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Abstract. In engineering informatics, the myriad data types, formats,
streaming and storage technologies pose significant challenges in manag-
ing data effectively. The problem grows, as new analytics perspectives are
emerging from a totally different AI-based tradition. This divide often
necessitates the development of custom solutions that link specific data
capture methods to particular AI algorithms. Encouraged by the success
of object-centric mining models for discrete processes, we look for large
clusters of data management practices where novel bridging data mod-
els can help navigate the data model divide. We address this question
in a two-cycle design science approach. In a first cycle, over 80 actual
data model practices from a wide variety of engineering disciplines were
analyzed, leading to four candidate fields. In a second cycle, an initial
bridging data model for one of these fields was developed and validated
wrt some of the found practices. Our findings offer the prospect of sig-
nificantly streamlining data pipelines, paving the way for enriched AI
integration in production engineering, and consequently, a more robust,
data-driven manufacturing paradigm.

Keywords: Industry 4.0 · Manufacturing Data Model · Empirical Study
· AI Integration · Digital Shadow.

1 Introduction

The Industrial Internet of Things (IIoT) and Industry 4.0 have ushered in a new
era of opportunities for the manufacturing industry. They promise enhanced op-
erational efficiency, increased productivity, and the potential for innovation in
product design and manufacturing processes. Central to realizing these oppor-
tunities is the integration of Artificial Intelligence (AI) tools which can provide
intelligent analytics, predictive maintenance, and autonomous decision-making,
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among other benefits. However, the implementation and optimization of AI in
manufacturing hinges on the effective management and integration of vast and
varied data generated across the production lifecycle [15]. A predominant chal-
lenge in leveraging this data effectively is the heterogeneous nature of data mod-
els and pipelines across different use cases in manufacturing. Current common
practice involves custom solutions for data management and analytics for each
application, owing to the lack of better, standardized approaches. This practice,
while solving immediate challenges, consumes significant resources and obstructs
cross-domain interoperability and knowledge transfer.

This paper explores innovative solutions to this problem at the data model
level. After a review of data management research and practice focused on Dig-
ital Twins (DT) in manufacturing, it pursues a two-cycle design science ap-
proach [16], contributing to these research questions:

RQ1: Do data model practices within and across engineering disciplines ex-
pose sufficient similarity to make the existence of useful standardized data models
plausible? Answering such a question is not easy due to the reluctance of many
companies to share their practices, let alone the cross-validation of claimed prac-
tices by looking at actual data. Fortunately, the research cluster Internet of Pro-
duction (IoP) at RWTH Aachen University [9] with over 25 different engineer-
ing and related natural science disciplines—all actively involved in application-
oriented research and practice—offers a unique alternative setting for such a
study. In Section 3, we report on design, results, and implications of a struc-
tured analysis of over 80 such data model practices at both a conceptual and
data-example level. The identification of at least four broadly observed candidate
clusters of practices indicates an affirmative answer to RQ1.

RQ2: How can a “bridging” data model be derived for such a cluster, and
how can it be validated from formal and practice perspectives? Formal require-
ments for the models were initially derived from both general design principles
in database and knowledge graph research, and the insights of pioneering work
in object-centric process mining [3]. Subsequently, a bridging model was de-
veloped, addressing the commonly observed need to integrate measurements of
continuous processes and discrete events with high-level analytics. This model
underwent both a formal evaluation and a practical assessment. The practical
assessment involved quantifying the effort necessary to generate data from five
distinct sensor data practices identified in RQ1, and examining the utility of this
data in various analytical processes. The results indicate potential for enhanced
analytics and data sharing despite reduced effort, but also show limitations and
needs for further research.

This paper is structured as follows. The next section presents background
and related work. Subsequently, Section 3 describes the empirical study of data
model practices. Section 4 introduces and discusses the Measurement and Event
Data format as the first example of a bridging model. Finally, Section 5 concludes
this paper.
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Fig. 1. Digital Twin showing the data model gap between sensor-based metrol-
ogy and AI-based digital shadows.

2 Background and Related Work

Persistent problems of data availability in manufacturing engineering, opera-
tions, and usage [6] as well as in AI generally [15] are well-known. Partial solution
proposals come from many areas of Computer Science [8]. Examples include:
requirements engineering in manufacturing cases [23]; data lake-based layered
metamodel for Computer-Aided Engineering [33]; optimization and security of
physical dataflows in the edge-cloud spectrum [28,27].

