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Abstract—Traditional process models like Petri nets effectively
describe the control flow of processes but fail to capture stochastic
information such as choice likelihoods. To address this, Stochastic
Labeled Petri Nets (SPNs) have recently gained attention, ex-
tending Petri nets with transition weights that allow to associate
executions with probabilities. The language of an SPN thereby
becomes a probability distribution over traces (i.e., sequences of
activities). To assess an SPN’s quality, Earth Mover’s Stochastic
Conformance (EMSC) emerged as a natural metric that measures
the similarity of the SPN’s trace distribution to the observed
real-world distribution. In this paper, we propose a locally
optimal approach for fine-tuning (or finding) transitions weights
to maximize an SPN’s EMSC. Leveraging the relationship
between EMSC and the Wasserstein distance, which recently
gained attention as a loss function in machine learning, we
compute subgradients for EMSC to optimize transition weights
via subgradient descent. Besides, we propose a straightforward
solution to handle models that allow for infinitely many traces.
Our optimization approach is broadly applicable for EMSC—
that is, for EMSC using arbitrary trace-to-trace distances—
unlike existing works that either to not explicitly consider EMSC
or only special variants. We demonstrate the applicability of our
approach on several real-life event logs and discovery algorithms,
comparing it to state-of-the-art stochastic process discovery
methods and a recent full automated simulation approach.

Index Terms—Stochastic Process Mining, Stochastic Petri Nets,
Earth Mover’s Distance, Optimal Transport, Wasserstein Loss

I. INTRODUCTION

Processes implemented in companies usually exhibit sig-
nificant variability where process executions can differ in
choices made or in the order of activities executed. Therefore,
when modeling processes for analysis or simulation purposes,
probabilities must be considered.

To assess how well a process model describes a real-
life process, one typically compares its language—that is,
the traces it can generate—to real-life process executions.
Such real-life process executions are usually extracted from
a company’s information system and collected in so-called
event logs. If the model includes stochastic information, not
only the traces it can generate determine its language but also
their respective likelihoods. Thereby, the language naturally
becomes a probability distribution over (possibly infinitely
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Fig. 1: Wasserstein Weight Estimation maximizing EMSC.
Based on a path-based representation of the Stochastic Labeled
Petri Net (SPN), we iteratively adjust the weights maximizing
the similarity between the SPN’s and event log’s language.

many) traces where each trace is again associated with pos-
sibly infinitely many model executions. Consequently, a good
stochastic process model should induce a trace distribution
similar to the observed one. The Earth Mover’s Stochastic
Conformance (EMSC) metric [1] measures this similarity by
assessing the effort required to transform one trace distribution
into the other or, equivalently, to transport probability mass
from one distribution to the other. A ground distance measures
the costs of transforming individual traces. This concept is
rooted in Optimum Transport (OT) [2], a subfield of probabil-
ity theory that not only considers the cost but also the shape
of such transportation plans. Conceptually, OT is also the
foundation for the Wasserstein distance in statistics where the
ground distance must be metric. Due to its intuitive notion of
dissimilarity [3], the Wasserstein distance has recently gained
attention as a loss function in machine learning [4], [3].

In this paper, we explore the use of OT-based losses for
stochastic process discovery. Specifically, we focus on weight
estimation [5]—the discovery of Stochastic Labeled Petri Nets
(SPNs), where each transition is annotated with a weight [6],
from a Petri net. While we consider SPNs due to their tractable
semantics and for comparability with existing works [5], [7],
[1], [6], the idea might be more broadly applicable. Employing
OT-based losses for stochastic generative process models only
requires a tractable relation between the model’s parameters
and the desired output distribution.

Figure 1 gives an overview of the proposed approach.
As input, we consider an event log and a Petri net (or
SPN). Next, we represent the model by a finite set of model
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executions and the event log by a finite trace distribution.
Using TensorFlow [8], we build a computational graph that
links model weights via the model executions to activity traces
and their probabilities. For a given weight assignment, we
then approximate (due to the sampling) the model’s trace
distribution by a forward pass through this graph. To evaluate
the model’s quality, we use an OT-based loss function derived
from a modified EMSC metric. This loss function allows us
to compute subgradients—a generalization of gradients for
non-differentiable functions—with respect to the model’s trace
probabilities. The subgradients are then backpropagated the
graph to adjust the weights. Ultimately, we return locally
optimal weights that maximize our EMSC proxy metric.

