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Abstract. Insight into differences between different implementations of
a process provides valuable information for improvement. Process com-
parison approaches leverage event data on process executions to provide
such insight. However, state-of-the-art procedural methods are often lim-
ited to local differences considering activities executed within a limited
number of steps (e.g., directly following activities). Thereby, detecting
differences which, for instance, relate early steps of a process execution
to its outcome remains challenging. In contrast, rule-based declarative
approaches can detect global differences with respect to distant activities;
yet they are limited by the complexity of the rule templates employed.
Moreover, they are prone to yield fragmented diagnostics. If a subprocess
occurs more frequently in one process variant, these approaches typically
report each activity contained. In this work, we therefore propose a pro-
cess comparison approach that detects aggregated likelihood differences
for global control-flow patterns. To this end, we decompose the difference
detection task into subprocesses induced by co-occurring activities. Using
Earth Mover’s Distance, we identify differences within individual subpro-
cesses independent of predefined rule templates. We then aggregate and
combine subprocesses which distinguish the process variants. By exploit-
ing relations among subprocesses, we retrieve maximal differences affect-
ing many activities. Reducing fragmentation caused by choice-induced
frequency differences, we additionally complement these maximal dif-
ferences. To compare the sensitivity of our difference detection method
to existing approaches, we devise a quantitative evaluation framework.
Moreover, we demonstrate the effectiveness of our method on a public,
real-life event log. Ultimately, the evaluation shows that our method is
accurate and capable of providing coherent, global diagnostics.

Keywords: Process Mining · Process Comparison · Process Variant
Analysis · Business Process Intelligence

1 Introduction

Operational processes are at the core of companies’ value chains making active
process management crucial for a company’s success. Often, multiple variants
of the same process exist (e.g., implementations at different facilities). Process
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Fig. 1. Control-flow differences between process instances can be strongly entangled
and concern distant parts of the process. In our approach, we decompose the difference
detection in order to isolate activities and execution variants related to a difference.
We then combine sets of complementary differences.

comparison methods aim to provide insight into differences between variants of
a process denoting valuable information for process improvement. A common
challenge is that there only exist event data of process executions where each
event corresponds to a business transaction and is associated with a case (i.e.,
process instance), an activity, and a timestamp. Therefore, recent data-driven
process comparison approaches take two event logs as input and return the
(statistically significant) differences [4,7,14,19]. Yet, this can be challenging.

Consider the BPMN model of a claim management process shown in Fig. 1.
Despite its simplicity, two instances of this process can differ in several ways. For
example, they can differ with respect to (i) the frequency of low or high claims
or (ii) in the probability of the detailed checks c1 and c2 being executed in a par-
ticular order. Moreover, these low-level differences might be further entangled.
There can be additional dependencies between (iii) a claim’s type and whether it
is accepted, or (iv) the order differences of the checks is embedded in a frequency
difference between normal and detailed checks. Besides, processes may differ in
dimensions other than the (e.g., time). However, control flow has been the major
concern of most existing works (see [20] for an overview), and we will focus on
the former leaving extensions as future work.

State-of-the-art procedural approaches [4,14] are strong at identifying local
differences—that is, differences concerning activities executed within a limited
number of steps in the processes (e.g., directly following activities). However,
detecting long-term differences such as the third differences illustrated in Fig. 1
is challenging. In contrast, the declarative approach proposed in [7] can detect
differences for activities irrespective of their position in a case. However, it is
limited to a fixed set of rule templates, and the implementation currently only
supports activity pairs. Besides, reporting differences found for individual rules
from a large corpus of rules is prone to yield fragmented diagnostics. For our
example, considering the third—outcome-related—difference in Fig. 1, we obtain
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separate diagnostics showing that low claims are (1) accepted and (2) paid more
frequently, but (3) declined less frequently. This motivates a process comparison
approach that can provide global diagnostics that concern more than two activi-
ties. In particular, we want to detect differences that concern a maximal number
of activities the individual cases (e.g., low claims are more likely to be accepted
and paid). Besides, we want to incorporate complementary differences—that
is, differences found for a distinct set of cases and caused by differing decision
likelihoods (e.g., declining high claims more frequently)—to show the bigger pic-
ture. Ultimately, we obtain the global, high-level diagnostic shown in Fig. 1 by
integrating all three diagnostics above.

In this work, we therefore propose an approach, which attempts to unify the
strengths of both worlds, founded on the following research questions:

RQ(I) How can we reliably detect global control-flow differences?
RQ(II) How can we discover maximal differences that concern many activities?
RQ(III) How can we find differences across cases that complement each other?

