 -1 1

𝑝14 0 0 0 0 0 1 0

𝑝15 0 0 0 0 1 0 -1

𝑝𝑥 1 0 0 0 -1 0 0

𝑒 is preceded by 𝑎 and followed by 𝑓 in the log

Adding a transition by linear dependent t rule

Adding a place by linear dependent p rule

a h

cb d

f g

𝑝14𝑝1

𝑝2 𝑝3 𝑝5 𝑝6

𝑝9

𝑝15

𝑡1

𝑡2 𝑡3 𝑡4

𝑡6

𝑡8

𝑝10𝑡9

𝑝14𝑝1

𝑝2 𝑝3 𝑝5 𝑝6

𝑝9

𝑝15

𝑡1

𝑡2 𝑡3 𝑡4

𝑡6

𝑡8

𝑝10𝑡9

𝑝14𝑝1

𝑝2 𝑝3 𝑝5 𝑝6

𝑝9

𝑝15

𝑡1

𝑡2 𝑡3 𝑡4

𝑡6

𝑡8

𝑝10𝑡9

Fig. 4: Considering only the sets of preceding/following activities and their post/pre-
set, the number of vectors pending for linear dependency checkup is reduced from 36
to 32+1=10. In this case, the best candidate (not shown in the figure) applies the
abstraction rule ψA to the net at the bottom to add another place and a transition
labeled e in between R = {t1} and S = {px}.

Using the example in Fig. 4 to illustrate the idea, we know that activity e
is preceded/followed by activity a/f respectively in log Ls according to Def. 7.
The set of nodes considered for connection is then {t1, p2, p9, t6} as opposed to
{t1, p2, t2, p3, t3, p9, t6} from the original strategy shown in Fig. 3. As shown in
Fig. 4, the number of vectors pending for linear dependency check is reduced
from 36 to 10 for the running example. Moreover, the effect of such reduction in
turn reduces the number of candidates.

Extension 2: Minimal Subnet Extraction As discussed in Sec. 4.1, not
every part of the process model is involved in applying synthesis rules due to
the use of log heuristics. In other words, the modification often concerns only a
subpart of the model. Motivated by such observation, we propose extracting the
subnet containing the set of nodes (Vs) that are most likely to connect to the

10 T. Huang et al.

new nodes according to Extension 1. To be precise, we first define the concept
of a subnet in the context of this paper.

Definition 8 (Subnet). Let N = (P, T, F) be a WF-net that is sound and
free-choice. Ns = (Ps, Ts, Fs) is a subnet of N if

– Ps ⊆ P, Ts ⊆ T, Fs = F ∩ ((Ps × Ts) ∪ (Ts × Ps))
– there exist Pin ⊆ P\Ps, Pout ⊆ P\Ps, Tstart ⊆ Ts, Tend ⊆ Ts such that

- ∀p∈Pin
(p• = Tstart), the postset of every place in Pin equals to Tstart .

- ∀p∈Pout (•p = Tend), the preset of every place in Pout equals to Tend .
- ∀t∈Tstart

(•t = Pin), the preset of every transition in Tstart equals to Pin .
- ∀t∈Tend

(t• = Pout), the postset of every transition in Tend equals to Pout .

- ∀p∈Ps

(N•p ∪ pN• ⊆ Ts
)
, all places in Ps only connects to transition in Ts.

- ∀t∈Ts\Tstart

(N•t ⊆ Ps

)
, except for Tstart , the input places of every transi-

tion in Ts are in Ps.
- ∀t∈Ts\Tend

(
t
N• ⊆ Ps

)
, except for Tend , the output places of every transition

in Ts are in Ps.

The criteria of a subnet in Def. 9 are visualized in Fig. 5a, where Ns meets
all the requirements of a subnet as the only incoming connections are through
the start transitions Tstart and the only outgoing connections are through the
end transitions Tend . Any other nodes inside Ns have no external connections.
A subnet Ns = (Ps, Ts, Fs) can be transformed into a WF-net by adding a
source place i′ connecting to the set of start transitions Tstart and a sink place o′
connecting from the set of end transitions Tend . Fig. 5b shows the transformed
WF-net. Note that the transformed WF-net from subnet Ns is sound and free-
choice as the whole net N is also a sound free-choice WF-net. Therefore, we can
generate candidates based on the transformed WF-net using synthesis rules as
usual.

