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Abstract. AI planning plays a crucial role in the design and optimization of
business processes, providing optimal plans, i.e., sequence of activities, based
on manually crafted or formally documented rules. When these plans are
executed in business processes, the supporting information systems record
a wealth of event data. Analyzing such event data facilitates understanding
implicit patterns and recommendations that have the potential to refine
planning strategies significantly. In this paper, we introduce a systematic
approach to mining these recommendations from event data and integrating
them into AI planning, thus creating plans that are informed by both the
regulatory hard rules and the flexibility of soft recommendations.

Keywords: AI Planning · Automated Planning · Process Mining · Behavioral
Recommendations.

1 Introduction

AI planning has been an essential tool in designing operational processes across
various domains, primarily using rules derived from process models, regulations, and
domain-specific knowledge [13]. In the domain of logistics, for instance, Fox et al. [7]
have shown how planning algorithms can help optimize delivery routes and schedules,
maximizing efficiency. The growing relevance of AI planning in healthcare has also been
underlined. For example, Myers et al. [14] showcased how planning can be employed
to design patient-specific treatment pathways. In the educational domain, AI planning
has emerged as a tool for curricula design, helping in the sequencing of courses, lesson
plans, and learning modules to adapt to students’ varying capabilities and needs [5].

In real-life scenarios, rules used in AI planning can be broadly categorized into two
distinct types: hard rules and soft rules. The former are non-negotiable regulations or
immutable prerequisites, while the latter are more flexible, often shaped by historical
trends and past experiences. Taking curricular designs in the education sector as
an illustrative example, having “Data Structures” as a mandatory prerequisite for
“Advanced Data Structures” exemplifies a hard rule. At the same time, the observation
that students who first engage with “Algorithms” tend to excel more in “Advanced
Data Structures” exemplifies a soft rule.

In dynamically changing domains such as education, logistics, etc., the efficiency of
planning mechanisms can be significantly improved by integrating hard rules with soft
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rules. Such a fusion not only accommodates the structured requirements of planning
but also allows for adjustments based on evolving insights and emergent patterns.

In this paper, we introduce a novel, two-phase approach to augment AI planning
through behavioral recommendations as soft rules. The first phase aims to extract
behavioral recommendations from event data that record the execution of plans.
Using the Declare framework [15], we define pattern templates encompassing various
behavioral attributes like precedence, response, and others. Subsequently, pattern
candidates are instantiated for each template. By classifying cases that either align
with or deviate from these patterns, we can statistically test the significance of
observed behavioral patterns. Subsequently, the patterns that successfully meet this
evaluation are suggested, whereas the remaining patterns are disregarded.

In the second phase, we incorporate these behavioral recommendations into the
AI planning paradigm. Here, recommendation-based AI planning, also known as pref-
erence elicitation AI planning [4,12] emerges as a key technique. Classical AI planning
focuses primarily on finding a plan that satisfies a set of hard constraints or goals.
In contrast, preference-based planning recognizes that in many real-world scenarios,
not all goals are equally preferred, thus introducing a notion of soft constraints or
preferences. Regulations, in our context, act as these non-negotiable, hard constraints
— they set the boundaries within which any plan must operate. In contrast, the
recommendations derived from behavioral patterns function as soft guidelines or
preferences. They guide the planning process towards solutions that have historically
been beneficial but do not strictly bind the plan.

The remainder of this paper is organized as follows. Section 2 presents related
work. Section 3 lays the foundational concepts necessary for understanding our ap-
proach, covering event data, the Declare framework, and the principles of AI planning.
Section 4 details our proposed method for mining behavioral recommendations from
event data. We then, in Section 5, describe the integration of these recommendations
into AI planning, elaborating how they inform the generation of optimal plans. Finally,
Section 6 concludes this paper.

2 Related Work

Classical AI planning typically involves formalizing a problem using states, actions,
and goals, and then using algorithms to find a sequence of actions (plan) that achieves
the specified goals. One of the classical algorithms is the STRIPS (Stanford Research
Institute Problem Solver) planning formalism [6].