To this end, we propose to analyze different sets of (possibly distant) activities.
Thereby, we aim to isolate differences in terms of the cases and activities they
concern improving the sensitivity of our approach to detect differences. Exploit-
ing relations between the sets of activities, we aggregate sets of activities maxi-
mizing the number of activities concerned. Ultimately, we visualize differences in
the process induced by each maximal set of activities. In doing so, we consider a
context of complementary differences to show the bigger picture. The concept is
shown on the bottom of Fig. 1 where we eventually identify a difference regard-
ing the type and outcome of a claim. Conceptually, the approach is inspired by
the variant and activity sliders implemented by most process mining tools. For
process discovery, reducing the number of variants and activities reveals frequent
control-flow patterns. In contrast, we consider not one but two process instances
and attempt to find a configuration that shows a strong, coherent difference
between the two instances.

Our contributions are as follows: we propose a method to detect global control
flow differences based on the analysis of different sets of activities. It does not
rely on predefined rule templates and proves to be highly sensitive. Moreover, we
propose a two-step method maximizing and combining distinctive activity sets to
reduce fragmentation of diagnostics. Compared to recent procedural approaches,
latter combination step allows visualizing a particular difference in the context
of other differences which can foster new interpretations.

We discuss related work and introduce preliminary concepts in Sects. 2 and
3. Next, we propose our method in Sect. 4, which we quantitatively and qualita-
tively evaluate in Sect. 5. Finally, we give our conclusion in Sect. 6.

2 Related Work

On a high level, one can distinguish process comparison approaches that devise
differences from a process model or directly from data. Former approaches either
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require models as input [2,10], first discover a model [6,18], or enhance models [9].
For an in-depth discussion, we refer to the survey in [20].

An early application of graph comparison to process models proposes to
visually compare them with respect to a merged, specially layouted graph [2].
In [10], Küster et al. consider change operations in the SESE-decompositions of
UML activity diagrams. Yet, the authors in [1] argue that one must consider
event data instead of models to make process comparison actionable.

Kriglstein et al. [9] complement structural diagnostics on model elements
by differences in their use. Suriadi et al. discover process models and compare
them with respect to how well they fit the other variants [18]. A similar approach,
focussing on the mutual replay results, is proposed in [6]. An overview of different
model-based visualizations is given in [16].

Log-based methods devise differences directly from event logs. An approach
using sequential pattern mining is proposed in [11]. Van Beest et al. represent the
process variants with prime event structures [3], align them, and verbalize differ-
ences. However, the approach requires a concurrency oracle. In [4], statistically
significant differences are considered. The authors create a shared Transition
System (TS) and apply hypothesis tests to detect performance and frequency
differences. Yet, there is a trade-off between the expressiveness of the TS and
its size. Taymouri et al. [19] create directly-follows graphs (DFGs), so-called
Mutual Finger Prints (MFPs), from cases which they consider distinctive for
each variant. To this end, they extract location- and frequency-aware features
from a discrete wavelet transformation and discover the most distinctive subset
of features by training and evaluating classifiers. Finally, they select the cases
containing these features. However, the computational complexity of the method
is high. A declarative approach is proposed in [7]. The authors instantiate a set
of rule templates and test for differences. A log-based approach that allows to
consider perspectives beyond control flow and performance is proposed in [14].
Finally, an interactive process comparison framework, applying filters upfront,
was proposed in [21] . In contrast, we consider filtering an essential part of pro-
cess comparison itself.

Our decomposition is related to concept lattices in Formal Concept Analysis
(FCA) [17,22]; yet, we explicitly consider activity order.

3 Preliminaries

We denote the powerset of a set X by P(X) and the bags over X by B(X). For
example, M = [a5, b] is a bag of size |M | = 6 containing a five times. In an abuse
of notation, we overload set operators for bags (e.g., a ∈ M and [a3] ⊂ M). A
directed graph is a tuple G = (V,E) of a set of vertices and a directed edge
relation E ⊆ V × V . For brevity, we use an infix notation to denote edges—for
example, for v1, v2 ∈ V , the vertex v1 is a predecessor of v2 if v1 E v2 holds. The
transitive reduction of G is the graph G′ = (V,E′) with the fewest edges and
the same pairwise reachability of vertices as G.
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Fig. 2. Overview of the approach. We instantiate a measurement structure where ver-
tices correspond to a subaspects of the process and edges relate the former. Using this
structure, we measure differences and filter the initial results. Afterward, we maximize
differences making them as specific as possible. Finally, we complement user-selected
differences by related differences and use the associated variants and activities to visu-
alize the result.