We sample model executions to address two challenges:
first, infinitely many executions can correspond to the same
trace of visible activities; second, there can be infinitely many
visible traces. While the authors in [9] propose a method
to compute the probability of any trace in an SPN solving
the first challenge, we prefer sampling for its simplicity and
computational tractability. Sampling avoids building a large
portion of the Petri net’s state space; yet both methods can be
combined. In contrast, the second challenge remains unsolved
for general EMSC (i.e., for general trace-level distances such
as edit distance). While Leemans’ et al. recently proposed
an approach that also directly optimizes SPN weights with
respect to EMSC [10], they only consider a special case where
unequal traces have unit distance. This reduces EMSC to the
total variation distance of the trace distributions, allowing them
to focus on the finitely many traces in the event log. However,
this sacrifices one of EMSC’s main advantages—namely, the
ability to account for similarity between unequal traces.

Our contributions are thus as follows:
(i) We propose an—aside from sampling—end-to-end

method for optimizing SPNs with transition weights with
respect to general EMSC.

(ii) We relate the EMSC metric to an OT formulation that is
better suited for optimization.

(iii) We compare the proposed approach to a recent simulation
approach [11], stochastic discovery approaches [7], [12],
and various weight estimation methods [5] on different
discovery algorithms and real-life event logs.

The remainder of this paper is structured as follows: we
discuss related work and introduce EMSC in Sections II
and III. In Section IV, we present our OT-based weight
estimation method for SPNs. We evaluate the approach in
Section V and conclude our paper in Section VI.

II. RELATED WORK

In machine learning, OT-based/Wasserstein loss functions
were investigated for training Generative Adversarial Net-
works [4] and in the general realm of learning (e.g. clas-
sification) [3]. Rather than solving the linear program that
is commonly encountered in discrete OT, they consider a
regularized, more scalable solvable form. However, for this
work, it is still feasible to compute an exact solution.

In the process mining domain, our work is related to
stochastic process model discovery and evaluation as well as
to process simulation. Rogge-Solti et al. [12] proposed an early
approach with an available implementation for discovering
SPNs. The approach discovers a Petri net using Inductive
Miner Infrequent [13], potentially repairs it, aligns the net
with the event log, and solves an optimization problem to de-
termine the weights. Unlike or end-to-end EMSC optimization
approach, they to find weights such that in each state of the
net (i.e., in each marking), each enabled transition fires with
the probability observed in the aligned data Besides, Burke
et al. propose a broader framework and various techniques
for locally estimating weights for a given Petri net [5]. They
also introduce the Toothpaste Miner which is an algorithm
that directly discovers SPNs by reducing an initially created
trace net [7]. Finally, the automated simulation approach
in [11] combines hyperparameter tuning during a process
model discovery phase with a weight estimation method.

To measure how well an SPN models observed event data,
Leemans et al. proposed EMSC [1]. Moreover, in [9], [14],
a method was introduced to compute the probability of an
arbitrary trace in an SPN, even if induced by infinitely many
model executions. Yet, computing EMSC remains challenging
for models with loops involving visible activities, leading to
infinitely many visible activity traces. When calculating dis-
tances from event log traces to not yet unfolded model traces is
complex (e.g., edit distance), current EMSC implementations
still rely on sampling. Merely for uEMSC, where unequal
traces have unit distance, this can be avoided as it suffices
to consider traces contained in both the event log and the
model. To handle infinitely many model traces, stochastic
quality measures based on entropy were proposed [15], [6].
However, these measures are less intuitive than EMSC.

Recently, two approaches were proposed which also directly
optimize an SPN’s weights with respect to EMSC. The ap-
proach in [10] avoids sampling but is restricted to uEMSC. In
[16], the authors use a general, gradient-free function mini-
mization method. Unlike this method, we explicitly utilize in-
formation from EMSC’s solution by computing subgradients.
Additionally, their method only considers model traces present
in the event log, whereas we also account for potentially
deviating behavior. Finally, they normalize the model sample,
while we propose a modification of EMSC to handle residual
probability mass. Preliminary results in Section V indicate that
normalization combined with our method performs worse.