𝑁𝑠

𝑇𝑠𝑡𝑎𝑟𝑡 𝑇𝑒𝑛𝑑𝑃𝑖𝑛 𝑃𝑜𝑢𝑡

(a) A subnet

𝑁𝑠

𝑇𝑠𝑡𝑎𝑟𝑡 𝑇𝑒𝑛𝑑

𝑖′ o′

(b) A subnet after transformation

Fig. 5: An example showing the criteria of a subnet as defined in Def. 9 and the
transformed WF-net.

Since we are only interested in the smallest subnet containing nodes that
might be connected to the new nodes, we define the concept of a minimal subnet.

Fast & Sound: Accelerating Synthesis-Rules-Based Process Discovery 11

Definition 9 (Minimal Subnet). Let N = (P, T, F) be a sound and free-
choice WF-net and Ns = (Ps, Ts, Fs) be a subnet of N . Let V ⊆ P ∪ T . Ns is a
minimal subnet for V if

– V ⊆ Ps ∪ Ts and
– there exists no other subnet N

′

s = (P
′

s, T
′

s, F
′

s) such that
• V ⊆ P

′

s ∪ T
′

s

•
(
P

′

s ∪ T
′

s

)
⊂

(
Ps ∪ Ts

)
and F

′

s ⊂ Fs.

The minimal subnet can also be transformed into a sound free-choice WF-net
so that the standard synthesis rules in [13] can be used to generate candidates.
The benefits of extracting minimal sub-subnets are two-fold.

1. Smaller incidence matrix: applying linear dependent t/p rules requires linear
dependency checkup using Gaussian elimination, whose computation com-
plexity is polynomial to the size of the matrix. Therefore, performing Gaus-
sian elimination on a smaller incidence matrix indicates faster computation.
The WF-net transformed from the extracted minimal subnet has a smaller
incidence matrix. The implication is that any modifications following syn-
thesis rules on the minimal subnet ensure the desirable properties as well.

2. Faster conformance checking: since the modifications are only performed on
the extracted subnet, the model quality (w.r.t. F1-score) of the subnet can be
used as an indicator for the quality of the whole net. Performing conformance
checking on a smaller net and a smaller log also leads to faster computation.

To illustrate the idea, consider the running example as shown in Fig. 6,
where the transition labeled as g has to be added to the WF-net. As activity g is
preceded by activity f and followed by activity h in log Ls (Def. 7), we know that
the set of nodes to be considered for connection would be Vs = {t6, p10, t8}. With
the constraint of Vs, the minimal subnet can be extracted as shown in Fig. 6
(highlighted in green). The subnet is then transformed into a WF-net before
various candidates are generated and evaluated. Finally, the best candidate is
selected and connected back to the original net as shown in the last step in
Fig. 6. Moreover, the conformance checking can also be decomposed. Specifically,
all candidates derived from modifications on the minimal subnet are evaluated
using the projected log Ls↾{d,f,g,h} = [⟨d, f, g, h⟩40, ⟨f, g, d, h⟩30, ⟨f, d, g, h⟩30].
Then, the best candidate is selected and connected back to the original net.
As shown in Fig. 6, the best candidate places the new transition labeled g in
between transitions f and h. By removing the source and sink places i′ and o′, we
connect the selected net back to the other part of the original net. Specifically,
we add the arcs (Pin × Tstart) ∪ (Tend × Pout) back.

5 Experimental Evaluation

In this section, we present the experiments conducted to evaluate the efficiency of
the proposed extensions. We start by introducing the setup for the experiments
before discussing the experimental results.