Event Data. Let A denote the universe of activity labels, and let Σ ⊆ A be
a finite set of activities. A trace σ = 〈σ1, . . . , σn〉 ∈ Σ∗ is a finite sequence of
activities. The length of σ is |σ| = n. A trace σ′, |σ′| = m is a subtrace of σ,
denoted by σ′ � σ, if there exist indices 1 ≤ i1 < · · · < im ≤ n such that
σ′ = 〈σi1 , . . . , σim

〉. Finally, we write {σ} = {σi | 1 ≤ i ≤ |σ|} to denote the set
of distinct activities in σ. An event log collects multiple executions of a process.

Definition 1 (Event Log). Given a finite alphabet Σ ⊆ A, an event log E ∈
B(Σ∗) is a finite bag of traces over Σ.

For an event log L ∈ B(Σ∗), its empirical trace distribution is defined by the
probability mass function pE : Σ∗ → [0, 1], σ 
→ E(σ)

|E| . This is also called the
stochastic language of E [12]. Let δ : Σ∗ × Σ∗ → [0, 1] be a so-called trace
distance—that is, a function that quantifies the dissimilarity between pairs of
traces. Given event logs L1, L2 ∈ B(Σ∗), the Earth Mover’s Distance (EMD)
quantifies the dissimilarity of the associated stochastic languages [12]—that is,
emdδ(pL1 , pL2) ∈ [0, 1]. In the following, we assume that normalized edit distance
(edt) is used as trace distance.

4 Selection-Projection-Based Difference Discovery

We propose a two-stage process comparison approach that separates the detec-
tion and aggregation of differences. Figure 2 provides an overview and demon-
strates how we distinguish between a structure-driven and data-driven aspect of
our method. On the structural side, we create a lattice of commonly co-occurring
sets of activities and use them to select and project control-flow variants of the
process. This results in pairs of filtered sub-event logs extracted from the original
event logs, representing data on subprocess executions. For example, in Fig. 2,
the subprocess s1 is associated with three activities, highlighted red, from two
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variants in each event log. By measuring the differences between each pair of
sub-event logs using EMD, we then identify sets of activities for which the two
process variants significantly differ in frequency or activity execution order. To
consolidate differences related to the same variants, we aggregate them based
on structural relations between subprocesses. This reduces fragmentation of fre-
quency differences with respect to entire subprocesses such as the frequency
difference regarding low and accepted as well as low and paid claims in Fig. 1.
Additionally, we propose integrating complementary differences that are closely
related but involve a different set of control-flow variants. For instance, in Fig. 2,
we complement s1 by s2 since latter subprocess focuses on a distinct set of
variants while sharing one activity. Ultimately, we create a model for the dif-
ferential analysis of the retrieved complementary and maximal subprocesses. In
the following, we illustrate our approach on the following two—left and right
(l|r)—event logs generated from the process shown in Fig. 1:

Ll|r,ex = [〈l, c1, c2, c, a,p〉42|50, 〈l, c1, c2, c,d〉9|3, 〈l, c2, c1, c,d〉9|7,

〈h, c1, c2, c, a,p〉28|20, 〈h, c1, c2, c,d〉6|7, 〈h, c2, c1, c,d〉6|13]
(1)

Selection-Projection Structure As depicted on the left of Fig. 2, one can think
of an event log as a list of cases or, focusing on the control flow, variants. To
isolate control-flow differences, we can “horizontally” select entries (i.e., variants)
and “vertically” remove activities (i.e., activity projection). While for process
discovery one typically focuses on frequent variants and activities, we suggest
choosing and projecting traces based on frequently co-occurring activities for
process comparison. To this end, let L ∈ B(Σ∗) denote an event log over an
alphabet Σ ⊆ A and Σ′ ⊆ Σ be set of activities. Activity projection πact

Σ′ : Σ∗ →
Σ∗ projects traces on Σ′. For a trace σ ∈ Σ∗, πact

Σ′ (σ) is the longest subsequence
of σ over Σ′—that is, πact

Σ′ (σ) = argmaxτ∈(Σ′)∗,τ�σ|τ |. Similarly, activity-based
trace selection μact

Σ′ : Σ∗ → Σ∗ keeps a trace σ if all activities in Σ′ occur—that
is, μact

Σ′ (σ) = σ if Σ′ ⊆ {σ}; otherwise, μact
Σ′ (σ) = 〈〉. Assuming that event logs

initially do not contain empty traces, we do not model discarded traces by a
dedicated symbol to unify the notation. Using an element-wise application, we
can concatenate the functions and apply them to event logs to isolate control-
flow aspects of a process For example, the event log Ll,ex