Preference-based AI planning has found extensive use in generating personalized
recommendations and plans. One example of this is demonstrated in [18], where
the authors combine Hierarchical Task Networks (HTNs) with user preferences to
generate preferred plans. They extend the Planning Domain Definition Language
(PDDL3) to allow for the specification of preferences over HTN constructs. Another
instance of this approach can be seen in the work by Li et al. [11], where a temporal
HTN planner is proposed to handle temporal constraints with preferences. This
planner employs Simple Temporal Networks with Preferences (STNP) to represent
temporal preferences and extends operators and methods for expressing temporal
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preferences within planning domain knowledge. Finally, Bienvenu et al. [2] provides
a similar approach to ours, where classical AI planning with a bounded plan length
is enhanced by temporal preferences in LTLf .

However, specifying preferences in advance can be challenging and time-consuming,
as user preferences may be complex, unknown, or incomplete. Consequently, preference
elicitation (recommendation-based) frameworks for automated planning have gained
increased attention. In [12], a preference elicitation framework for automated planning
is presented. This framework facilitates user interaction through a restricted set of
uncomplicated comparative queries, allowing for subsequent learning of a preference
relation predictor based on the user’s feedback.

In the broader context of data-driven approaches for study planning, which is
the specific focus area of our work as an application of our approach, a systematic
literature review in [20] highlights the prevalence of both “knowledge-base” and
“machine-learning-based” methods for generating rules and recommendations in ed-
ucation. Various techniques have been proposed, including sequential pattern mining
[1], statistical methods [16], and advanced machine learning techniques [9,19,3].

In the specific context of using event data to extract rules and recommendations
for study planning, [17] represents a recent and highly relevant work. In this study,
the authors extract a wide range of features from event data collected by a campus
management system. They then employ decision tree models trained on these features
to discover goal-based recommendations for study planning.

3 Preliminaries

AI Planning AI planning is a fundamental domain within artificial intelligence that
focuses on the automatic generation of sequences of actions to achieve specific goals,
given a description of the initial state and a set of possible actions. Core concepts
of AI Planning include the following.

– State (s) represents the configuration of the world at a given time point.
– Action (a) refers to an operation capable of transitioning the world from one

state to another. In this work, we consider actions in planning and activities in
events as analogous concepts: actions are entities that are planned, and their
corresponding executions are recorded as events.

– Preconditions (Pre(a)) describe a set of states, at which an action is executable.
– Effects (Eff(a)) are results from executing an action, altering the state.
– Plan (π): An ordered sequence of actions a0,...,ak, where, beginning from an initial

state s0, a0 is executable at s0 and results in s1, a1 is executable at s1 and results
in s2, and so on, such that that, a goal state sg results from applying ak to sk−1.

Imagine designing a computer science curriculum while ensuring hard rules, i.e.,
prerequisites, are met.

– A state might represent the completion status of the “Data Structures” course.
– An action could be taking a course, such as “Advanced Data Structures”.
– A course like “Advanced Data Structures” would have the precondition that
“Data Structures” is already completed.
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Table 1: An Example of Event Logs in an Educational Context
Case ID Event ID Activity Timestamp Course Grade

student1 e1 Data Structures (DS) 2023-02-01 1.3

student1 e2 Advanced Data Structures (ADS) 2023-06-15 2.0

student1 e3 Algorithms (A) 2023-07-20 1.7

student2 e4 Data Structures (DS) 2023-02-01 2.6

student2 e5 Advanced Data Structures (ADS) 2023-06-15 3.2

student2 e6 Algorithms (A) 2023-07-20 2.9

– The effects of introducing and completing “Data Structures” would be equipping
students for more advanced courses.

– A plan in this scenario is a sequence of courses ensuring the prerequisites.

Given these concepts, AI planning can be formally presented as:

Definition 1 (AI Planning). Let S be the universe of all possible states and A the
universe of all possible actions. A planning domain D=(A,S), where A⊆A is a
set of actions and S⊆S is a set of states. A planning problem within domain D is
denoted as PD=(s0,G) where s0∈S is an initial state and G⊆S is a set of potential
goal states. The objective of AI planning is to discover a plan π corresponding to
problem PD in domain D. This plan, when executed from s0, should lead to a state
s′ such that s′∈G.