12 T. Huang et al.

𝑖

a

cb

e

d

f
h

𝑝2 𝑝3 𝑝4 𝑝5 𝑝6

𝑝7 𝑝8 𝑝9 𝑝10

𝑜

𝑡1

𝑡2 𝑡3 𝑡4

𝑡5 𝑡6

𝑡8

𝑡9

d

f
h

𝑖’ d

f
h

𝑝5 𝑝6

𝑝9 𝑝10

𝑡4

𝑡6

𝑡8

𝑡9 𝑜’𝑖′

g
𝑝11 𝑡9

a

cb

e

d

f
h

g

o

extract
minimal subnet

generate & evaluate
candidates

𝑖

𝑝2 𝑝3 𝑝4 𝑝5

𝑝7 𝑝8 𝑝9𝑡1

𝑡2 𝑡3

𝑡5

𝑡9

𝑝5 𝑝6

𝑝9 𝑝10

𝑜′

𝑡4

𝑡6

𝑡8

𝑡9

𝑝6

𝑝10

𝑡4

𝑡6

𝑡8
𝑝11 𝑡9

Fig. 6: As activity g is preceded by activity f and followed by activity h in log Ls,
the minimal subnet can be extracted. The green dotted line highlights the extracted
subnet, where Pin = {p4, p8}, Pout = {o}, Tstart = {t9}, Tend = {t8}

5.1 Experimental Setup

The paper aims to improve the time performance of the synthesis-rules-based
process discovery approach introduced in [13,14]. Moreover, the model quality
should remain at a similar level. Therefore, comparing the computation time
and the model quality with/without the extensions is the experiment’s focus.
In particular, we would like to focus on the generation and evaluation steps. To
achieve this, we use publicly available real-life event logs, which are BPI20176

and helpdesk7. BPI2017 is split into two sub-logs, BPI2017A and BPI2017O,
using the event prefixes.

Since we assume the initial model to be sound and free-choice, we apply
Inductive Miner - infrequent (IMf) [15] for this purpose as it guarantees both
properties and is scalable at the same time. For each event log, we get two model-
log pairs by applying the IMf using two different filter values (0.2 and 0.4). In
total, we have 6 model-log pairs as the input for the experiment.

For each model-log pair, we apply the approach in [14] with four different ex-
perimental settings, depending on whether the two extensions are turned on/off.
For each process model, we remove each labeled transition and add it back. Then,
we record the time of generating and evaluating the candidate nets. Lastly, the
quality of the resulting models is evaluated and documented. The experiment
and the code with extensions can be found in an open repository8.

5.2 Results and Discussion

Tab. 1 shows the results of the computation time (in seconds) for the generation
and evaluation of the candidate nets. Note that the numbers are the average time
of adding back every labeled transition in the corresponding process model. As
discussed, there are four different settings depending on whether the extensions
are applied. The settings are labeled as e1 (extension 1 is applied), e2 (extension
6 https://doi.org/10.4121/uuid:3926db30-f712-4394-aebc-75976070e91f
7 https://doi.org/10.4121/uuid:0c60edf1-6f83-4e75-9367-4c63b3e9d5bb
8 https://github.com/denzoned/AccelarateSynthesisMiner

https://doi.org/10.4121/uuid:3926db30-f712-4394-aebc-75976070e91f
https://doi.org/10.4121/uuid:0c60edf1-6f83-4e75-9367-4c63b3e9d5bb
https://github.com/denzoned/AccelarateSynthesisMiner

Fast & Sound: Accelerating Synthesis-Rules-Based Process Discovery 13

2 is applied), e1+e2 (both extension 1 and 2 are applied), and original (without
extensions, correspondent to the original approach in [14]). The model-log pairs
are indicated by [log name]_[IMf filter].