πact
{l,d}◦μact

{l,d}
=

[〈l,d〉18, 〈〉82]

focuses on the frequency and activity order of low and declined claims.
While can we consider different sets of activities to study different control-

flow aspects, we can also use them to further process the retrieved differences.
In doing so, we exploit that activity sets are naturally related in terms of spe-
cialization. To this end, consider Fig. 3 that shows the effect of selecting variants
(y-axis) and projecting the selected variants on potentially different sets of activ-
ities (x-axis). In particular, we consider the case where we use the same set of
activities to select and project (highlighted in orange). The behavior based on
which we select the variant is the same behavior that we extract from the for-
mer. Besides, this also establishes a specialization relation regarding the data
extracted for activity sets s1, s2 ∈ P(A), s1 ⊂ s2. For s2, we consider a subset
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Fig. 3. By extending the activity set, we extract subtraces with increasingly complex
control flow from a more specific (i.e., smaller) subset of traces. Here, we eventually
isolate a single variant.

Fig. 4. SPS for our running example. Each vertex is a set of frequently co-occurring
activities. It is annotated by the activity set’s occurrence probability in the left and
right log, its associated EMD, and class. Dashed red circle show the maximal interesting
activity sets (comp. Definition 3). (Color figure online)

(i.e., fewer) of the variants, and the control flow becomes more complex—that
is, we consider a superset of the events. In contrast, disentangling the selection
and projection can blur the localization (e.g., a difference measured for Q2 might
optionally involve c), or it might result in diagnostics that are less general than
expected. For instance, differences found for Q3 do not necessarily concern a
and b in general. Exploiting the specialization relation, we define the Selection-
projection Structure (SPS)—the backbone of our approach.

Definition 2 (SPS). Let Ll, Lr ∈ B(A∗), 〈〉 /∈ Ll, 〈〉 /∈ Lr denote event logs
over an alphabet A ⊆ A. A Selection-projection Structure (SPS) spsLl,Lr =
(S,<,msps

Ll,Lr ) for Ll and Lr is a triple of a set of activity sets S ⊆ P(A),
an edge set <⊆ S × S such that (S,<) is the transitive reduction of the graph
(S, { (s1, s2) ∈ S × S| s1 ⊂ s2}), and an EMD-based vertex measurement function

msps
Ll,Lr : S → [0, 1], s 
→ emdedt(pLl

πact
s ◦μact

s

, pLr
πact

s ◦μact
s

). (2)

Figure 4 shows an SPS for our running example comprising sets of frequently
co-occurring activities. We measure a non-zero difference for nine vertices in
total, yet multiple vertices refer to the same difference. For example, the sets
{h, a}, {h,p}, and {h, a,p} all indicate a difference regarding the acceptance (a)
and payment (p) of high claims (h).
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Maximization. In an SPS, many vertices may witness the same difference which
can result in fragmented diagnostics. Yet, the specialization relation between ver-
tices in the SPS gives us a means to maximize differences: return the more spe-
cific vertex, if it perfectly extends the differences measured for its predecessors.
However, this requires an accurate characterization of the mechanisms behind
the difference scores (e.g., frequency difference, order differences, or even combi-
nations of the former). We therefore propose a relaxed difference maximization
approach based on the vertices’ EMD values and leave other implementation for
future work. If two related activity sets have similar difference scores, they are
likely to witness the same difference, and we return the more specific one (i.e.,
superset). However, Fig. 5 exemplifies limitations of this naive approach. To this
end, consider two process instances differing in two ways: in the right process
instance (1) more low claims are registered (i.e., l1, l2), and (2) more claims are
accepted. The color of a vertex shows its frequency which is directly related to
its EMD value. The activities l1 and l2 witness the same frequency difference
and aggregating them shows a difference for a coherent branch of the process.
In contrast, we argue that {l1, l2, c} is not an interesting difference, despite it
has the same support as {l1, l2}. It comprises the consolidation step c which is
always executed and therefore not interesting. Moreover, we measure a strong
difference for {l1, l2, a}. Nevertheless, the choices related to {l1, l2} and {a} might
be independent making the set less interesting. Based on these considerations,
we bottom-up classify the SPS vertices as interesting (I), uninteresting (U), and
sub-interesting (SI) and retrieve the most specific, interesting differences.