In industry, leading cloud providers offer their own standard data models on
open platforms, such as the Open Manufacturing Platform (OMP) on top of
Microsoft’s Azure IIoT cloud (cf. https://azure.microsoft.com/solutions/
industrial-iot). Several initiatives are standardizing approaches to reduce re-
liance on vendor-specific solutions and domain-centric modeling languages. Au-
tomationML [1], an XML-based, object-oriented data modeling language, sup-
ports the creation, storage, and exchange of engineering models. It serves as a
neutral format for data exchange across diverse manufacturing scenarios. The
OPC Unified Architecture (OPC UA) offers standardized information models
with associated guidelines and best practices, including standard APIs for novel
specialized services such as data access or alarms and conditions [26]. In the do-
main of standards and reference models that enrich the solution space through
ontologies, notable examples include the Smart Appliances REFerence (SAREF)
ontology [19] and the framework provided by the International Data Spaces As-
sociation [4].

The growing complexity of manufacturing systems with multiple conflicting
goals, frequently changing boundary conditions and strategies have led to the
conclusion that any solution concept must take the essentially decentralized and
modular, yet interoperable nature of manufacturing data management into ac-
count. Interacting DTs have emerged as a widely accepted abstraction paradigm,
often inspired by experiences from multi-agent systems [29]. Recently, also the
IIoT community, like Industrie 4.0, re-interpreted their idea of Asset Adminis-
tration Shell (AAS) as enablers for DTs [22].

Each DT accompanies the life of some real-world object, process, or aggre-
gate Cyber-Physical Production System (CPPS) in a so-called twinning cycle,
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as illustrated in Figure 1. This twinning requires a bi-directional connection
between the real world and the DT, such that real-world changes and digitally
found decisions are reflected transparently with well-defined frequency and faith-
fulness [13].

The importance of data in DT architectures was already recognized a decade
ago [12], recently also in civil engineering [24]. A Digital Shadow (DS), in this
context, refers to a digital representation of a physical asset or process, which is
essential for data-driven decision-making and analytics. Organized around this
DS concept, data management must support two core tasks in a DT-based infras-
tructure. It focuses on the creation and maintenance of DSs by a wide range of
intelligent analytics combining model-based and AI approaches [11,10]. But DTs
are also active cooperating or competing agents that sovereignly share DSs in
data spaces [17,32]. From a conceptual modeling perspective, DSs have recently
been characterized as materialized views and as shareable, even tradeable data
assets [21], but also as software engineering artifacts with a real-world grounding
and well-defined provenance information [25].

Figure 1 implicitly showcases a “data model gap”. This gap is not merely
about the physical and digital representations but also about how data is mod-
eled, structured, and utilized in these two realms. In the physical world, data
capture methods are often heterogeneous, reflecting the complex reality of phys-
ical processes. Conversely, the digital world, particularly within AI algorithms,
requires data to be structured in a highly standardized format for efficient pro-
cessing and analysis. This discrepancy between the physical “as-is” and the digital
“to-be” structured data leads to a data model divide.

Contrary to the often complex semantic structures emphasized in the dis-
cussed standards and models, our approach portrayed in this paper aligns more
closely with the methodology observed in general AI libraries. As input, these
libraries rely on a limited number of standardized data formats, such as CSV or
other forms of tabular data, which serve as the basis for parameterizing algo-
rithms and frameworks. By adopting parameterizable data models, we facilitate
an amalgamation of both schema and instance data, simplifying the data model
complexity while maintaining versatility and effectiveness in the AI-driven anal-
ysis and decision-making processes.

3 Stage 1: Empirical Study of Data Model Practices

Our approach is informed by observations in Figure 1. In their survey of DT
approaches, Jones et al. [18] emphasize that the activities involved in the phys-
ical2virtual link span two largely disjoint communities of research and practice.
The long established engineering theories of measurement (metrology) with the
related sensor management IT community (e.g., [31]) must somehow be matched
to the explosively growing field of model-driven analytics and data-driven AI for
the creation, optimization, visualization, and sharing [20] of purpose-oriented
DSs. The challenge arises in managing the multitude of potential m × n map-
pings between these two parts. The claim pursued in this paper is that a few
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Fig. 2. Research Cycles of the Empirical Study.