Event Logs If the plans are executed in operational processes, the executions are
recorded as event logs. We use event logs to mine behavioral recommendations. Each
event refers to an action (i.e., activity) in the plan that has occurred. Additionally,
these events can possess diverse attributes such as a timestamp, a particular person
as the activity performer, and associated costs. Table 1 represents an event log in an
E-learning context. The event log contains two cases: student1 and student2. The
first row represents an event, e1, belonging to student1, which describes student1’
finishing Data Structure course on 2023-02-01 with a grade of 1.3.

The Declare Framework In this work, we mine behavioral recommendations from
event logs. The mined behavioral recommendations are formally represented using
temporal pattern templates in Declare [15], a declarative language designed for process
modeling and analysis. Declare is equipped with a set of temporal pattern templates
that have been inspired by a catalog of temporal logic patterns used in model checking
for a variety of dynamic systems from different application domains. Each temporal
pattern template represents a distinct temporal relationship, and temporal patterns
are derivations of these templates corresponding to specific activities.

For the complete set of pattern templates in Declare, we refer readers to [15].
Frequent pattern templates in Declare include:

– Response: Upon the occurrence of activity ai, activity aj must eventually occur,
denoted as Response(ai,aj).
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– Precedence: Activity aj can occur only if activity ai has occurred beforehand,
denoted as Precedence(ai,aj).

– Exclusive Choice: If activity ai occurs, activity aj must not occur, and vice
versa, denoted as ExclusiveChoice(ai,aj).

4 Phase 1: Mining Behavioral Recommendations

Figure 1 provides an overview of mining behavioral recommendations from event data.
Using the temporal pattern templates of the Declare framework, such as precedence,
response, etc., we instantiate temporal pattern candidates. For each pattern candidate,
we conduct LTL checking on all the cases of a given event log and classify them based
on their alignment or deviation from the pattern. Next, we conduct statistical testing
to ascertain the significant difference between the satisfied cases and violated cases, i.e.,
the validity of the temporal pattern. Only patterns that show a significant difference
between satisfied cases and violated cases are recommended; the rest are discarded.

Event 
logs

Satisfied
cases

Temporal
pattern

template

Pattern 
Instantiation

Temporal
pattern

candidates

LTL 
Checking

Violated
cases

Statistical
Testing Significant

temporal
patterns

(i.e,. behavioral
reommendations)

Fig. 1: Overview of Mining Behavioral Recommendations

Pattern Instantiation First, the pattern instantiation function is designed to
generate pattern candidates based on a template. For instance, given the Precedence
template and a set of activities, e.g., {Data Structures (DS),Advanced Data

Structures (ADS),Algorithms (A)}, it would yield six pattern candidates such as
{Precedence(DS,ADS),...}.

LTL Checking Next, the LTL (Linear Temporal Logic) checking function is essential
for determining whether a specific event sequence (or trace) adheres to or violates a
given pattern. For instance, for the student student1 in Table 1 with a course-taking
sequence, i.e., ⟨DS,ADS,A⟩, this function could evaluate whether they followed the
Precedence(DS,ADS) pattern.

The LTL checking function can be implemented in many ways [8,10]. Gian-
nakopoulou and Lerda [8] translate LTL formulae into Büchi automata, which allows
for the efficient checking of event logs against temporal properties. The automata-
based checking leverages state exploration methods to systematically verify adherence
or violation of LTL-specified patterns within event traces. For more detailed expla-
nations of this technique and its application to the analysis of event logs, the reader
is referred to [8].
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Statistical Testing Finally, the statistical testing function aims to assess the relative
superiority of cases satisfying a specified pattern, i.e., Csatisfied , over those that
violate it, i.e., Cviolated . The distribution for each set, i.e., Csatisfied and Cviolated , is
formed using a scoring function score∈Csatisfied∪Cviolated→R that assigns values to
individual cases based on particular characteristics or outcomes. This value could stem
from various sources. One might consider the case’s inherent attributes, such as the
overall GPA of a student. Alternatively, one could focus on specific event attributes
within a case, like a student’s grade in the Advanced Data Structures course.