III. PRELIMINARIES

This section introduces SPNs and EMSC [1].
We denote sets by capital letters. Let S be a set. A multiset

over S is a function M : S → N that assigns a quantity to
each element. The number of elements in M is denoted as
|M |, and the support of M , supp(M) = {s ∈ S |M(s) > 0},
is the set of elements that occur. The union (+), difference
(−), and comparison (≤,≥) of M and another (multi)set are
defined element-wise. In doing so, we assume that sets are
implicitly lifted to multisets and that negative differences do
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Fig. 2: Example SPN Nex using a vector notation to denote
transitions weights (i.e., weight w⃗i refers to transition ti).

not occur. The set of all multisets over S is denoted as B(S),
and S∗ is the set of all finite sequences of elements of S. The
concatenation of two sequences σ, ν ∈ S∗ is denoted as σ · ν.

We write f ∈ (R≥0)m×n to denote a non-negative flow
between m sources and n targets and v⃗ ∈ Rn to denote an
n-dimensional vector. The flow between the ith source and jth
target is fij , and v⃗i is the ith entry of v⃗.

In this paper, we focus on the control flow of processes.
Therefore, we model process executions as finite sequences
of activities from the universe of activities A. An event log
collects multiple processes executions.

Definition 1 (Event Log). Given a finite alphabet Σ ⊆ A, an
event log L ∈ B(Σ∗) is a finite multiset of traces over Σ.

Stochastic languages assign probabilities to process execu-
tions, while truncation reduces computation times later.

Definition 2 (Stochastic Language). A (truncated) stochastic
language over a finite alphabet Σ ⊆ A is a function h : Σ∗ →
[0, 1] such that

∑
σ∈Σ∗ h(σ)

(<)
= 1.

Under a frequentist interpretation of probability, each event
log L ∈ B(Σ∗) can be translated into a stochastic language
h : Σ∗ → [0, 1] with h(σ) = L(σ)

|L| .
Stochastic Labeled Petri Nets (SPNs) explicitly model the

stochasticity of processes with respect to the control flow. They
extend Petri nets by transition weights which determine the
likelihood of a transition to fire in a given state of the net.

Definition 3 (Stochastic Labeled Petri Net). Let Σ ⊆ A
be a finite alphabet, and let τ /∈ A denote the silent la-
bel. A Stochastic Labeled Petri Net (SPN) is a quintuple
(P, T,A, l, w) of disjoint sets of places P and transitions T ,
an edge relation A ⊆ (P × T )∪ (T × P ), a labeling function
l : T → Σ ∪ {τ}, and a weight function w : T → R≥0.

Figure 2 shows an SPN with five visible and one silent tran-
sition (t2). Assuming that transitions are implicitly ordered, we
represent the weight function by means of a weight vector.

Let N = (P, T,A, l, w) be an SPN. For an element x ∈
P ∪T , we denote the set of elements connected via an ingoing
(outgoing) edge as •x (x•). A marking m ∈ B(P ) is a multiset
of places. The marking m enables a transition t ∈ T if it marks
all places that have an incoming edge to t—that is, •t ≤ m
(e.g., in Figure 2, t1 is enabled in [p1]). Firing the enabled

transition t, denoted as m[t⟩m′, consumes a token from each
input place and produces a token in each output place (i.e.,
m′ = m− •t+ t•). For example, in Figure 2, firing t1 in [p1]
results in the marking [p2, p3]. Given a marking m ∈ B(P ),
we denote the set of enabled transitions as enabledN (m)—
for instance, enabledN ([p2, p3]) = {t2, t3, t4, t5}. Firing an
enabled transition t in a marking m ∈ B(P ) of N is associated
with the probability w(t)∑

t′∈enabledN (m) w(t′) . For example, the

probability of firing t3 in [p2, p3] is 0.8
0.2+0.8+0.4+1.1 .

Let mI ∈ B(P ) be an initial marking of N . A path (c.f. [9])
through N is a sequence λ = ⟨t1, . . . , tn⟩ ∈ T ∗ of tran-
sitions associated with a sequence of intermediate markings
⟨m0, . . . ,mn⟩ such that (i) λ starts in the initial marking
(i.e., m0 = mI ), (ii) each step is a valid transition firing
(i.e., mi−1[ti⟩mi, i = 1, . . . , n), and (iii) in the final marking
mn, no transition is enabled (i.e., enabledN (mn) = ∅). For
example, the path λ1 = ⟨t1, t4, t4, t5, t2, t6⟩ starts in the initial
marking [p1] and ends in the marking [p6], which is a deadlock.
By multiplying the individual transition firing probabilities
along the path, we obtain a path’s probability (e.g., the path
λ1 has probability 0.5

0.5 · 0.22.5 · 0.22.5 · 1.12.5 · 0.41.2 · 11 ≈ 0.005). Finally,
stochastic path languages describe the behavior of SPNs.