Definition 3 (SPS Difference Classification). Let Ll, Lr ∈ B(A∗), 〈〉 /∈
Ll, 〈〉 /∈ Lr denote event logs over an alphabet A ⊆ A; τ i

m, τ i
i ∈ [0, 1] be thresholds;

and spsLl,Lr = (S,<,msps
Ll,Lr ) be an SPS. The SPS difference class of a vertex is

given by κ̄ := κsps
Ll,Lr ,τ i

m,τ i
i
: S → {U,SI, I},

κ̄(s) =

⎧
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

U if m̄(s) < τ i
m ∧ ∀s1 (s1 < s → κ̄(s1) = U) (C1 All U)

I if m̄(s) ≥ τ i
m ∧ {[∀s1 (s1 < s → κ̄(s1) = U)] (C2 - Pred. U)

∨ [∃=1s1 (s1 < s) ∧ ∃=1s1 (s1 < s ∧ κ̄(s1) = I)](C3 - One Pred. I)
∨ [�s1κ̄(s1) = SI (C4 - No pred. SI)
∧ ∃s1, s2(s1 < s ∧ s2 < s ∧ κ̄(s1) = I (C5 - Pred. I)

∧ κ̄(s2) = I ∧ φLl,Lr (s1, s2) > τ i
i (C6 - Not indep.)

∧
⋃

s1<s,κ̄(s1)=U

s1 ⊆
⋃

s1<s,κ̄(s1)=I

s1)]} (C7 - Prove I)

SI else
(3)

for s ∈ S, m̄ := msps
Ll,Lr , and φ denoting the phi-coefficient of the occurrence of

two given activity sets. Given a domination factor τ i
d > 1, a vertex s ∈ S is

maximal interesting if and only if

κ̄(s) = I ∧ ∀s1

(
s < s1 ∧ κ̄(s1) = I → msps

Ll,Lr (s) > τ i
dm

sps
Ll,Lr (s1)

)
. (4)
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Fig. 5. Maximizing differences in the SPS graph.

Figure 5b illustrates the conditions. The EMD value determines the class of
a vertex without predecessors (note that the “for all” statements in C1,2 hold).
Otherwise, we consider its predecessors: if all predecessors are uninteresting, we
again consider the EMD value (C2). For example, in Fig. 4, the vertex {c1, c2}
becomes interesting due to the activity order difference. If all predecessors are
interesting, we not only consider EMD but also whether there are dependent
predecessors (C 6). Similar conditions apply if the predecessors are either inter-
esting or uninteresting. However, the uninteresting predecessors indicate that
we might aggregate an uninteresting subaspect (comp. c in Fig. 5a). Therefore,
we additionally require that each activity is interesting with respect to at least
one subaspect (C 7). For example, we do not observe a difference regarding the
acceptance subprocess {a,p}, but in the context of high claims—namely, {h, a}
and {h,p}—acceptance is more likely in the left log. A vertex with interest-
ing predecessors that cannot be proved interesting is labeled sub-interesting. We
found evidence that we cannot further maximize an interesting predecessor, and,
in case of doubt, we follow Occam’s razor and opt for the simpler difference.

Eventually, we report the maximal interesting vertices—that is, interesting
vertices that do not have an interesting successor with a similar EMD value. In
Fig. 4, the scores of these vertices are highlighted in red using, for example, the
thresholds τ i

m = 0.01, τ i
i = 0.2, τ i

d = 1.2.

Complementary Differences. Conceptually, each maximal interesting vertex cap-
tures differences with respect to observed activities. Thinking of BPMN, this cov-
ers sequences of activities, order resolution of concurrency, and loop repetitions.
However, a single set of observed activities cannot entirely explain choices. A sim-
ple difference in the likelihood of choosing between two activities a and b, results
in significant EMD values for {a} and {b} (but not for {a, b}). Yet, showing both
sets at the same time would paint a clearer picture. Note that the declarative
method proposed in [7] faces a similar challenge. We therefore propose to search
additional, complementary differences. Let spsLl,Lr = (S,<,msps

Ll,Lr ) be an SPS
for event logs Ll and Lr and Sint

sps
Ll,Lr

denote the set of maximal interesting
differences. We propose a three-step filter pipeline where we assess whether two
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vertices s1, s2 ∈ Sint
sps

Ll,Lr
occur complementary by the Jaccard index of their

co-occurrences in the event logs—namely, Jocc
Ll,Lr (s, s1) := minx=l,r

|Lx
μact

s1∧s2
|

|Lx
μact

s1∨s2
| . A

low score indicates that, in (at least) one process instances, cases that comprise
one activity set do not comprise the other. Given a vertex s ∈ Sint

sps
Ll,Lr

and a
bound on the vertices’ co-occurrence τ c

jacc ∈ [0, 1], the filtering steps are:

(1) remove structurally related differences
Sint 1
sps

Ll,Lr
:= Sint

sps
Ll,Lr

\
{

s1 ∈ Sint
sps

Ll,Lr

∣
∣
∣ s1 ⊆ s ∨ s ⊆ s1

}
;

(2) remove co-occurring vertices
Sint 2
sps

Ll,Lr
:= Sint 1

sps
Ll,Lr

\
{

s1 ∈ Sint 1
sps

Ll,Lr

∣
∣
∣ Jocc

Ll,Lr (s, s1) > τ c
jacc

}
;

(3) sort vertices s1 ∈ Sint 2
sps

Ll,Lr
by increasing vertex similarity s∩s1

s∪s1
, decreasing

co-occurrence Jocc
Ll,Lr (s, s1), and similar EMD |msps

Ll,Lr (s) − msps
Ll,Lr (s1)|.