Table 1: Computation time (seconds) for generation and evaluation of candidate nets
generation evaluation

model-log e1 e2 e1+e2 original e1 e2 e1+e2 original
BPI2017A_02 0.0990 2.6453 0.0576 31.4863 28.1865 30.2120 11.2979 93.0011
BPI2017A_04 0.0496 0.1566 0.0427 1.3720 17.6582 17.5019 11.9836 36.7301
BPI2017O_02 0.0408 0.0995 0.0325 0.1628 9.2453 5.7846 3.2266 17.6581
BPI2017O_04 0.0559 0.1040 0.0279 0.1514 10.4371 5.5425 2.8860 16.8704
helpdesk_02 0.5753 2.7208 0.0255 3.1770 6.3565 7.1008 2.4854 15.8367
helpdesk_04 0.5131 2.5675 0.0272 2.8994 5.8298 7.2238 2.4993 15.6390

We can see that the computation time is significantly reduced. Fig. 7 shows a
clearer indication regarding how much time (%) is reduced compared to the orig-
inal approach [14]. In general, both extensions can reduce the time for generation
and evaluation.

0 20 40 60 80 100
reduced time(%)

BPI2017A_02

BPI2017A_04

BPI2017O_02

BPI2017O_04

helpdesk_02

helpdesk_04

m
od

el
-lo

g extension
e1
e2
e1+e2

(a) time reduced in generation

0 20 40 60 80
reduced time(%)

BPI2017A_02

BPI2017A_04

BPI2017O_02

BPI2017O_04

helpdesk_02

helpdesk_04

m
od

el
-lo

g

extension
e1
e2
e1+e2

(b) time reduced in evaluation

Fig. 7: Bar charts showing the time reduced (%) compared to the original approach [14]

As shown in Fig. 7a, Extension 1 is more effective in reducing the computation
time for generating candidate nets compared to Extension 2. The combination of
both extensions reduces the computation time the most, as indicated by the green
bars in Fig. 7. On average, both extensions combined reduce the computation
time by 82.85% compared to the original approach without any extensions.

14 T. Huang et al.

0.950 0.955 0.960 0.965 0.970 0.975 0.980 0.985
F1(original)

0.950

0.955

0.960

0.965

0.970

0.975

0.980

0.985

F1
(e

1)

(a)

0.950 0.955 0.960 0.965 0.970 0.975 0.980 0.985
F1(original)

0.950

0.955

0.960

0.965

0.970

0.975

0.980

0.985

F1
(e

2)

(b)

0.950 0.955 0.960 0.965 0.970 0.975 0.980 0.985
F1(original)

0.950

0.955

0.960

0.965

0.970

0.975

0.980

0.985

F1
(e

1+
e2

)

(c)

Fig. 8: Scatter plots comparing the quality (F1) of the resulting models using different
settings (e1, e2, e1+e2). The red dashed lines indicate the ideal situation where the
quality of the resulting models with/without applying extensions is the same.

Next, we would like to compare the quality (F1-score) of the resulting process
models with/without applying the extensions. Fig. 8 shows the result of the
comparison. Each scatter plot consists of 49 data points. For each data point,
the x coordinate indicates the F1 score of the resulting model using the original
approach [14] whereas the y coordinate shows the same using different extensions
(e1, e2, e1+e2). Any dot on the red dashed lines indicates the ideal case, where
the qualities of the resulting model (when applying the extensions) are the same
compared to the original approach. We can see that Setting e1 always finds the
model with the same quality as the original, while settings e2 and e1+e2 can
do the same for most of the models but with a few outliers.

Fast & Sound: Accelerating Synthesis-Rules-Based Process Discovery 15

6 Conclusion

The Synthesis Miner algorithm was developed to discover models featuring non-
block structures while maintaining desirable guarantees (free-choiceness and
soundness) using synthesis rules based on free-choice net theory. Adopting an it-
erative setting, the approach tries to find the best modification (w.r.t. F1-score)
to an existing Workflow net by generating and evaluating various candidate nets.
However, the generation and evaluation steps involve the application of synthesis
rules and alignment-based conformance checking respectively, presenting scala-
bility challenges.

To address this, our paper proposes extensions leveraging the insight that
modifications often impact only a subpart of the model. By isolating these sub-
parts, we aim to speed up the process. Firstly, we use log heuristics to narrow
down the search space. Additionally, we break down the generation and evalua-
tion steps into smaller tasks by focusing on a smaller but most relevant compo-
nent of the process model. Evaluated using real-life event logs, the experiment
indicates that the extensions enhance the scalability of the Synthesis Miner by
decreasing the computation time by 82.85% on average.

