
Stochastic Conformance Checking Based on
Expected Subtrace Frequency

Eduardo Goulart Rocha
Celonis Labs GmbH & RWTH Aachen

Munich, Germany
e.goulartrocha@celonis.com

Sander J.J. Leemans
RWTH Aachen University & Fraunhofer

Aachen, Germany
s.leemans@bpm.rwth-aachen.de

Wil M.P. van der Aalst
RWTH Aachen University & Celonis

Aachen, Germany
wvdaalst@pads.rwth-aachen.de

Abstract—Conformance checking focuses on quantifying be-
havioral differences between desired and observed process be-
havior. Stochastic conformance checking considers not only the
desired control flow of a process but also the relative frequency of
each sequence. State-of-the-art stochastic conformance measures
either cannot gracefully handle partially matching traces or
are prohibitively expensive to compute. This paper bridges this
gap by introducing the stochastic Markovian abstraction. The
abstraction is defined as the relative occurrences of sub-traces in
a stochastic language. Two stochastic languages can be compared
via their Markovian abstractions using existing language com-
parison techniques. We show how to compute this abstraction
for bounded, livelock-free stochastic labeled Petri nets. One of
its derived measures is qualitatively and quantitatively evaluated
on a series of artificial and real-world datasets. The experiments
show that the abstraction can be efficiently computed and is
successful in handling partially mismatching traces.

Index Terms—Process Mining, Stochastic Conformance Check-
ing, Stochastic Petri nets

I. INTRODUCTION

Conformance checking measures quantify the extent of
agreement between the observed data, in the form of an event
log, and a de-jure model, specified as a process model. Tradi-
tional conformance checking techniques have mostly ignored
the stochastic perspective of the process model, leading to one-
sided analyses that only consider the frequency information
from the event log. In recent years, stochastic conformance
checking has gained traction. Its goals are the same as with
traditional conformance checking, but considering the proba-
bility of traces in stochastic models, e.g. stochastic Petri nets.

A particular challenge for stochastic conformance measures
is that in business processes, traces may only partially match
one another. For instance, if a model trace and a log trace
disagree in only one activity, we do not want to consider both
traces as completely distinct. Therefore, ideally, a stochastic
conformance measure applies partial trace matching. Further-
more, a stochastic conformance measure should be efficient
to compute, and take into account the frequency information
of both the model and the log. This is a difficult goal to
achieve and none of the existing state-of-the-art stochastic
conformance measures satisfies all these requirements.

We propose the stochastic Markovian abstraction to miti-
gate runtime and robustness issues in stochastic conformance
checking techniques. As shown in Figure 1, the idea is to
compare two stochastic languages based on their abstraction.

The abstraction essentially encodes the expected number of
occurrences of each subtrace in the language. By working with
subtraces, the abstraction is naturally better suited to handle
partial matches between traces. At the same time, the measure
can be computed exactly for bounded, livelock-free stochastic
labeled Petri nets, a widely adopted class of stochastic process
models in process mining. We evaluate one of its derived
metrics on synthetic and real-world datasets and show that
using the abstraction helps mitigating these issues.

 ,
 ,
 Compare c

b
3

a

3

Compare

1

1

2
1

Fig. 1: Comparing the event log L0 and the stochastic labeled
Petri net SN0 directly and via their Markovian abstraction.

The remainder of this paper is organized as follows: Sec-
tion II introduces some basic concepts, Section III presents
the stochastic Markovian abstraction, Section IV evaluates the
abstraction on artificial and real-world datasets, Section V
presents related work. Finally, Section VI concludes the paper
with directions for future work.

II. PRELIMINARIES

This section presents some basic definitions required to
understand the main methods of the paper. N0 are the natural
numbers including 0. We denote the indicator function as
1A(x) equals to 1 if x ∈ A, and 0 otherwise. Given an alphabet
of activities Σ, we define τ /∈ Σ as the invisible label and write
Στ = Σ ∪ {τ}. Σ≤k denotes the set of all traces over Σ of
length less than or equal k, and Σ∗ denotes the set of all
finite traces over Σ. Given a trace σ = ⟨l1, l2, · · · ln⟩ ∈ Σ∗,
σi→j = ⟨li, li+1, · · · lj⟩, 1 ≤ i ≤ j ≤ n denotes the subtrace
of σ of length j − i+ 1 starting at index i.

A multiset B over a set S is a function B : S → N0 where
for every s ∈ S, B(s) returns the frequency of s in B. We
denote a multiset B as B = [s

B(s1)
1 , s

B(s2)
2 , · · ·]. If B(si) = 1,

https://orcid.org/0009-0000-1184-1188
https://orcid.org/0000-0002-5201-7125
https://orcid.org/0000-0002-0955-6940

we omit the superscript and if B(si) = 0 we do not write si,
e.g. for S = {x, y, z}, [x2, y] is the multiset containing 2
copies of x, one copy of y, and no copy of z. We use ⊎ and \
to denote the union and difference of two multisets, i.e. (B1⊎
B2)(s) = B1(s) +B2(s) and (B1 \B2)(s) = B1(s)−B2(s)
(this requires B1(s) ≥ B2(s) ∀s ∈ S). We define supp B =
{s ∈ S | B(s) > 0} as the multiset’s support and |B| =∑

s∈S B(s) as its cardinality. Furthermore, B(S) denotes the
set of all multisets over S. Last, we abuse notation and write
x <∞ and x = ∞ to denote that an expression/function x is
bounded/defined, respectively unbounded/undefined. We start
with a general definition of a stochastic language:

Definition 1. (Stochastic Language) Let Σ be an alphabet,
a stochastic language l is a function l : Σ∗ → [0, 1] such that∑

σ∈Σ∗ l(σ) = 1.

An event log is a collection of events describing the system’s
observed behavior. It implicitly defines a stochastic language.

Definition 2. (Event Log and its Induced Stochastic Lan-
guage) Let Σ be an alphabet. An event log L is a multiset
of traces L ∈ B(Σ∗). An event log L defines a stochastic
language lL : Σ∗ → [0, 1] where lL(σ) =

L(σ)
|L| .

Figure 1 shows an example log L0. Its stochastic language is
lL0

= [⟨a, b⟩ 5
8 , ⟨a, a, b, c⟩ 2

8 , ⟨a, a, c, b⟩ 1
8]. In contrast to event

logs, stochastic process models often have an unbounded
number of traces and are usually specified using formalisms
such as stochastic labeled Petri nets (SLPN).