Definition 4 ((Truncated) Stochastic Path Language). Let
N = (P, T,A, l, w) be an SPN with initial marking mI ∈
B(P ). Let Λ ⊆ T ∗ be a set of paths for N and mI .
The stochastic path language of Λ given N and mI is
given as gpN,mI ,Λ

: T ∗ → [0, 1] with (i) gpN,mI ,Λ
(λ) = 0 if

λ /∈ Λ and (ii) gpN,mI ,Λ
(λ) = Πn

i=1
w(ti)∑

t′∈enabledN (mi−1) w(t′)

if λ = ⟨t1, . . . , tn⟩ ∈ Λ with markings ⟨m0, . . . ,mn⟩ along
the path. We call gpN,mI ,Λ

truncated if Λ does not contain all
possible paths of N and, therefore,

∑
λ∈Λ gpN,mI ,Λ

(λ) < 1.

Earth Mover’s Stochastic Conformance [1] is a similarity
measure for stochastic languages and (truncated) stochastic
path languages. It is based on the minimal effort required to
transform one language into the other. The cost of transform-
ing a trace into a path is measured by a trace-path distance.

Definition 5 (Earth Mover’s Stochastic Conformance [1]). Let
h : Σ∗ → [0, 1] be a finite stochastic language over a finite set
of activities Σ ⊆ A with supp(h) = {σ1, . . . , σm}. Let N =
(P, T,A, l, w) be an SPN with initial marking mI ∈ B(P ).
Let Λ = {λ1, . . . , λn} be a finite set of paths for N and
mI and δtp : Σ∗ × T ∗ → [0, 1] be a trace-path distance. Earth
Mover’s Stochastic Conformance (EMSC) between h and gλ,N
is defined by the following optimization problem:

EMSCδtp (h, g
p
N,mI ,Λ

) = 1− min
f∈(R≥0)m×n

m∑

i=1

n∑

j=1

fijδ
tp(σi, λj)

(1a)

s.t.
n∑

j=1

fij = h(σi) i = 1, . . . ,m (1b)

m∑

i=1

fij ≥ gpN,mI ,λ
(λj) j = 1, . . . , n (1c)



EMSC can be computed using linear programming, fre-
quently utilizing post-normalized edit distance as a trace-path
distance based on the visible activities along a path (i.e., the
trace). This approach allows for aggregating paths sharing the
same trace prior to solving EMSC. Using techniques from [9],
one can therefore still compute EMSC exactly if the number
of paths is infinite but the number of traces is finite. However,
for infinitely many traces, the size of EMSC’s optimization
problem becomes infinite making naive solving using linear
programming infeasible. The special case of uEMSC [1], [10]
is an exception as it allows for a finite formulation.

IV. WASSERSTEIN WEIGHT ESTIMATION

We propose a weight estimation method for SPNs that uses
subgradient ascent to optimize the weights with respect to
EMSC. For Petri nets, we randomly initialize the weights.

Figure 3 gives an overview of our method. Initially, we need
a finite representation of the SPN to later compute EMSC
for any ground distance using linear programming techniques
(cf. Section III). While one could sample a finite number of
traces and express their probability based on the transition
weights using techniques from [9], we opt to sample a finite
set of paths and leave a combination with [9] for future work.
Sampling paths is simpler, yields good results, and requires
fewer computations than the method in [9].

In Figure 3, we show a path sample containing four paths
from Nex (Figure 2). The main approach consists of three
steps each in the forward and backward passes. In the forward
pass, we first compute a path’s probability based on the SPN’s
weights. Second, we aggregate paths to obtain trace probabil-
ities. Third, we compare the stochastic language of the path
sample with that of the event log using a modified version of
EMSC. In the backward pass, we first compute a subgradient
of the loss function with respect to the model’s stochastic
language. Using automatic differentiation, this subgradient is
backpropagated to adjust the SPN’s weights.