(say: b) standardized “models in the middle” could reduce the mapping complex-
ity to b×(m+n). This could offer scalability, reuse, and cross-enterprise sharing,
with the potential for significant reduction in effort, and increased utility.

We conducted an empirical study to investigate how data models are em-
ployed across various use cases within the manufacturing domain. Our approach
aligns with the Design Science Research Methodology (DSRM) [16], which we
adapted to include a survey to gather empirical data and validate our research
artifacts. The overall design science process is portrayed in Figure 2.

3.1 Research Design

Adhering to the DSRM, our initial effort was aimed at understanding the prob-
lem domain and the requirements for a potential solution. We selected the highly
interdisciplinary engineering team from the IoP research cluster as study partic-
ipants to obtain meaningful information, considering their diverse backgrounds.

Preparation Cycle: Previous modeling experiences in the research cluster in-
dicated familiarity with modeling languages such as UML, yet there remained
a gap between theoretical knowledge and practical application. To address this,
we developed training materials illustrating UML class diagram modeling with
simple everyday object associations, avoiding mechanical engineering content to
mitigate bias. Next, we created a Word template for capturing essential meta-
data and structuring data models. It was divided into two main sections—a UML
class diagram and tables populated with example data—supported by the follow-
ing metadata: dataset name, contact person, institute name, work package, ver-
sion number, date, and a brief description. This template design was iteratively
refined through pilot trials at two institutes with disparate data management
practices. One institute operates legacy machines requiring manual intervention
at every step, from process planning to data analysis using MATLAB. The other
institute operates a connected ecosystem where industrial machines relay data
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to a time-series database via a message broker, harnessing visualization tools
like Grafana. Feedback from these trials was critical in evolving the training ma-
terials and integrating a UML class diagram example directly into the template.
Identifying a suitable modeling tool presented significant challenges. Web-based
tools, while easily accessible, were limited in functionality, restricting the ex-
tent to which they could be utilized for our modeling tasks. Native applications,
although potentially more robust, were out of reach due to administrative re-
strictions within the engineering institutes. Thus, PowerPoint and Visio were
recommended for modeling as biggest common denominator.

The feedback gathered from the pilot trials not only informed the iterative im-
provement of these artifacts but also provided valuable insights into the practical
challenges and preferences in data modeling practices across different engineer-
ing disciplines. Consequently, the outputs of the preparation cycle, specifically
the refined Word template and the updated training materials, became critical
inputs for the subsequent cycle.

Survey and Analysis Cycle: The study’s design and development phase re-
ceived strong management endorsement and was promoted at key project events,
leading to significant participation over two months. A total of 81 data mod-
els were submitted, verified for completeness, and any gaps addressed through
follow-up queries. These models were versioned and stored securely in a Git
repository, adhering to DSRM principles for traceability and rigorous evalua-
tion. A thorough screening to identify and correct errors preceded a detailed
coding and classification process. This ensured a methodical assessment of each
submission, with discrepancies resolved collectively, enhancing the study’s cate-
gorization approach.

Rigorous coding and classification were conducted by a mixed team of senior
researchers and PhD students, ensuring a comprehensive and methodical evalua-
tion. Each submission was assigned a first coder. This decision was then reviewed
by a second coder. Finally, deviations and conflicts were discussed in the whole
group and decided in virtual meetings, ensuring refinement and improvement of
the categorization along the iterative nature of DSRM. Thus, the survey led to
a valuable repository of empirical data to inform future design science research
within the manufacturing domain.

To uphold the confidentiality agreement with participants, which was pivotal
in securing 81 submissions, the detailed datasets underpinning our study will
not be published. This assurance of confidentiality was essential for participant
engagement and the integrity of our research findings.

The classification of data models, enriched by empirical evidence and col-
laborative refinement, served as a critical input for the next cycle, guiding the
design and validation of a model that addresses the identified needs and gaps
within data management practices of machine data.

Model Creation and Validation Cycle: In the final phase, the data models
were systematically consolidated according to their respective categories, leading
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Tab. 1. Overall data model categorization and subcategories.

Category # Description (Examples)

Machine

machine data (measurement) 44 Time-series machine and event data.
machine master data 40 Machine type designations, and location.
machine configuration 39 (Default) parameters.
robot 10 Robot configuration.
3D printer 3 3D-printer-specific master data.
maintenance 2 Maintenance schedules and configuration.