By comparing distributions derived from both sets of cases, the function deter-
mines the statistical significance of any observed differences. For instance, it can assess
whether there is a significant difference in grades between students who adhere to and
those who break from the Precedence(DS,ADS) pattern. Patterns securing a p-value
below a predefined significance level (e.g., p value<α) and satisfying the condition of
the mean of Csatisfied being at least a predefined difference level lower than Cviolated

are recommended. Patterns that do not meet these criteria are considered not to
have a significant or meaningful difference and are thus discarded.

5 Phase 2: Planning Based on Behavioral Recommendations

Figure 2 shows an overview of integrating behavioral recommendations into AI
planning to generate optimal plans. Initially, conventional planning problems are
taken and transformed by incorporating behavioral recommendations, which leads to
the creation of recommendation-based planning problems. These enhancements include
assigning weights to specific temporal patterns within the planning problems effectively
prioritizing certain actions over others based on the provided recommendations. The
process continues by merging these enhanced problems with defined planning domains,
which include hard rules that the final plan must adhere to. Next, a recommendation-
based AI planning system is employed to devise plans that are not only valid in terms of
domain constraints but also optimized according to the incorporated recommendations.
The final output is an optimal plan that maximizes the sum of the weights by
respecting the recommended temporal patterns, ensuring that the plan is both feasible
and closely aligned with the preferred behaviors identified by the recommendations.

Planning
problems

Transform Recommendation-based
planning problems

Recommendation-based
AI planning

Optimal
plans

Planning
domains

Behavioral
reommendations

Fig. 2: Overview of Planning Based on Behavioral Recommendations

Transformation First, based on behavioral recommendations, we calibrate weights
to align the planning domain with observed patterns. Action pairs resonating with
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these recommendations can be assigned higher weights (or lesser costs), elevating their
likelihood in the optimal plan. For example, if data suggests that the Algorithms

course preceding the Advanced Data Structures course leads to improved student
performance in the Advanced Data Structures course, i.e., the precedence tempo-
ral pattern of this pair has a high weight, then a plan where Algorithms is planned
before Advanced Data Structures is considered more optimal and recommended
to students more than a plan where this does not hold.

Definition 2 (Recommendation-Based Planning Problem). Let R be a set of
siginificant temporal patterns, i.e., behavioral recommendations, mined from the the
previous phase, and let D=(A,S) be a planning domain. Let PD be the set of all
plans in this planning domain, a weight function wR :PD→R+ maps plans to their
weights and is calculated by:

wR(π)=
∑

T(a,b)∈R s.t.
T(a,b) holds in π

wT (a,b)

where wT (a,b)∈ [0,1] is the weight of recommendation T(a,b). For a planning problem
PD=(s0,G), a plan π is considered optimal if it is valid and maximizes the weight
wR(π).

Recommendation-Based AI Planning Solving a planning problem where actions
can occur maximally once is in NP because the length of any valid plan is linear. There-
fore, it can be modeled as an ILP feasibility problem. For any plan π where actions
occur maximally once, there exists a unique tuple of relations (eπ,<π), where eπ⊆A,
s.t. a∈eπ iff. a occurs in π, and a total order <π⊂A2, s.t. a<π b iff. a occurs before b
in π. An ILP feasibility problem searches for such tuples corresponding to valid plans.

Minimal length, minimal costs, or maximal rewards usually define optimality for
such plans. In our setting, optimality is defined by the function wR(π). Thus, the
ILP optimality problem:

maximize wR(π) s.t. π is a valid plan

can solve any recommendation-based AI planning problem, where actions occur
maximally once.

6 Conclusion

In this paper, we have presented a novel, two-phase approach that enhances tradi-
tional AI planning with behavioral recommendations derived from event data. By
leveraging the Declare framework to define and instantiate pattern templates, we
have successfully extracted meaningful behavioral patterns that serve as soft rules in
the planning process. These soft rules complement the hard constraints typically used
in AI planning, providing a more adaptable planning mechanism that reflects both
the rigid requirements and the flexible preferences observed in real-world scenarios.
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