Definition 3. (Stochastic Labeled Petri Net (SLPN)) A
stochastic labeled Petri net (SLPN) is a septuple SN =
(P, T, F,Σ, λ,M0, w) where P is the set of places, T is the
set of transitions s.t. P ∩ T = ∅, F ⊆ (P × T) ∪ (T × P)
is the flow relation, Σ is the set of activity labels s.t. τ /∈ Σ,
λ : T → Στ is a transition labeling function, M0 ∈ B(P) is
the initial marking, and w : T → R+ is a weight function.

SLPNs extend traditional labeled Petri nets with the stochas-
tic perspective. The state of a SLPN is represented as a
multiset of places M ⊆ B(P) called a marking. For each
transition t ∈ T , we define •t = {p ∈ P |(p, t) ∈ F} and
t• = {p ∈ P |(t, p) ∈ F} as the transition’s pre-/post sets. A
transition t ∈ T is enabled at marking M (written M [t⟩) if
•t ≤M . Firing an enabled transition t changes the state of the
Petri net from M to M ′ =

(
M \ •t

)
⊎ t• (we write M [t⟩M ′).

Let T ′ ⊆ T be the set of enabled transitions in M . A transition
t′ ∈ T ′ fires with probability w(t′)/

∑
t′′∈T ′ w(t′′).

A run is a sequence of transitions σ = ⟨t1, t2 · · · tn⟩ ∈ T ∗

such that M0[t1⟩M1[t2⟩M2 · · ·Mn−1[tn⟩Mn. A marking M
is reachable if there exists a run σ ∈ T ∗ such that M0[σ⟩M .
A marking is a deadlock marking if ∄t ∈ T | •t ≤ M , i.e.
no transition is enabled at M . For this work, we consider
all deadlock markings as the net’s accepting states. If Mn

is an accepting state, then σ is an accepting run. Given a
SLPN SN , R(SN) = {M ∈ B(P)|M is reachable} defines
its set of reachable markings. A livelock is a marking from
which no accepting state can be reached. A SLPN is livelock-

free if it contains no reachable livelock and it is bounded if
it has finitely many reachable states. Bounded livelock-free
SLPNs generate a stochastic language and have a close link
to Stochastic Non-Deterministic Finite Automata (SNFA):

Definition 4. (Stochastic Non-Deterministic Finite Automa-
ton (SNFA)) A stochastic non-deterministic finite automaton
(SNFA) is a tuple (Q,Σ, δ, q0, pf) where Q is a set of states,
Σ is an alphabet s.t. τ /∈ Σ, δ : Q × Στ × Q → [0, 1] is the
transition probability function, q0 is the initial state and pf :
Q→ [0, 1] is the function defining the final probability of each
state, where ∀q ∈ Q :

∑
(l,q′)∈(Στ×Q) δ(q, l, q

′) + pf (q) = 1.

Notice that a SNFA state might have multiple outgoing
edges with the same label. We define the set of SNFA edges
E = (Q × Στ × Q). For an edge e = (q, l, q′) ∈ E, we
define src(e) = q, λ(e) = l, tgt(e) = q′. Given a SNFA
N = (Q,Σ, δ, q0, pf), a subpath in N is a sequence of edges
ρ = ⟨e1, e2, · · · , en⟩ ∈ E∗ such that tgt(ei) = src(ei+1)
for every 1 ≤ i < n. We define src(ρ) = src(e1) and
tgt(ρ) = tgt(en). We denote by ΘN (q) the set of all subpaths
in N such that src(e1) = q (including the empty subpath).
Similarly, ΘN (q, q′) is the set of subpaths in ΘN (q) ending
in q′ and ΘN (q, q′, n) is the set of subpaths in ΘN (q, q′) with
length n. We extend δ to subpaths as δ(ρ) =

∏
ei∈ρ δ(ei) (1 if

ρ is empty). The labeling of a subpath ρ ∈ E∗ is the trace λ(ρ)
obtained by concatenating the visible labels λ(ei) of ρ. The ac-
cepting probability of a subpath ρ is PN (ρ) = δ(ρ)·pf (tgt(ρ)).
The probability of N generating a trace σ ∈ Σ∗ is defined as
the sum of the probabilities of all subpaths starting from q0
labeled with σ, i.e. PN (σ) =

∑
ρ∈ΘN (q0),λ(ρ)=σ PN (ρ).

A state in N is useful if it appears in at least one path
of N with non-zero probability and accessible if it can be
reached from the starting state with non-zero probability. N
is consistent if all of its accessible states are useful [1].
Furthermore, N is trimmed if all of its states are accessible
and useful (a SNFA can be trimmed in linear time).

If N is consistent, then PN : Σ∗ → [0, 1] defines a stochas-
tic language [1]. The class of stochastic regular languages
is the class of stochastic languages that can be generated by
a consistent SNFA [1]. In this paper, we will only consider
trimmed, consistent SNFAs. These can be directly obtained
from bounded, livelock-free SLPNs.

Definition 5. (The Embedded SNFA of a Bounded,
Livelock-Free SLPN) Let SN = (P, T, F,Σ, λ,M0, w) be
a bounded, livelock-free SLPN. Its embedded SNFA is the
SNFA N = (R(SN),Σ, δ,M0, pf) such that:

δ(M, l,M ′) =

∑
t∈T,M [t⟩M ′,λ(t)=l w(t)∑

t∈T,M [t⟩ w(t)

and

pf (M) =

{
1 M is a deadlock marking
0 otherwise

By construction, N generates the same stochastic language
as SN . Figure 2 shows the embedded SNFA from the SLPN

Fig. 2: SN0’s embedded SNFA N0

of Figure 1. Notice that it contains τ transitions. A SNFA is τ -
free if for every qi, qj ∈ Q : δ(qi, τ, qj) = 0, i.e. τ transitions
have weight 0. Given an arbitrary SNFA N , one can always
convert it into a τ -free SNFA N ′ by τ -removal [2].

A. The Earth Mover’s Stochastic Conformance Measure

This work is heavily based on the Earth Mover’s Stochastic
Conformance (EMSC) measure [3]. Before we can define that,
we must first define the notion of a reallocation function.

Definition 6. (Reallocation Function) Let Σ be an alphabet
and l1, l2 : Σ∗ → [0, 1] be stochastic languages. A reallocation
function is a function rl1,l2 : Σ∗ × Σ∗ → [0, 1] such that:

∀σ ∈ Σ∗, l1(σ) =
∑

σ′∈Σ∗

rl1,l2(σ, σ
′)

and ∀σ′ ∈ Σ∗, l2(σ
′) =

∑
σ∈Σ∗

rl1,l2(σ, σ
′) (1)

In other words, a reallocation function defines how to move
the probability mass from one trace distribution into another.
The EMSC measure is based on the optimal reallocation
strategy with respect to some cost function.