Process

process steps/operation/mea-
surement

45 Assembly instructions and sequence.

process aggregation (case/event/
log)

15 Preprocessed event data.

experiment 12 Experiment setup.
images 10 References to binary image files.
process evaluation 6 Evaluation of production processes.

Material

material properties 41 Material characteristics.
Bill of Materials (BoM) 7 Parts and part-of relations.
material amount/inventory/stock 1 Inventory and stock of material.

Simulation & Optimization

CAD/3D models 14 References to 3D model files.
simulation 8 Descriptions of simulation experiments.
computed results 7 Results of simulation runs.
planning 6 Simulation plans.
mathematical model/optimization 5 References and descriptions of mathematical

models.

Factory

factory/machine arrangement 15 Shopfloor layouts.
factory master data 8 Factory descriptions.
finances 4 Financial information on shopfloor equip-

ment.

Products

product (parts) 25 Planning and/or evaluation of product parts.

Supply Chain

jobs/sales order 13 Details of orders.
delivery 6 Delivery master data like shipping address.
supplier 5 Supplier data like origin.
purchase order (material) 4 Details of purchases.
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to the identification of potential candidates for models in the middle. These
candidates were refined with domain experts during a dedicated workshop.

3.2 Results

Our analysis revealed a rich collection of 33 distinct model types, which we
ultimately grouped into 11 categories. Some data models span multiple sub-
categories, highlighting the interconnected nature of manufacturing processes
while underscoring potential integration points for bridging model design. For
example, time series data frequently coincided with “experiment” or “process”
categories, prompting multiple assignments.

Table 1 presents our categorization, listing both the primary categories and
their subcategories alongside the count of data models in each. The majority
of submissions fell under the Machine category, predominantly featuring time
series measurements. This was followed closely by models describing Process
elements, like experiments or test runs. Due to space constraints, we omitted
the four least-represented categories (quantity in brackets): Human Resources
(21), Metadata (11), Requirements (4), and Survey (4). These areas, while
not the focus of this paper, represent valuable avenues for future exploration.

The 81 submissions collectively paint a heterogeneous picture, but neverthe-
less a striking similarity in challenges faced by different mechanical engineering
processes across various disciplines. For instance, both aluminum die casting and
plastic injection molding displayed a common issue: the internal control logic for
pressure values operated at a higher frequency than what could be accessed via
external interfaces. These shared challenges across disciplines are insightful for
our endeavor to standardize and simplify data models, in particular towards the
creation of automated data extractors and transformators. A common issue was
handling external data such as 3D models or MATLAB files, which are often
intricately integrated into the data models that merely outline their context.

Our analysis underscored not only the diversity of data models in manufactur-
ing, but also common operational challenges such as the mentioned frequency dis-
crepancies. These findings highlight critical caps that the “models-in-the-middle”
aim to bridge. Specifically, the observed frequency differences between internal
control logic and external data accessibility present a fundamental barrier to real-
time AI analysis and decision-making. Before AI algorithms can be effectively
applied, data must be synchronized and standardized, ensuring that AI tools can
operate on real-time or near-real-time data seamlessly. Additionally, the integra-
tion of disparate data types into a cohesive model facilitates the development
of automated data extractors and transformers, pivotal for AI’s role in predic-
tive maintenance, quality control, and process optimization. Thus, addressing
these operational challenges is not merely a prerequisite but a foundational step
towards realizing the full potential of AI integration in smart manufacturing.
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3.3 Discussion and Implications for Data Model Design

While there is considerable diversity across the categories, a remarkable consis-
tency exists within each category: certain modeling approaches and structures
seem to be predominant in specific contexts within the manufacturing domain.

A frequently observed pattern was a triadic relationship encompassing (ma-
chine data) measurements, processes, and products. This relationship is a corner-
stone in many submissions, albeit manifested differently across various stages of
product development. In the inception phase (e.g., product development), this
might include plans or sequences for robot movements and machine settings,
while in the final stages, it shifts towards quality assessments and measurements.