While Definition 4 covers the first, differentiable step of
the forward pass, this section discusses the remaining steps.
In the following, let N = (P, T,A, l, w) be an SPN with initial
marking mI ∈ B(P ) and Λ be a set of paths for N and mI .

a) SPN Trace Probabilities: As discussed in [1], the
relation between paths of N and traces is straightforward.
First, we project a path on the sequence of visible labels:

πvis
N (⟨⟩) = ⟨⟩ (2a)

πvis
N (λ · ⟨t⟩) =

{
πvis
N (λ) if l(t) = τ

πvis
N (λ) · ⟨l(t)⟩ else

(2b)

Second, a trace’s probability is the sum of those paths’
probabilities whose sequence of activities is equal to the trace:

gtrN,mI ,Λ (ν) =
∑

λ∈Λ
πvis
N (λ)=ν

gpN,mI ,Λ
(λ) , ν ∈ Σ∗ (3)

This aggregation step is trivially differentiable. In Figure 3,
the paths λ1 and λ2 both correspond to the trace ⟨a, c, e⟩.

b) Loss Function: Maximizing N ’s EMSC score, Equa-
tion (1c) can become problematic. Assume that N allows
for infinitely many paths, and let Λ′ ⊆ T ∗,Λ′ ∩ Λ = ∅
denote the non-empty set of remaining paths. If we adjust
the weights such that the probability of Λ′ increases, the
probability of Λ decreases. Consequently, Equation (1c) allows
that the probability of each trace in the event log can be
reallocated to its nearest trace in the model. In fact, for a
fixed set of model traces, the reallocation in which each event
log trace reallocates its full probability to its nearest model
trace would achieve the best EMSC score. Thus, there are
two ways for an optimization algorithm to improve EMSC:
improve the similarity of the stochastic languages or reduce
the total probability of Λ. This can also happen in case of
infinitely many traces (rather than paths).

This can either be alleviated by normalizing probabilities or
by a modified formulation that punishes residual probability.
Conceptually, we capture residual probability by introducing
an auxiliary model trace. In a slight abuse of notation, we
denote this trace with the label ⊥ in Figure 3. From this trace,
probability can be reallocated to log traces at configurable
costs. Treating sampling on the log side symmetrically, we
obtain the following variant of EMSC.

Definition 6 (Penalized Earth Mover’s Stochastic Confor-
mance (pEMSC)). Let Σ ⊆ A be a finite set of activities,
h, g : Σ∗ → [0, 1] denote (truncated) finite stochastic languages
with supp(h) = {σ1, . . . , σm} and supp(g) = {ν1, . . . , νn},
and δtr : Σ∗×Σ∗ → [0, 1] be a trace distance. Penalized Earth
Mover’s Stochastic Conformance (pEMSC) between h and g
is defined by the optimization problem:

pEMSCδtr ,ξ⃗m,ξ⃗l(h, g) = 1− min
f∈(R≥0)(m+1)×(n+1)

m∑

i=1

n∑

j=1

fijδ
tr (σi, νj) +

m∑

i=1

ξ⃗mi fi(n+1) +

n∑

j=1

ξ⃗ljf(m+1)j(4a)

s.t. fi(n+1) +

n∑

j=1

fij = h(σi) i = 1, . . . ,m (4b)

f(m+1)j +

m∑

i=1

fij = g(νj) j = 1, . . . , n (4c)

n+1∑

j=1

f(m+1)j = 1−
m∑

i=1

h(σi) (4d)

m+1∑

i=1

fi(n+1) = 1−
n∑

j=1

g(νj) (4e)

where ξ⃗m, ξ⃗l ≥ 0 penalize residual probability mass.

Equations (4b) and (4c) extend Equations (1b) and (1c)
for EMSC by the possibility to reallocate probability mass to
the auxiliary model and log traces. Moreover, Equations (4d)
and (4e) complement Equations (4b) and (4c) limiting the
flows to the auxiliary traces. Finally, we extend the objective
function by costs for flows adjacent to the auxiliary traces.
For example, the penalty vector ξ⃗m penalizes flows between
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Fig. 3: Overview of the computation showing the forward and backward pass of our optimization method.

the auxiliary model trace and the event log. Note that any
flow between the auxiliary traces is free. Using the analogy
of the auxiliary model and log trace, one can also merge
Equations (4b) and (4d) and Equations (4c) and (4e). This
leads to the typical linear programming formulation of OT.

Assume that the complete log is used. We show that EMSC
is recovered from pEMSC using a best-case auxiliary trace
distance. Moreover, unit distance gives a lower bound.