Definition 7. (Earth Mover’s Stochastic Conformance
Measure (EMSC)) Let Σ be an alphabet, l1, l2 : Σ∗ → [0, 1]
stochastic languages, and Rl1,l2 the set of all possible realloca-
tion functions from l1 to l2. Let c : Σ∗×Σ∗ → [0, 1] be a trace
distance function. The Earth Mover’s Stochastic Conformance
measure (EMSC) with cost function c is defined as:

EMSC (l1, l2, c) = min
r∈Rl1,l2

∑
(σ,σ′)∈Σ∗×Σ∗

r(σ, σ′)c(σ, σ′) (2)

Two cost functions are commonly used in process mining.
The normalized string edit (Levenshtein) distance [3] and the
unit distance between traces u : Σ∗ × Σ∗ → [0, 1] defined
as u(σ, σ′) = 1{σ}(σ

′), defining the EMSC and uEMSC
stochastic conformance measures respectively.

Both measures have significant weaknesses. The EMSC
is arguably considered as the ground truth for measuring
language similarity. However, it cannot be computed if one
of the languages has infinite support (which is the common
case in process mining), therefore, an approximation computed
by sampling the model behavior is used instead, yielding
the truncated EMSC measure (tEMSC). The tEMSC measure
requires sampling a reasonable probability mass from the
model, which is in itself a challenging task for models with
a high degree of parallelism. Even if the sampling succeeds,

solving the associated minimization problem requires solving
an optimal transportation problem [3], which is computation-
ally expensive. In contrast, the uEMSC can be computed in
an exact manner [4] and is efficient in practice, however, the
unit cost function severely penalizes partial trace mismatches.
Hence, existing techniques require the user to choose between
scalability, robustness to partial mismatches, and exact mea-
sure computation.

III. THE STOCHASTIC MARKOVIAN ABSTRACTION

This section presents the stochastic Markovian abstraction,
a natural extension of the Markovian abstraction from [5]
to stochastic languages. We first define the abstraction and
discuss under which conditions it exists. Then, we show how to
compute it for stochastic regular languages. Finally, we present
a specific conformance measure based on this abstraction. We
start by defining the multiset of k-trimmed subtraces:

Definition 8. (Multiset of K-Trimmed Subtraces) Let σ ∈
Σ∗ and k ≥ 1. The multiset of k-trimmed subtraces Sk

σ is
recursively defined as:

Sk
σ =

{
{σ} if |σ| ≤ k

{σ1→k} ⊎ Sk
σ2→|σ| otherwise

Let σ = ⟨a, a, b, c⟩, then S1
σ = [⟨a⟩2, ⟨b⟩, ⟨c⟩], S2

σ =
[⟨a, a⟩, ⟨a, b⟩, ⟨b, c⟩], S3

σ = [⟨a, a, b⟩, ⟨a, b, c⟩], and Sk
σ =

[⟨a, a, b, c⟩] for all k ≥ 4. The k-th order multiset Makorvian
abstraction of a trace (defined below) is similar to the multiset
of k-trimmed subtraces but with special start/end markers +/−
to track the language’s prefixes and suffixes.

Definition 9. (K-th Order Multiset Markovian Abstraction
of a Trace) Let Σ be an alphabet, +/− be special start/end
markers, with +,− /∈ Σ and k ≥ 2. The k-th order multiset
Markovian abstraction of a trace σ ∈ Σ is defined as:

Mk
σ = Sk

+σ−

From now, we abbreviate Σ ∪ {+,−} = Σ±. Consider
again σ = ⟨a, a, b, c⟩, then M2

σ = [⟨+, a⟩, ⟨a, a⟩, ⟨a, b⟩, ⟨b, c⟩,
⟨c,−⟩], M3

σ = [⟨+, a, a⟩, ⟨a, a, b⟩, ⟨a, b, c⟩, ⟨b, c,−⟩], M4
σ =

[⟨+, a, a, b⟩, ⟨a, a, b, c⟩, ⟨a, b, c,−⟩], M5
σ = [⟨+, a, a, b, c⟩,

⟨a, a, b, c,−⟩], and Mk
σ = +σ− for k ≥ 6. Definition 9 is

extended to stochastic languages by considering trace proba-
bilities as follows:

Definition 10. (K-th Order Stochastic Markovian Abstrac-
tion) Let l : Σ∗ → [0, 1] be a stochastic language over alphabet
Σ and k ≥ 2. Define function fkl : Σ∗

± → R as:

fkl (γ) =
∑
σ∈Σ∗

l(σ) ·Mk
σ (γ) (3)

The k-th order stochastic Markovian abstraction of l is the
function mk

l : Σ∗
± → [0, 1] defined as:

mk
l (γ) =

fkl (γ)∑
γ′∈Σ∗

±
fkl (γ

′)
(4)

Function fkl returns the expected number of occurrences of
l’s k-trimmed subtraces, with special start and end markers
to track its prefixes and suffixes. The k-th order stochastic
Markovian abstraction is the normalization of fkl . This is a
natural generalization of the non-stochastic version from [6].

The use of prefix/suffix markers +/− is due to two reasons.
First, being able to distinguish between prefixes, suffixes, and
infixes of the language makes it easier to define operations
on this set, as done in [6]. Second, it helps distinguishing
between ”scaled” languages. For example, given languages
l1 = [⟨a, a⟩1.0] and l2 = [⟨a, a, a⟩1.0], then m2

l1
= [⟨+, a⟩ 1

3 ,

⟨a, a⟩ 1
3 , ⟨a,−⟩ 1

3] and m2
l2

= [⟨+, a⟩0.25, ⟨a, a⟩0.5, ⟨a,−⟩0.25].
If no +/− markers were used, then m2

l1
= m2

l2
= [⟨a, a⟩1.0].

For the example event log L0 from Figure 1, we obtain that
f2lL0

(⟨+, a⟩) = 5
8 ∗1+

2
8 ∗1+

1
8 ∗1 = 1, and (in general), f2lL0

=

[⟨+, a⟩1, ⟨a, b⟩ 7
8 , ⟨b,−⟩ 6

8 , ⟨a, a⟩ 3
8 , ⟨b, c⟩ 2

8 , ⟨c,−⟩ 2
8 , ⟨a, c⟩ 1

8 ,
⟨c, b⟩ 1

8]. And so m2
lL0

= [⟨+, a⟩ 8
30 , ⟨a, b⟩ 7

30 , ⟨b,−⟩ 6
30 , ⟨a, a⟩ 3

30 ,

⟨b, c⟩ 2
30 , ⟨c,−⟩ 2

30 , ⟨a, c⟩ 1
30 , ⟨c, b⟩ 1

30].
Clearly, mk is well-defined for stochastic languages with

finite support, such as event logs. For arbitrary stochastic lan-
guages, this might not be the case. Consider l : {a}∗ → [0, 1]

defined as l(σ) =

1

2n+1 σ = ⟨a, a, · · · a︸ ︷︷ ︸
2n+1 times

⟩, n ∈ N0

0 otherwise
. Then l

is a stochastic language since
∑

σ∈{a}∗ l(σ) = 1. However,
f2l (⟨a, a⟩) = 1 · 1

2 + 2 · 1
4 + 4 · 1

8 + · · · = ∞, i.e. f2l is not
defined. The lemma below gives a necessary and sufficient
condition for fkl <∞.