Most models showcased intricate associations between different object types,
yet these relationships were often not mirrored in foreign keys or similar in the
example data. This observed discrepancy was made apparent by the fact that
the majority of the data models were conceptualized retrospectively as part of
the study. Initially, the data files (such as CSV files or database tables) were
generated without an accompanying conceptual model. In the ex-post process
of conceptual modeling, the modelers’ inherent domain knowledge played a cru-
cial role, enabling them to explicitly define relationships that were not initially
apparent in the raw data. Inverting this approach—starting with a well-defined
conceptual data model before data collection—holds significant potential for
streamlining data handling.

Three data models documented cross-institute collaborations and two in-
volved external industrial data, further highlighting the interdisciplinary poten-
tial by suitable bridging data models. This scarcity can be attributed to various
factors, including NDAs and other confidentiality concerns.

The results provide valuable insights into the common patterns, variance,
and limitations observed in the submitted data models. The recurring triadic
relationship across models indicates a fundamental structure in manufacturing
data modeling, while discrepancies between models and example data highlight
a crucial area for improvement. The limited collaboration and external data in-
tegration also point to systemic challenges in data sharing and inter-institutional
cooperation. These insights not only inform the current understanding but also
shape our approach to future research and development in this area, especially
in creating more integrated, real-world applicable “models in the middle”.

4 Stage 2: Design and Preliminary Evaluation of an
Intermediary Machine Data Model

We contribute towards a theory of data modeling by identifying a number of
formal criteria that an intermediary model for navigating the data model divide
should satisfy. While some of these criteria stem from decades of conceptual
data model and model implementation research, others are inspired by specific
experiences gained from an early success story in object-centric process mining.

Within this context, we then present a specific bridging model addressing
the problem of linking event logs to their measurement data provenance, called
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MAED (Measurement And Event Data). In addition to testing this proposal
with respect to the mentioned criteria, we also offer an initial practical vali-
dation through an expert panel from different engineering disciplines, and the
experimental development of transformers from actual measurement data to the
model. Moreover, we study one exploitation potential of MAED on the AI ana-
lytics side, i.e., its potential usage to integrate concepts of the measurement stage
into Digital Shadow creation by object-centric process mining via OCEL 2.0.

4.1 Formal and Technical Design Criteria for Bridging Data
Models: Insights from OCEL 2.0

Before we embark on the data model design, it seems worthwhile to fix some
formal properties such models should have, as well as on the requirements con-
cerning the used database technologies. The requirements formulated here can
be seen as a database-centric IS engineering view on experiences gained origi-
nally in a process mining context, culminating in the Object-Centric Event Log
(OCEL 2.0) bridging model [7]. To follow the subsequent discussion, please also
refer to Figure 3.

The need to include both static and dynamic aspects in conceptual mod-
eling and data management goes back to early efforts to combine ideas from
Entity-Relationship and relational databases, with Petri net models and trans-
action processing in the late 1970’s. Yet, data-oriented and the process-oriented
IS engineering subcommunities remain clearly recognizable in conferences such
as CAiSE even today. However, a bridging data model must clearly address both
perspectives to enable sufficiently rich and selective analytics. In the process min-
ing community, the quest for a “model in the middle” started with standardized
file formats such as IEEE XES [2] which serve as an intermediary format between
data extraction from ERP systems, and process analytics software. Only from
problematic experiences with early attempts at object-centric process mining,
the new OCEL 2.0 has emerged from research to address object-centric process
mining use cases [3] which carefully differentiates the object concept to a degree
that significantly extends the versatility with respect to many different object-
focused as well as process-focused types of analysis, based on a growing catalog
of reusable analytics tools [7].

Such broad applicability, however, requires two additional formal aspects.
First, it is extremely important not just to elaborate the important aspects of
objects and events, but also to offer a rich set of relationships among them, not
just structurally but also positioned with shared context aspects such as time
or—in geo-intensive applications—space; filters (qualifiers) enable a more narrow
focus of analysis in such relationships. At the implementation level, foreign keys
are essential to materialize these relationships – one more reason that their use
including underlying unique identifiers must be included in more engineering
management practice.

Second, the evolving landscape of data and analytical methods necessitates
adaptive perspectives on data management, particularly for decision makers
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seeking diverse viewpoints for strategic analysis. An optimal “model in the mid-
dle” must facilitate not only schema evolution but also support the coexistence
of multiple schema organizations. This concept, rooted in the innovations of de-
ductive database research from the early 1980s, involves integrating data and its
schema within a unified framework. This amalgamation approach, now pivotal in
various semantic data management areas, enables dynamic schema modifications
and multiple, parallel data representations, enhancing flexibility and responsive-
ness to changing analytical and operational requirements.