In the first step, we exploit the structural relation to discard vertices that are
naturally not complementary.

Visualization. Given a set of complementary activity sets Sco ⊆ S for an SPS
spsLl,Lr = (S,<,msps

Ll,Lr ), we illustrate differences using a directly follows-based
visualization. Like the approach proposed in [19], we focus on the traces that
constitute the difference, yet we show both logs in the same graph to facilitate
the visual alignment. To create the DFG, we first generalize the trace selection
to multi-activity set conditions. Given activity sets Σi, i = 1, . . . , n, μact

Σ1∨···∨Σn

(μact
Σ1∧···∧Σn

) keeps a trace if any (all) of the individual trace selections μact
Σi

, i =
1, . . . , n do. Selecting all relevant traces and projecting on the involved activities,
we obtain two pairs of event logs:

Lx,co := Lx
πact⋃

s∈Sco s
◦μact∨

s∈Sco s
, Lx,co, �=〈〉 := [σ ∈ Lx,co|σ �= 〈〉] , x = l, r. (5)

Note that the second pair of event logs only contains relevant traces. Since the
initial event logs may have different sizes, we scale by the size of the logs. For
Lx,co (Lx,co, �=〈〉), x = l, r, each DFG edge thereby shows the expected (condi-
tional) number of occurrences in the log (given that the trace is relevant). Con-
ditioning allows to analyze qualitative differences within the subprocess defined
by the selected variants irrespective of its global frequency. We refer to these
graphs as Trace-probability DFGs (TP-DFGs) as the edge values are aggregated
trace likelihoods. Figure 6a shows a TP-DFG on real-life data where we added
information on the considered activity sets to an artificial start vertex.

5 Evaluation

We evaluate the Java implementation of our approach (SPS)1 with respect to the
research questions, and compare it to Bolt’s approach (TS-PC) [4] and Cecconi’s
1 https://github.com/tbr-git/procmin-apps.

https://github.com/tbr-git/procmin-apps


30 T. Brockhoff et al.

method (DecPC) [7]. We quantitatively evaluate RQ(I) and assess RQ(II) and
RQ(III) in a case study. In the quantitative evaluation, we also consider EMD
(emdedt) between the complete logs as we only require a score.

For SPS, we consider the 10, 000 most frequent activity sets. For TS-PC, we
use the default p-value of 0.05 with the default abstraction (TS-PC-d)—i.e., 1-
set history abstraction—and 2-sequence history abstraction as in [4] (TS-PC-s).
For DecPC, we evaluate the default parameters (DecPC-d) and the significantly
differing parameterization used for the evaluation presented in [7](DecPC-s).

5.1 Case Study

We conduct a real-life case study to compare and evaluate the considered
approaches with respect to RQ(II) and RQ(III). To this end, we consider the
well-known Road Traffic Fine Management log [13], split into a left and right
log containing low (< 50AC) and high fines (≥ 50AC) [7,19], which was also inves-
tigated in [4,19]. We analyze the logs with respect to two evaluation questions:

EQ(I) Are there execution patterns with respect to the control flow that are
more likely in either variant?

EQ(II) Are there qualitative differences in the execution of certain subprocesses?

EQ(I) is related to RQ(I) and RQ(II), and RQ(III) is the foundation to assess
EQ(II). We identify a subprocess by co-occurring activities where retrieving com-
plementary difference accommodates for choices. Eventually, the conditioned
TP-DFG shows qualitative differences. In contrast to DecPC, which currently
only supports binary rules (e.g., if a occurs, b is more likely to occur), we implic-
itly condition on multiple activity sets. We run our process comparison method
in an automatic mode. We consider the five strongest maximal differences as
seeds and complement each by (at most) three additional activity sets. In doing
so, we skip seeds that were already shown as complementary differences. To dis-
cover the maximal interesting SPS-vertices and complementary differences, we
use the thresholds τ i

m = 0.001, τ i
d = 0.9, τ i

s = 1.2, τ i
i = 0.05, and τ c

jacc = 0.2. An
analysis of the sensitivity of our method to these parameters as well as additional
results can be found online2.

Results. Table 1 summarizes the results obtained by our method and DecPC.
Table 1a shows four sets of complementary activity sets together with each activ-
ity set’s (conditional) probability. Besides, we depict the conditioned TP-DFG
associated with the second set of complementary differences in Fig. 6a and the
TS obtained using TS-PC in Fig. 6b.