Lemma 11. (A Necessary and Sufficient Condition for
Well-Defined fkl) Given a stochastic language l : Σ∗ → [0, 1].
Then for any k ≥ 2

fkl (γ) <∞ ∀γ ∈ Σ≤k
± ⇐⇒

∑
σ∈Σ∗

l(σ)|σ| <∞ (5)

Proof. We first show that |Sk
σ(γ)| ≥ |σ|/k for every k by using

induction on |σ|. The induction’s base-case (|σ| ≤ k) can be
easily verified. For every σ ∈ Σ∗, |σ| > k, Sk

σ = {σ1→k} ⊎
Sk
σ2→|σ| . So |Sk

σ | = 1 + |Sk
σ2→|σ| | ≥ 1 + |σ|−1

k ≥ |σ|/k.
(⇒) fkl (γ) <∞ ∀γ implies

∑
γ∈Σ

≤k
±
fkl (γ) <∞, then:∑

γ∈Σ
≤k
±

fkl (γ) =
∑
σ∈Σ∗

(
l(σ)

∑
γ∈Σ

≤k
±

Mk
σ (γ)

)
=

∑
σ∈Σ∗

l(σ)|Mk
σ | <∞

And since |Mk
σ | = |Sk

+σ−| ≥
|σ|
k , then:∑

σ∈Σ∗

l(σ)|σ|
k

<∞ ⇒
∑
σ∈Σ∗

l(σ)|σ| <∞

(⇐) Observe that |Sk
σ | ≤ |σ|+ 1 (can be easily proven by

induction), therefore |Mk
σ | = |Sk

+σ−| ≤ |σ|+ 3. Thus:

fkl (γ) =
∑
σ∈Σ∗

l(σ)Mk
σ (γ) ≤

∑
σ∈Σ∗

l(σ)(|σ|+ 3)

=
∑
σ∈Σ∗

l(σ)|σ|+ 3 ·
∑
σ∈Σ∗

l(σ) =
∑
σ∈Σ∗

l(σ)|σ|+ 3

Which is <∞ if
∑

σ∈Σ∗ l(σ)|σ| <∞.

It follows directly from supp(fkl) ⊆ Σ≤k
± that fkl < ∞ ⇒

mk
l < ∞. The condition from Lemma 11 above holds for

stochastic regular languages. We show that by presenting a
procedure to compute it for a τ -free SNFA. But before, we
must introduce patched SNFAs:

Definition 12. (Patched SNFA) Let N = (Q,Σ, δ, q0, pf)
be a SNFA. Its patched SNFA is the SNFA N̂ = (Q ∪
{q+, q−},Σ±, δ̂, q+, p̂f), where p̂f = 1{q−}, and

δ̂(q, l, q′) =

pf (q) q′ = q− and l = −
1 q = q+ and l = +

δ(q, l, q′) otherwise

N̂ adds a source state q+ and a sink state q− to N . It
accepts the stochastic language l̂ : Σ∗

± → R equal to language
l concatenated with suffix + and prefix −, i.e. l(t) = l̂(+t−).

Lemma 13. (Computing fkl of a Stochastic Regular Lan-
guage l) Let Σ be an alphabet, N = (Q,Σ, δ, q0, pf) be
a trimmed, consistent τ -free SNFA generating the stochas-
tic language l : Σ∗ → [0, 1], and k ≥ 2. Let N̂ =
(Q̂,Σ±, δ̂, q+, p̂f) be N ’s patched SNFA generating language
l̂. For γ ∈ supp(fkl), it holds that:

fkl (γ) =
∑
q∈Q̂

xq · ϕ̂(γ|q) (6)

Where x = [xq+ xq0 · · · xq−]T is the solution to the equation
(I − ∆̂)x = [1 0 · · · 0]T (∆̂ is N̂ ’s transition matrix) and
ϕ̂(γ|q) =

∑
ρ∈ΘN̂ (q),λ(ργ)=γ δ̂(ρ).

Proof. We first prove that fkl (γ) =
∑

α,β∈Σ∗
±

PN̂ (αγβ)

for γ ∈ supp(fkl). From Definition 10, fkl (γ) =∑
σ∈Σ∗ l(σ)Mk

σ (γ). If |γ| < k, then Mk
σ (γ) = 0, unless

γ = +σ−, in which case Mk
σ (γ) = 1. Thus fkl (γ) = PN̂ (γ).

Also, |γ| < k implies +,− in γ. Thus, PN̂ (αγβ) = 0 for
α, β ̸= ⟨⟩ ⇒

∑
α,β∈Σ∗

±
PN̂ (αγβ) = PN̂ (γ).

For |γ| = k, we define the boundary-affixes set
Bσ(γ) = {(α, β) | α, β ∈ Σ∗

±,+σ− = αγβ} . Then
Mk

σ (γ) = |Bσ(γ)|. Therefore, fkl (γ) =
∑

σ∈Σ∗ l(σ)Mk
σ (γ) =∑

σ∈Σ∗
∑

α,β∈Bσ(γ)
PN̂ (+σ−) =

∑
α,β∈Σ∗

±
PN̂ (αγβ). (To

check the last step, expand Bσ(γ) and reorganize the terms).
Now, we show that

∑
α,β∈Σ∗

±
PN̂ (αγβ) =

∑
q′∈Q̂ xq ·

ϕ̂(γ|q′). First, observe that since N̂ is τ -free, then:∑
α,β∈Σ∗

±

PN̂ (αγβ) =
∑

ρα,ργ ,ρβ∈Ê∗

ραργρβ∈ΘN̂ (q+)
λ(ργ)=γ

PN̂ (ραργρβ) (7)

The right side of Equation 7 computes the sum of the proba-
bilities of all passes over all subpaths labeled γ in the set of
all accepting paths of N̂ . Now, we rewrite the term as:

=
∑

ρα,ργ∈Ê∗

ραργ∈ΘN̂ (q+)
λ(ργ)=γ

(
δ̂(ραργ)

∑
ρβ∈ΘN̂ (tgt(ργ))