However, most of these attempts required significant algorithmic research to
address the performance challenges associated with amalgamation. For example,
research in [14] employs RDF knowledge graphs for comprehensive modeling
(schema) and execution (instance) of Digital Shadow structure and process as
in [25]. While it demonstrated many of the needed aspects, massive performance
problems have prevented its use in practice. Figure 3 shows how OCEL 2.0
addresses the amalgamation in a relational setting, having tables for both schema
and instance data. This approach cannot just profit from long experience with
similar methods in SQL servers, but also permits, e.g., special-purpose main
memory databases for interactive analytics even with massive event data.

From a practical viewpoint, a bridging data model is only useful if its content
can be easily filled using simple, generic, and robust transformation mechanisms
from legacy, use-case-specific data models. Such transformers are not only pivotal
for integrating diverse data sources but also for ensuring the scalability and
adaptability of data models in dynamic industrial settings.
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4.2 MAED: A Bridging Data Model for Harmonizing
Sensor-Generated Industrial Measurement Data

In manufacturing, the challenge of harmonizing vast streams of sensor-generated
data with the analytical needs of CPPS is substantial. We propose the MAED
data model for capturing and standardizing time-series data and event records
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from manufacturing processes (see Figure 4). For a detailed introduction to the
MAED data model, see [30]. Recognizing the pioneering efforts of OCEL 2.0
in establishing a robust framework for object-centric process mining, our ap-
proach to MAED was informed and inspired by the foundational principles and
structural components of OCEL 2.0. This was a deliberate choice, grounded
in the rationale that event-driven data points, central to both OCEL 2.0 and
MAED, present a complex domain where prior advancements can significantly
accelerate innovation and applicability in related fields. The seamless integra-
tion of measurement and event data is pivotal for enriching analytics, enhancing
decision-making, and ultimately fostering the development of more responsive
and efficient CPPS.

At its core, the MAED format requires minimal, yet critical data attributes
for each entry: the precise time of data capture, the nature of the recorded in-
formation, and the identification of its physical origin within the manufacturing
system. Data points within the MAED schema are categorized as “events” (Fig-
ure 4, left) or “measurements” (Figure 4, right). Events are singular occurrences
that mark transitions or alterations in state, carrying significance even when
devoid of detailed data. A simple event like “machine overheated” suffices to
signal a system’s condition. In turn, measurements are systematically captured
and expected readings that depict a machine’s operational state through their
values, which can reveal normal function or indicate anomalies like sensor faults.

“Time” is central, providing the temporal context and enabling the chronolog-
ical reconstruction of events and states. The “object” identifier is equally critical,
enriching the data with spatial context and relevance.

By consolidating events and measurements into a uniform structure with
clear specifications, the MAED metamodel facilitates the assembly of individual
data points into comprehensive sequences for advanced analysis. This provides
a framework for creating data sets that are more readily comparable and ana-
lyzable across different machines or processes.

4.3 Preliminary Evaluation

In accordance with the validation phase of the DSRM, the proposed data model
underwent a preliminary user evaluation during a workshop. It convened around
30 engineering researchers from diverse domains, leading to the collective affir-
mation of the fundamental principles of the proposed model.

Further, we collaborated with five data owners within the IoP and an exter-
nal partner, on transformers of their datasets into our specified format to test
its practical applicability and effectiveness. The original data formats included
collections of CSV files, JSON files with complex nestings, untyped text files
from a MinIO database export, and a complete PostgreSQL database dump. As
a consequence, no two datasets could be processed or visualized using the same
methodology or tools initially. However, once the datasets were transformed into
the MAED format, they were seamlessly integrated and became compatible with
preliminary tooling, underscoring the robustness and versatility of the approach
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in standardizing and automating data processing for effective analysis and visu-
alization. As initial proofs-of-concept, we created a Python library for handling
the data, and two visualization widgets. In this widget, measurement and event
types can be specified to be rendered below each other.

The successful transformation of datasets into the MAED format across five
distinct examples not only substantiates the feasibility of our approach but also
highlights intricacies of data structures at both logical and physical levels. Fur-
ther easing the transformation process requires foundational prerequisites, like
the inclusion of explicit foreign key relationships, thereby streamlining data inte-
gration and enhancing effective automation. Looking at the previously specified
formal design criteria for such models, the successful transformer experiments
and positive workshop feedback offer strong evidence of a good match of MAED
to current practices and its potential.