Several directions can be investigated in future works. Firstly, we are in-
terested in techniques that can help to further reduce the search space. One
interesting idea could be to apply the evaluation of place fitness [2] to filter out
candidate nets containing non-fitting places before evaluation. Also, the scale of
the experiment is relatively small, which poses a potential threat to the validity
of the extensions. Thus, we plan to conduct a more comprehensive evaluation
including more real-life event logs.

Acknowledgements We thank the Alexander von Humboldt (AvH) Stiftung
for supporting our research.

References

1. van der Aalst, W.M.P.: The application of Petri nets to workflow management. J.
Circuits Syst. Comput. 8(1), 21–66 (1998)

2. van der Aalst, W.M.P.: Discovering the "glue" connecting activities - exploiting
monotonicity to learn places faster. In: It’s All About Coordination. Lecture Notes
in Computer Science, vol. 10865, pp. 1–20. Springer (2018)

3. van der Aalst, W.M.P., Adriansyah, A., van Dongen, B.F.: Replaying history on
process models for conformance checking and performance analysis. WIREs Data
Mining Knowl. Discov. 2(2), 182–192 (2012)

4. van der Aalst, W.M.P., Carmona, J. (eds.): Process Mining Handbook, Lecture
Notes in Business Information Processing, vol. 448. Springer (2022)

5. Adriansyah, A., Munoz-Gama, J., Carmona, J., van Dongen, B.F., van der Aalst,
W.M.P.: Measuring precision of modeled behavior. Inf. Syst. E Bus. Manag. 13(1),
37–67 (2015)

6. Augusto, A., Conforti, R., Dumas, M., Rosa, M.L., Bruno, G.: Automated discovery
of structured process models from event logs: The discover-and-structure approach.
Data Knowl. Eng. 117, 373–392 (2018)

16 T. Huang et al.

7. Augusto, A., Conforti, R., Dumas, M., Rosa, M.L., Maggi, F.M., Marrella, A.,
Mecella, M., Soo, A.: Automated discovery of process models from event logs:
Review and benchmark. IEEE Trans. Knowl. Data Eng. 31(4), 686–705 (2019)

8. Augusto, A., Conforti, R., Dumas, M., Rosa, M.L., Polyvyanyy, A.: Split miner:
automated discovery of accurate and simple business process models from event
logs. Knowl. Inf. Syst. 59(2), 251–284 (2019)

9. Buijs, J.C.A.M., van Dongen, B.F., van der Aalst, W.M.P.: A genetic algorithm
for discovering process trees. In: CEC 2012. pp. 1–8. IEEE (2012)

10. Desel, J., Esparza, J.: Free Choice Petri Nets. No. 40, Cambridge university press
(1995)

11. Dixit, P.M.: Interactive Process Mining. Ph.D. thesis, Technische Universiteit Eind-
hoven (2019)

12. Huang, T., van der Aalst, W.M.P.: Comparing ordering strategies for process dis-
covery using synthesis rules. In: ICSOC Workshops. Lecture Notes in Computer
Science, vol. 13821, pp. 40–52. Springer (2022)

13. Huang, T., van der Aalst, W.M.P.: Discovering sound free-choice workflow nets
with non-block structures. In: EDOC. Lecture Notes in Computer Science, vol.
13585, pp. 200–216. Springer (2022)

14. Huang, T., van der Aalst, W.M.P.: Unblocking inductive miner - while preserving
desirable properties. In: BPMDS/EMMSAD@CAiSE. Lecture Notes in Business
Information Processing, vol. 479, pp. 327–342. Springer (2023)

15. Leemans, S.: Robust process mining with guarantees. Ph.D. thesis, Technische
Universiteit Eindhoven (2017)

16. Schuster, D., van Zelst, S.J., van der Aalst, W.M.P.: Incremental discovery of
hierarchical process models. In: RCIS 2020. vol. 385, pp. 417–433. Springer (2020)

	Fast & Sound: Accelerating Synthesis-Rules-Based Process Discovery