PN̂ (ρβ)
)

(8)

1 | 0

(a)

∆̂ =

0 1 0 0 0 0 0
0 0 1 0 0 0 0
0 0 0.25 0.45 0.3 0 0
0 0 0 0 0 1 0
0 0 0 0 0 1 0
0 0 0 0 0 0 1
0 0 0 0 0 0 0

(b)

Fig. 3: N0 from Figure 2 after τ -removal (3a black) and
patching N̂0 (3a gray), and its transition matrix ∆̂ (3b)

tgt(ργ) is useful, therefore
∑

ρβ∈ΘN̂ (tgt(ργ))
PN̂ (ρβ) = 1, so:

=
∑

ρα,ργ∈Ê∗

ραργ∈ΘN̂ (q+)
λ(ργ)=γ

δ̂(ραργ) =
∑

ρα∈ΘN̂ (q+)

(
δ̂(ρα) ·

∑
ργ∈ΘN̂ (tgt(ρα))

λ(ργ)=γ

δ̂(ργ)
)

(9)

=
∑
q∈Q̂

∑
ρα∈ΘN̂ (q+,q)

(
δ̂(ρα) · ϕ̂(γ|q)

)
(10)

Now define ψ(qi, qj , n) =
∑

ρ∈ΘN̂ (qi,qj ,n)
δ̂(ρ). Then∑

ρα∈ΘN̂ (q+,q) δ̂(ρα) =
∑∞

n=0 ψ(q+, q, n). The following
relation holds:

ψ(qi, qj , n) =

{
1{qi}(qj) n = 0∑

qk∈Q̂ ψ(qi, qk, n− 1)∆̂k,j n > 0

In matrix form,
∑∞

n=0 ψ(q+, q, n) = (I+∆̂+∆̂2+· · ·)q+,q =

(I − ∆̂)−1
q+,q = xq ([7]).

Lemma 13 directly yields a method to compute mk
l given

a SNFA N accepting l. First, we transform N into a τ -free
SNFA N ′ with a τ -removal step [2] and patch N ′ by adding
the +/− markers, obtaining N̂ . Then x can be computed by
solving the system of linear equations (I−∆̂)x = [1 0 · · · 0]T,
and ϕ̂(γ|q) can be computed by replaying γ from q.

Figure 3a shows the SNFA from Figure 2 after τ -removal
and patching. Figure 3b shows the transition matrix ∆̂ of
N̂ . Solving (I − ∆̂)x = [1 0 · · · 0]T for x, we obtain x =
[1, 1, 4/3, 0.6, 0.4, 1, 1]T , (annotated in red in Figure 3a). From
that, it is possible to compute fkl (γ) as

∑
qi∈Q̂ xqi · δ̂(γ|qi).

For example, δ̂(⟨a, b⟩|q0) = 1 ∗ 0.45 = 0.45, δ̂(⟨a, b⟩|q1)
= 0.25 ∗ 0.45 = 0.1125, and δ̂(⟨a, b⟩|qi) = 0 for the other
states qi. Therefore, f2l (⟨a, b⟩) = 1∗0.45+4/3∗0.1125 = 0.6.

1) Extending to Other Modeling formalisms: The section
above shows that it is possible to compute mk

l of a bounded,
livelock-free SLPN via its embedded SNFA. Nevertheless,
there also exists unbounded livelock-free SLPNs for which mk

l

is well-defined. For example, the net from Figure 4, accepting

the language l(σ) =

1

2n+1 σ = ⟨a, · · · a︸ ︷︷ ︸
n times

, b, · · · b︸ ︷︷ ︸
n times

⟩, n ∈ N0

0 otherwise

a b
a

1

1

1

Fig. 4: Unbounded, livelock-free SLPN with well-defined mk
l .

Observe that
∑

σ∈Σ∗ |σ|l(σ) =
∑∞

n=0
2n

2n+1 < ∞. There-
fore (Lemma 11), mk

l is well-defined. The question arises
whether mk

l is well-defined for all livelock-free SLPNs. We
could neither prove nor disprove this statement.

2) Runtime: mk of an event log can be computed with a
linear pass. Let SN be a SLPN. Let N = (Q,Σ, δ, q0, pf)
be its embedded SNFA and N ′ = (Q′,Σ, δ′, q′0, p

′
f) a τ -

free SNFA generating the same language as N and N̂ =
(Q̂,Σ±, δ̂, q+, p̂f) its patched SNFA. Then |Q| = |R(SN)|,
where |R(SN)| is exponential with the number of places in
SN . |Q′| ≤ |Q| [2], but N ′ has higher edge density than N .

The computation of Lemma 13 occurs in two steps: First,
solve the linear system (I−∆̂)x = [1 0 · · · 0]T . Then, compute
ϕ̂(γ|q) for each (γ, q) ∈ Σ≤k

± × Q̂. For the first step, I − ∆̂

is a |Q̂| × |Q̂| matrix (|Q̂| = |Q′| + 2). Oftentimes, e.g. if
the model is deterministic, I − ∆̂ is very sparse, such that the
system can be efficiently solved. The second step has runtime
in O(|Q̂|∗|Σ±|k), which is the same as the method for its non-
stochastic verion mk [6]. Despite the relatively high exponents,
Section IV shows that the computation is still feasible.

3) The Stochastic Markovian-Based Conformance Mea-
sures: Definition 10 defines a stochastic language. Hence,
given two stochastic languages l1 and l2, it is possible to
compare mk

l1
,mk

l2
using any existing stochastic conformance

measure. In this paper, we propose to use the uEMSC mea-
sure to ensure the scalability of the approach. The mk-
uEMSC measure can be efficiently computed using the for-
mula mk9uEMSC(l1, l2) = 1 −

∑
γ∈Σ

≤k
±
max(mk

l1
(γ) −

mk
l2
(γ), 0) [3]. By using the stochastic Markovian ab-

straction, mk-uEMSC compensates for the rigidity of the
uEMSC measure regarding partially matching traces. Intu-
itively, mk9uEMSC compares the expected frequency of
subtraces in both languages. Notice that mk

l approaches +l−
as k → ∞. Therefore, for large ks, mk9uEMSC(l1, l2)
approaches uEMSC(+l1−,+l2−) = uEMSC(l1, l2).