Considering EQ(I), all approaches show that the activities SF , IFN , and
AP , related to additional fining, more frequently occur for high claims (D(1)).
However, DecPC splits it among multiple differences, and it remains up to the
analyst to see the bigger picture. Similarly, there are more high-fine cases where
an additional penalty (AP) is added and the fine is collected (SCC, D(2)) or
2 https://doi.org/10.6084/m9.figshare.c.7167954.v1.

https://doi.org/10.6084/m9.figshare.c.7167954.v1
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Table 1. Summary of results obtained for the RTFM log

(a) Discovered complementary SPS-vertex sets (b) Top 10 distinguishing rules [7]

No. Activities
Prob. To./Cond.

L
og

L R L R

1 {SF , IFN, AP} (D(1)) 0.12 0.69 1 1

3

{P} (D(4)) 0.66 0.33 0.88 0.38

(0
.7
5
|0.

8
7
)

{SF , IFN, AP , SCC} 0.09 0.51 0.12 0.58

{SF , IFN, IDA2P , AP , SA2P} (D(5)) 0 0.06 0.1 0.07

{SF , AP , A2J} (D(5)) 0 0.01 0 0.01

4

{SF , P , IFN, AP , SCC} 0 0.02 0.41 0.21

(0
.0
1
|0.

0
9
)

{SF , IFN, AP , IDA2P , SA2P} (D(5)) 0 0.06 0.56 0.68

{IFN, AP , A2J} (D(5)) 0 0.01 0.02 0.14

{P , IDA2P} (D(5)) 0 0.01 0.08 0.09

No. Rule LLH diff.
1 P then SF (D(6)) 24.8%
2 P then AP (D(6)) 19.57%
3 P then IFN (D(6)) 19.57%
4 AP always occurs (D(1)(2)) 19.41%
5 IFN always occurs 19.41%
6 CF then AP before CF 19.41%
7 CF then IFN before CF 19.41%
8 SF always occurs (D(1)(2)) 19.19%
9 CF then SF before CF (D(1)(2)) 19.19%
10 SCC always occurs (D(2)) 14.47%

paid (P, D(3)). In contrast, a payment is made for the majority of low-fine cases
(D(4)). While our approach clearly shows this difference, it is not included in
the top-ten differences obtained by DecPC. TS-PC even shows that low fines
are more likely to be paid immediately after creation. Finally, SPS and TS-PC
indicate that traffic offenders who receive a high fine are more likely to appeal
(A2J, SA2P, IDA2P, D(5)).

Considering RQ(III), the retrieved complementary differences define coher-
ent subaspects. While payments ({P}) might semantically complement the first
difference, D(3) shows that these often occur together. The second set of differ-
ences covers the outcomes of cases with an additional penalty—namely, payment,
credit collection, or appeal. Similarly, the third set gathers the general outcomes.
Finally, the fourth set is again concerned with additional fining, yet, the seed
are cases including credit collections despite payments were made.

Finally, we assess EQ(II) using the conditioned TP-DFG. First, DecPC finds
that if payment was made, high fines are more likely to contain an additional
penalty (D(6)). Note the difference to the diagnostic: even though a fine was
added, payments are more likely. In fact, the order of the activities in the rule
is the opposite of their intuitive order. In contrast, the conditioned TP-DFG in
Fig. 6a shows only small differences considering the outcome of cases with an
additional fine. While credit collection is slightly more likely for low-fine cases,
high-fine cases more frequently result in a payment or in an appeal (D(7)).

5.2 Quantitative Evaluation on Scoring Concept Drift

To the best of our knowledge, there exist no frameworks that evaluate the sen-
sitivity of process comparison approaches. Thus, we propose to quantitatively
evaluate approaches based on their ability to distinguish pairs of event logs that
were extracted from a stable process and those that were extracted from differing
processes. To this end, we use the values returned by approaches to quantify the
severity of a detected difference. For SPS, we consider the largest EMD among
the maximal interesting vertices. For TS-PC, we extract the largest Cohen’s d
value, and DecPC returns the difference in the confidence of distinguishing rules.
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Fig. 6. Graph-based difference visualization using (a) our proposed method and (b)
TS-PC. Due to the conditioning enabled by the variant selection, Subfigure (a) shows
that low fines are less likely to be paid given that an additional penalty (AP) was
added. In contrast, Subfigure (a) shows that additional penalties and credit collection
(SCC) as well as appealing are more likely for high fines. For both graphs, additional
frequency filtering has been applied.