However, the formal criteria are only partially satisfied. While we have rich re-
lationships and schema-instance amalgamation for measurement and event data,
and a time concept as in OCEL 2.0, the same has not yet been achieved for
the integration of the object concept. Thus, one main usage idea of MAED—
embedding extremely fine-grained and massive measurement data from continu-
ous processes into the object-centric process mining world of OCEL 2.0—remains
a non-trivial challenge for more sophisticated analyses and thus opens the avenue
for significant further technical research.

Regarding the envisioned enhanced AI integration, the “model in the mid-
dle” approach enables a seamless and standardized application of advanced AI
services across various domains. This standardization unlocks the potential for
employing advanced AI methodologies, such as few-shot learning with large lan-
guage models (LLMs) for domain-specific language (DSL) model generation,
where previously, the absence of uniform data models limited the applicability
of such technologies [5]. Beyond this, standardized data formats pave the way
for AI-driven anomaly detection, predictive maintenance, and optimization al-
gorithms that can now be more readily integrated and operationalized across
different manufacturing environments.

5 Conclusions, Limitations, and Future Work

This paper addressed the critical challenge of bridging the divide in Industry 4.0
between a multitude of data models and diverse data-driven analytical technolo-
gies. It proposed the use of standardized intermediary models, a strategy that
reduces complexity and enhances reuse across various organizational contexts.

In summary, our contributions are manifold. By utilizing empirical meth-
ods, we have opened a novel avenue to structure data diversity into categories,
provided a practical example of a “model in the middle” in a mechanical engineer-
ing context, and yielded positive initial experiences with the new data format.
This advancement marks a significant step towards enabling artificial intelligence
methods to work more effectively with comprehensive, real-time manufacturing
data, leading to smarter, more adaptive, and efficient production systems.
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The empirical study of over 80 data model practices in an applied research
context confirmed that there are several clusters of sufficiently similar prac-
tices within and beyond individual engineering disciplines that could scope the
requirements and potential advantages for such models. Further validation di-
rectly in industry or from analysis of published case studies should promote
deeper understanding and identification of other “high potentials”.

Transitioning from a diverse array of data models to a small number of stan-
dardized models presents a series of organizational implementation challenges.
Organizations may encounter resistance due to existing investments in custom
data models. The transition may necessitate significant effort, time, and re-
sources, potentially acting as a deterrent for some stakeholders. Moreover, the
absence of established metrics for evaluating the efficiency and effectiveness of
the proposed “model in the middle” approach poses another limitation. With-
out a benchmark, it becomes challenging to quantitatively assess the impact
and benefits of our approach, beyond the formal and practice-oriented criteria
proposed in this paper.

The integration of the MAED model with additional proposed data models
offers substantial benefits, particularly in enhancing AI integration within pro-
duction engineering. Effectively linking the data dimensions—machine, process,
and product—facilitates the creation of comprehensive event logs, which are in-
strumental for analysis through generic process mining tools. This integration
not only requires a more nuanced representation of entities like product types
and hierarchies but also marks a critical step towards realizing a holistic and
integrated data analysis approach. Such an approach significantly contributes to
the advancement of AI applications in production engineering, as it leverages the
comprehensive insights provided by the “models in the middle”, ensuring that AI
algorithms can access a richer, more structured pool of manufacturing data for
enhanced decision-making and optimization.

Our “models in the middle” approach strategically positions itself between
domain-specific standards, such as OPC-UA Companion Specifications, and gen-
eral AI frameworks and libraries. This unique placement facilitates a critical
linkage, enabling integration of specialized industrial protocols with advanced
AI analytical frameworks. Future work will provide interoperability tests with
existing IoT platforms and AI analytics tools to validate and refine this connec-
tion, aiming to close a significant gap in the current ecosystem.

Furthermore, while our approach offers a promising framework for enhancing
AI integration in smart manufacturing, the aspects of scalability and real-time
data processing have not been extensively explored in this paper. Future research
will need to assess the scalability of our models, identifying computational and
architectural optimizations to handle large-scale, real-time data streams effec-
tively. This evaluation is crucial for ensuring that our approach can support the
dynamic and expansive nature of smart manufacturing environments.
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