IV. EXPERIMENTAL EVALUATION

This section evaluates the mk-uEMSC measure qualitatively
and quantitatively. The approach has been implemented in
Python 3.11. We use optimized native libraries for the τ -
removal step [8] (which implements an approximated vari-
ant) and for solving linear systems. We choose the trun-
cated Levenshtein-based earth mover’s stochastic conformance
(tEMSC) [3] measure and the unit-cost earth mover’s stochas-
tic conformance (uEMSC) [4] measure as baseline. The first

TABLE I: Measure value (model ranking) for log L1.

tEMSC uEMSC m2 m3 m4

SN1 0.973 (2) 0.953 (2) 0.937 (2) 0.924 (2) 0.897 (2)
SN2 0.579 (5) 0.368 (3) 0.685 (3) 0.575 (3) 0.536 (3)
SN3 0.727 (4) 0.000 (8) 0.644 (4) 0.349 (4) 0.270 (4)
SN4 1.000 (1) 1.000 (1) 1.000 (1) 1.000 (1) 1.000 (1)
SN5 0.744 (3) 0.000 (8) 0.626 (5) 0.310 (5) 0.224 (5)
SN6 0.423 (6) 0.017 (4) 0.325 (6) 0.090 (6) 0.021 (6)
SN7 0.285 (8) 0.001 (5) 0.221 (8) 0.034 (8) 0.005 (8)
SN8 0.371 (7) 0.000 (8) 0.222 (7) 0.052 (7) 0.010 (7)

is chosen as it is arguably considered to provide the ground
truth in terms of model rankings. The later is chosen to
illustrate the issue with partial mismatches. Both measures
are implemented in JAVA as part of the ProM framework [9].
For mk-uEMSC, we vary k from 2 to 4 (m2, m3, and m4).
For all measures, we set a total timeout of one hour and 16
gigabytes of memory limit. All experiments are run single-
threaded on an Intel(R) Xeon(R) E-2276M CPU running
Ubuntu 22.04. As a termination criterion for the sampling step
of the tEMSC measure, we set a minimum sampling mass of
95% of model behavior, 50 thousand Petri net runs, or twenty
minutes runtime (whichever comes first). 1

A. Robustness to Partial Mismatches and Induced Ranking

We evaluate the robustness of the mk-uEMSC measure with
respect to partial trace mismatches and compare its induced
ranking with other state-of-the-art measures. We consider the
rank induced by the tEMSC as the ground-truth. For that,
we consider a manually designed dataset consisting of the
event log L1 = [⟨a, c, b⟩10, ⟨a, b, c⟩15, ⟨a, d⟩40, ⟨a, d, e, d⟩20,
⟨a, d, e, d, e, d⟩10, ⟨a, d, e, d, e, d, e, d⟩5] and the process
models from Figure 5. Model SN1 is manually designed to
best represent L1. Models SN2, SN3 are modifications of
SN1 with changed transition weights and an added transition
f respectively. SN4 is the trace model accepting the same
stochastic language as L1 and SN5 is the trace model with
an activity f added at the beginning of each trace. SN6 is the
flower model with transition weights derived from the relative
frequency of each activity in the log. SN7 and SN8 are
variations of SN6 obtained by removing/adding transitions d
and f respectively. The conformance of the log with respect
to each model is evaluated. The results are shown in Table I.

The first thing to notice is that, as expected, the trace model
SN4 is assigned a conformance of 1.0 by all measures since
it perfectly models the event log’s distribution. Model SN1

is ranked as the second-best model by all measures. This
is in line with expectations since it best approximates the
probabilities of each trace (after SN4).

When considering models SN3, SN5, and SN8, we see that
the uEMSC measure assigns them a conformance of 0. This
is because the addition of f makes all log traces unfitting.
This highlights the issue of the unit-cost function for partially
matching traces. The severity of this issue can be seen in the

1The experiment artifacts can be found at zenodo.org/records/11531791

a b

c

d
e3 (3)

3 (3)

2 (2)

1 (4)

1 (4)

(a) SN1 and (SN2)

a
f

f

b

c

d
e3

3

2

(b) SN3

f d e d e d
f d e d
f d
f b c
f c d

f d e d e d e d
a
a
a
a
a

a
(c) SN4 (without f) and SN5 (with f)

edc

ba

(d) SN6 (with d) and
SN7 (without d)

f

edc

ba

(e) SN8

Fig. 5: 8 synthetic stochastic models. Unless marked, transition
weights = 1. This dataset has been adapted from [10]

example of model SN5. While tEMSC ranks this model as
the third best model, uEMSC assigns it a conformance of 0.

Considering the stochastic Markovian measure mk, we see
that the induced model ranks agree with those from tEMSC
(except for models SN2 and SN5 that have their orders
swapped). As k increases, the ranks induced by mk remain
stable, but their score values decrease. This is expected since
the measure mk approaches uEMSC as k increases. Finally,
when considering relative values, we see that tEMSC is too
generous and assigns a high score for the flower model.

B. Runtime and Induced Rankings for Real-World Datasets

This section evaluates the scalability of the approach on
real-world datasets and compares its induced rankings with
other state-of-the-art measures. We choose the Italian road
fines (RF) [11], the BPI challenge 2013 [12], and the sepsis
(SEPSIS) [13] event logs. The BPI Challenge 2013 is split
into three logs: ”open problems”, ”closed problems” and
”incidents” (BPI13-OP, BPI13-CP, and BPI13-I respectively).
For each event log, a process model is discovered using
the Inductive Miner infrequent variant [14] with a frequency
threshold of 0.2 (IMf02), the Directly Follows Miner with
a frequency threshold of 0.8 (DFM) and the Flower Miner
(FM). Each control flow model is then enriched using a weight
estimator [15]. We used the frequency-based estimator (FBE),
the Bill Clinton estimator (BCE) (fork distribution estimator
in [15]), and the alignment-based estimator (ABE). For the
directly-follows miner and the flower miner, both FBE and
BCE return models with equal weights (this is intrinsic to how

101 102 103 104 105 106

log2 time (ms)

m4
m3
m2

uEMSC
tEMSC

Fig. 6: Runtime distribution for each measure. Notice the log
scale on the x-axis. Computations that went out of memory
were discarded.

both estimators work and we refer to [15] for further details).
Because of that, we discard models DFM-BCE and FM-BCE.

For a fixed control-flow model, one expects the alignment-
based estimator to be the most accurate of all three, followed
by the Bill-Clinton estimator (if available) and the frequency-
based estimator as the least accurate. When using the same
weight estimator, one expects the flower model to be the least
accurate as it allows for too much extra behavior. It is not
possible to define a preference between the inductive miner
and the directly-follows miner since their performances depend
on the input log as well as the chosen noise thresholds. When
enough behavior can be sampled from the model, the tEMSC
measure provides what we consider to be the ground-truth
value for the induced ranks. The value and runtime results are
shown in Table II and Figure 6.

TABLE II: Comparison of proposed mk-uEMSC measure with
state-of-the-art measures. For the tEMSC measure, scenarios
where less than 50%/10% of model probability mass is sam-
pled are colored orange/red.