Regarding the classification, we consider this value a “confidence” score assuming
a score of zero if no difference was detected. This is also how a user might intu-
itively interpret the number. In particular, we create process comparison tasks
from collections of artificial event logs [5,8,15] created for Process Concept Drift
Detection where each event log contains sudden changes at known positions.
Figure 7a shows the extraction of five process comparison tasks where each log
contains 50% of the cases of a stable period, and each pair of event logs is either
extracted from same period or comprises across-drift event logs.

Finally, we evaluate process comparison approaches in two ways: first, we
consider the Detection Error Tradeoff (DET) graph. Thereby, we assess how
reliably high scores indicate strong differences—independent of the underlying
process. Second, we analyze how drifts a ranked with respect to the process before
and after. In contrast to the DET graph, this only considers similar processes.
We distinguish the cases: no difference was detected, a method correctly scores
the across-drift task higher than the other two tasks, and a remainder class. Note
that our approach and EMD always return a score, and the first case therefore
never applies. The top part of Fig. 7a shows both approaches.
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Drift 1 Drift 2

L1 L2 L3 L4 L5 L6

(L1, L2)

(L2, L3)

(L3, L4)

(L4, L5)

(L5, L6)

s23
cls1

s12
cls0

s34
cls0

s45
cls1

s56
cls0

DET
graph

{s12, s23, s34} {s34, s45, s56} Rank

(a) Creating classification tasks from con-
cept drift

(b) Time process comparison

(c) DET graph (lower is better) (d) Ranking drift with respect to pre-
/post-drift logs

Fig. 7. Classifying event logs whether they contain a drift.

Results. Figure 7 depicts the results for the extracted 609 classification tasks.
The DET graph in Fig. 7c shows that SPS and TS-PC perform best in the
global drift classification task. Compared to SPS, the false positive rate of TS-
PC increases earlier meaning that TS-PC scores certain across-drift tasks lower
than log pairs extracted from a stable process. EMD performs worse than the
former two methods, yet it might become superior for complicated differences.
For a high false positive rate, the curve falls beneath the curves for SPS and TS-
PC. Finally, DecPC shows an interesting pattern. It assigns the highest scores to
across-drift tasks; yet, at some point, there are many false positives. Eventually,
the false negative rate drops to zero for a false positive rate larger than 20%. This
can be explained by a large number of drift and non-drift process comparison
tasks where no difference is detected. Such tasks receive the score zero.

The local ranking of drifts shown in Fig. 7d confirms the prior findings. SPS
correctly ranks most process comparison tasks triples performing slightly better
than TS-PC. Interestingly, EMD performs very well in this local context. While
SPS aims to isolate differences before it scores them, EMD always considers the
entire trace. Thereby, the cost contribution of a difference dependents on the
trace’s length. Consequently, EMD performs worse than SPS on the global drift
classification task. Finally, the statistical test used by DecPC is, on the one hand,
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conservative resulting in many cases where no difference is detected at all. On
the other hand, DecPC also ranks a couple task triples incorrectly.

Considering the time required for the comparison (i.e., excluding log loading
times), Fig. 7b shows that DecPC is by far the slowest. The other approaches
usually finish within seconds.

Discussion. The quantitative evaluation shows that our method outperforms
existing approaches in the proposed difference classification. However, this evalu-
ation is still based on artificial and does not assess the usefulness of the discovered
differences. Besides, even though high EMD values in the SPS framework indi-
cate strong differences, the individual value can be difficult to interpret; it may
subsume different differences. Considering the performance, the EMD problem
for each individual SPS vertex is usually simpler making it possible to quickly
measure many vertices. Yet our implementation is highly concurrent, while the
other approaches are single threaded. In the real-life case study, our approach
aggregates similar differences better than DecPC. Compared to TS-PC, TS-PC
manages to show almost all differences in a single graph, which is possible for
such a relatively simple log. In contrast, our approach could detect an additional
difference by specifically focusing on complementary variants.

6 Conclusion

We propose a process comparison approach that detects global and complex
control-flow differences in event data extracted from an information system. To
this end, we leverage event data projections to facilitate the comparison and to
isolate differences. We then extend the isolated differences to cover larger frac-
tions of the associated cases. Moreover, we propose an approach to complement
a given difference by considering additional activities and cases. Explicitly iden-
tifying variants that induce a difference also gives a context for a refined analysis.
We demonstrate the applicability of the method in a case study as well as quan-
titatively assess its sensitivity in a newly devised process comparison evaluation
approach. For future work, we plan to improve the detection and presentation
of conditional differences as well to incorporate other dimensions (e.g., time).
Furthermore, we intend to explicitly test differences for statistical significance
to improve the confidence in attained results.
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