DS measure IMf02 DFM FM
FBE BCE ABE FBE ABE FBE ABE

R
F

tEMSC 0.529 0.523 0.761 0.877 0.949 0.422 0.503
uEMSC 0.014 0.010 0.294 0.684 0.820 0.024 0.019
m2 0.526 0.534 0.780 0.866 0.900 0.286 0.265
m3 0.375 0.360 0.635 0.793 0.860 0.079 0.078
m4 0.241 0.247 0.471 0.757 0.806 0.026 0.020

B
PI

13
-O

P tEMSC 0.417 0.421 0.740 0.690 0.925 0.703 0.730
uEMSC 4e-4 3e-4 0.416 0.219 0.750 0.339 0.344
m2 0.496 0.474 0.598 0.611 0.931 0.609 0.624
m3 0.278 0.262 0.420 0.451 0.837 0.433 0.471
m4 0.103 0.111 0.290 0.321 0.722 0.348 0.387

B
PI

13
-C

P tEMSC 0.459 0.461 0.766 0.941 0.915 0.492 0.624
uEMSC 1e-4 1e-4 0.427 2e-4 0.657 0.052 0.049
m1 0.436 0.465 0.667 0.545 0.928 0.460 0.492
m2 0.167 0.251 0.440 0.330 0.808 0.275 0.344
m3 0.069 0.129 0.238 0.205 0.679 0.173 0.254

B
PI

13
-I

tEMSC !oom !oom !to !to !to 0.336 !to
uEMSC 0.000 0.000 0.030 0.044 0.150 0.005 0.005
m2 0.251 0.090 0.341 0.687 0.956 0.372 0.517
m3 0.099 0.001 0.131 0.468 0.756 0.189 0.292
m4 0.059 0.000 0.063 0.331 0.636 0.092 0.186

SE
PS

IS

tEMSC !to 0.545 0.684 !to 0.765 !to !to
uEMSC 0.000 4e-6 3e-4 5e-5 0.046 5e-5 3e-5
m2 0.377 0.464 0.479 0.606 0.973 0.292 0.469
m3 0.222 0.270 0.295 0.452 0.814 0.131 0.300
m4 0.139 0.168 0.186 0.296 0.633 0.048 0.146

The first thing to notice is that tEMSC times out or goes
out of memory in multiple scenarios, while none of the other
measures suffers from these problems. Even in the situations

where the tEMSC computation succeeds, it is by far the
most expensive method, being up to four orders of magnitude
slower than the second slowest method. Curiously, tEMSC
also achieves one of the smallest runtimes of all in one
situation (the BPI13-OP-DFM-ABE model). The algorithm
samples a sufficiently large probability mass by sampling
only a few variants, hence the subsequent optimization step
is efficient. In contrast, the uEMSC measure can be fairly
efficiently computed, but it frequently returns very small
(or even 0) conformance values. This exposes the trade-off
between runtime and robustness offered by both measures.

In general, the rankings induced by all measures are similar.
For mk, some model ranks might flip as k increases. This
happens especially for models that have very similar scores,
e.g. RF-IMf02-FBE and RF-IMf02-BCE.

For all miners, all measures agree on ABE as being the best
estimator. The exceptions are the uEMSC and mk measures for
the RF-FM models and the tEMSC measure for the BPIC13-
CP log with the DFM miner. In the latter case, the tEMSC
measure assigns a higher conformance value to the FBE esti-
mators than to the ABE estimator, which is counterintuitive.
However, in both situations, less than 0.1% of model behavior
is sampled. Hence, any conclusion taken from this measure is
based on little evidence and should be disregarded.

For the RF and BPI13-CP logs, mk assigns relatively similar
scores for FM-FBE and FM-ABE models, despite tEMSC
reporting a large difference. This is due to the fact that for
the flower model, both estimators assign the same weight
to all visible transitions. The models only differ in their τ
transitions. FBE assigns a low weight to τ exiting the loop,
causing longer traces to be more likely, which increases its
total cost. In comparison, the mk measure is less sensitive to
that as it computes the relative subtrace frequency.

For the BPI13-I log, almost all tEMSC computations time
out or go out of memory. At the same time, the uEMSC
assigns very low scores for all models, which indicates a high
degree of partial trace mismatches. Something similar happens
for the SEPSIS log, where almost all tEMSC computations
time out, and those that do not time out sample too little
model behavior to obtain reliable conclusions. Similarly, most
uEMSC values are too low, possibly indicating a high amount
of partial trace mismatches. Therefore, mk is arguably the only
measure capable of processing these logs. For these two logs,
the results produced by mk are similar to the ones obtained
for the other logs and in line with our initial expectations.

Finally, when comparing the runtimes for the uEMSC and
the mk-uEMSC measures, one notices that the mk-uEMSC
has lower median runtime, in the range of double-digit mil-
liseconds. For small ks (= 2, 3), the computation is dominated
by the linear pass over the event log. Furthermore, it is
important to notice the difference in the chosen implementa-
tion languages. The mk measures are implemented in Python
whereas the uEMSC is implemented in JAVA. We believe that
implementing the mk measures in a compiled language would
widen the performance gap between both approaches.

In summary, the real-world experiments show that

mk9uEMSC induces a ranking in line with our intuition
and with state-of-the-art techniques, while mitigating issues
of sampling enough behavior for the tEMSC and partial
mismatches for the uEMSC.

V. RELATED WORK

In process mining, a wide range of non-stochastic confor-
mance measures has been introduced [5], [16], [17]. This work
builds upon on the Markovian-based abstraction first presented
in [5] and later redefined in [6]. The original motivation for
extending it to the stochastic perspective was to address the
issue of vanishing precision observed in [6] as k increases. As
shown in Section IV, this might still happen, albeit in a more
attenuated form, and is now linked to partial mismatches in
the subtraces.

The stochastic markovian metric was informally introduced
in [18] to compare the behavior of simulation models. Our
work differs in which we provide a formal definition of
the abstraction, discuss its properties, and most importantly
present an exact computation for stochastic languages with
infinite support, as commonly the case in process mining.

The literature on stochastic conformance checking is rel-
atively scarce. As far as we are aware, the EMSC measure
[3] was the first conformance checking technique to consider
stochastic process models. Later, an exact method to compute
it for the unit-cost distance by exploiting the link between
SLPNs and absorbing Markov chains was presented in [4].
In [19], the EMSC measure is extended to consider the time
perspective in the task of concept-drift detection. In [10], a
measure based on gain entropy is introduced. However, this
measure does not properly consider the stochastic information
of both artifacts. If the log and model share the same support
language, then [10] returns fitness and precision of 1, even if
their distributions differ.

Last, probabilistic trace alignments have been proposed
in [20] as an extension to traditional trace alignments that
balances the probability of an alignment and its cost. The
method returns the most likely traces within a neighborhood
of the investigated trace. However, the approach focuses on
generating diagnostics and no conformance measure is pro-
posed based on probabilistic alignments. Finally, there exists
methods to compute sub-string probabilities given a stochastic
regular grammar [21]. In comparison, we provide a method for
computing sub-string probabilities from a SNFA.

VI. CONCLUSION

We introduced the Markovian abstraction for stochastic lan-
guages and evaluated its application to conformance checking.
The abstraction defines a stochastic language, such that it
can be combined with any established stochastic conformance
checking techniques. The experiments indicate that using the
abstraction helps to mitigate weaknesses of existing measures
in terms of scalability and handling of partial mismatches.

As future work, we want to investigate how to more effi-
ciently compute this abstraction for certain classes of models,
as done in [6]), and evaluate the combination of mk with

other conformance measures. Furthermore, we believe that a
direct computation that bypasses the τ -removal step is possible
for k-bounded workflow nets [20]. Finally, the method can be
extended to consider time aspects [19].

ACKNOWLEDGMENT

We thank the Alexander von Humboldt (AvH) Stiftung for
supporting our research.

REFERENCES

[1] E. Vidal, F. Thollard, C. de la Higuera, F. Casacuberta, and R. Carrasco,
“Probabilistic finite-state machines - part i,” IEEE Transactions on
Pattern Analysis and Machine Intelligence, vol. 27, no. 7, 2005.

[2] M. Mohri, “Generic ϵ-removal and input ϵ-normalization algorithms
for weighted transducers,” International Journal of Foundations of
Computer Science, vol. 13, 11 2011.

[3] S. J. J. Leemans, W. M. P. van der Aalst, T. Brockhoff, and
A. Polyvyanyy, “Stochastic process mining: Earth movers’ stochastic
conformance,” Information Systems, vol. 102, p. 101724, 2021.

[4] S. J. Leemans, F. M. Maggi, and M. Montali, “Enjoy the silence:
Analysis of stochastic petri nets with silent transitions,” Information
Systems, vol. 124, p. 102383, 2024.

[5] A. Augusto, A. Armas-Cervantes, R. Conforti, M. Dumas, and
M. La Rosa, “Measuring fitness and precision of automatically dis-
covered process models: A principled and scalable approach,” IEEE
Transactions on Knowledge and Data Engineering, vol. 34, no. 4, 2022.

[6] E. Goulart Rocha and W. M. P. van der Aalst, “Polynomial-time
conformance checking for process trees,” in International Conference
on Business Process Management, 2023, pp. 109–125.

[7] C. M. Grinstead and J. L. Snell, Introduction to Probability. AMS,
2003.

[8] C. Allauzen, M. Riley, J. Schalkwyk, W. Skut, and M. Mohri, “Openfst:
A general and efficient weighted finite-state transducer library,” in
Implementation and Application of Automata, 2007, pp. 11–23.

[9] B. F. van Dongen, A. K. A. de Medeiros, H. M. W. Verbeek, A. J.
M. M. Weijters, and W. M. P. van der Aalst, “The prom framework: A
new era in process mining tool support,” in Applications and Theory of
Petri Nets 2005, 2005, pp. 444–454.

[10] S. J. J. Leemans and A. Polyvyanyy, “Stochastic-aware conformance
checking: An entropy-based approach,” in Advanced Information Sys-
tems Engineering, 2020, pp. 217–233.

[11] M. de Leoni and F. Mannhardt, “Road traffic fine management process,”
2 2015, doi: 10.4121/uuid:270fd440-1057-4fb9-89a9-b699b47990f5.

[12] W. Steeman, “Bpi challenge 2013, incidents,” 2013, doi: 10.1109/
JPROC.2010.2070470.

[13] F. Mannhardt, “Sepsis cases - event log,” 2016, doi: 10.4121/UUID:
915D2BFB-7E84-49AD-A286-DC35F063A460.

[14] S. J. J. Leemans, D. Fahland, and W. M. P. van der Aalst, “Discovering
block-structured process models from incomplete event logs,” in Appli-
cation and Theory of Petri Nets and Concurrency, 2014, pp. 91–110.

[15] A. Burke, S. J. J. Leemans, and M. T. Wynn, “Stochastic process
discovery by weight estimation,” in Process Mining Workshops, 2021,
pp. 260–272.

[16] A. Adriansyah, B. van Dongen, and W. M. P. van der Aalst, “Confor-
mance checking using cost-based fitness analysis,” in 15th International
Enterprise Distributed Object Computing Conference, 2011, pp. 55–64.

[17] S. J. J. Leemans, D. Fahland, and W. van der Aalst, “Scalable process
discovery and conformance checking,” Software and Systems Modeling,
vol. 17, pp. 599 – 631, 2016.

[18] D. Chapela-Campa, I. Benchekroun, O. Baron, M. Dumas, D. Krass,
and A. Senderovich, “Can i trust my simulation model? measuring
the quality of business process simulation models,” in International
Conference on Business Process Management, 2023, pp. 20–37.

[19] T. Brockhoff, M. S. Uysal, and W. M. P. van der Aalst, “Time-aware
concept drift detection using the earth mover’s distance,” in 2020 2nd
International Conference on Process Mining (ICPM), 2020, pp. 33–40.

[20] G. Bergami, F. M. Maggi, M. Montali, and R. Peñaloza, “Probabilistic
trace alignment,” in 2021 3rd International Conference on Process
Mining (ICPM), 2021, pp. 9–16.

[21] A. L. N. Fred, “Computation of substring probabilities in stochastic
grammars,” in Grammatical Inference: Algorithms and Applications, 5th
International Colloquium, ICGI 2000, vol. 1891, 2000, pp. 103–114.

10.4121/uuid:270fd440-1057-4fb9-89a9-b699b47990f5
10.1109/JPROC.2010.2070470
10.1109/JPROC.2010.2070470
10.4121/UUID:915D2BFB-7E84-49AD-A286-DC35F063A460
10.4121/UUID:915D2BFB-7E84-49AD-A286-DC35F063A460

	Introduction
	Preliminaries
	The Earth Mover's Stochastic Conformance Measure

	The Stochastic Markovian Abstraction
	Extending to Other Modeling formalisms
	Runtime
	The Stochastic Markovian-Based Conformance Measures

	Experimental Evaluation
	Robustness to Partial Mismatches and Induced Ranking
	Runtime and Induced Rankings for Real-World Datasets

	Related Work
	Conclusion
	References