Theorem 1 (pEMSC bounds on EMSC). Let Σ ⊆ A be a finite
set of activities and h : Σ∗ → [0, 1] be a finite stochastic lan-
guage with supp(h) = {σ1, . . . , σm}. Let N = (P, T,A, l, w)
be an SPN with initial marking mI ∈ B(P ) and Λ be a finite
set of paths for N and mI with supp(gtrN,mI ,Λ

) = {ν1, . . . νn}
being the set of visible traces. Let δtr : Σ∗ × Σ∗ → [0, 1] be
a trace distance. For the trace-path distance δtp : Σ∗ ×T ∗ →
[0, 1], with δtp(σ, λ) = δtr (σ, πvis

N (λ)) for all σ ∈ supp(h)

and λ ∈ Λ, penalty vectors ξ⃗m−min, ξ⃗m−min ∈ Rm with

ξ⃗m−min
i = min

j=1,...,n
δtr (σi, νj), ξ⃗

m−max
i = 1, i = 1, . . . ,m

(5)
and arbitrary log penalty vectors ξ⃗l ∈ Rn, it holds

pEMSCδtr ,ξ⃗m−max,ξ⃗l(h, g
tr
N,mI ,Λ)

≤ pEMSCδtr ,ξ⃗m−min,ξ⃗l(h, g
tr
N,mI ,Λ)

= pEMSCδtp (h, g
p
N,mI ,Λ

)

(6)

Proof Sketch. The penalty vectors do not occur in the con-
straints. Consequently, each solution for ξ⃗m−max is feasible
for ξ⃗m−min with lower pEMSC. Thus, the inequality relation
holds. In an optimal EMSC solution, any overfilled path
receives flow from log traces for which it is the nearest
path. More precisely, the flow from these traces must at least
match the probability mass that exceeds this path’s capacity.
Otherwise, we could reduce costs by re-routing flow from a
trace for which this path is not its nearest path to the trace’s

nearest path. This would not violate any constraint and thus
contradicts optimality proving equality.

PEMSC (and EMSC) are non-differentiable rendering clas-
sical gradient-based optimization infeasible. However, we can
obtain a subgradient using duality theory. For the sake of read-
ability, we add auxiliary traces σm+1 and νn+1 to Definition 6.
Additionally, we extend h and g by the respective residual
probabilities and incorporate the penalty vectors ξ⃗l and ξ⃗m

into δtr . Then, the dual problem of the minimization problem
in pEMSC’s is:

max
u⃗∈Rm+1,v⃗∈Rn+1

m+1∑

i=1

uih(σi) +

n+1∑

j=1

ujg
p
N,mI ,Λ

(νj) (7a)

s.t. δtr (σi, νj) ≥ vj − ui, for all i, j (7b)

Using duality theory, for an optimal solution (u⃗∗, v⃗∗), the dual
variable u⃗∗

i captures how changing the probability of σi affects
the optimal objective function value. In fact, the vector u⃗∗ is a
subgradient of pEMSC at its optimal solution f∗ with respect
to h [17, p. 250].

By decreasing the minimization term in pEMSC (using
ξ⃗m−max), we increase pEMSC and, consequently, EMSC since
pEMSC is a lower bound. As shown in Figure 3, we use
subgradient descent to adjust the weights. In doing so, we
exploit that, given a path sample, there is a differentiable
relation between the SPN weights and the probabilities of the
associated model traces. This allows us to backpropagate the
subgradient through the model trace probabilities to update the
weights. After adjusting the weights, we re-evaluate the model
probabilities with another forward pass and repeat the process.
This results in an iterative optimization method.

c) Sampling: Penalization encourages the optimization
algorithm to reduce residual probability, even if this increases
the likelihood of model traces that are far from all log traces.
For instance, for edit distance only traces with distinct sets



of activities have a distance of 1 = ξ⃗m−max. Therefore, it is
desirable for initial model sample to include traces similar to
those in the event log. While further investigation is left for
future work, we simply assign unit weights to all transitions
and unfold the most likely paths (as in [1]). This approach
favors short paths that enable few transitions and is based on
the idea that short traces are more likely to occur in reality.

d) Two-phase Approach: As shown in Section V, our
approach is relatively fast for samples that contain several
hundred paths and traces from the event log. To incorporate
more information despite the sampling, we investigate a two-
phase approach. First, we train on a fixed sample of paths
and the most likely log traces. Second, we create a large
sample of paths that are most likely under the current weights.
From this sample, we create multiple subsamples by weighted
sampling. Likewise, we perform a weighted subsampling of
the event log. This approach tries to strike a balance between
incorporating new information and avoiding large residuals.
Finally, we continue to optimize the weights cycling through
different input pairs of path and event log samples.

A. Implementation

We implemented our approach using TensorFlow [8], the
Adam [18] optimizer, the Python Optimal Transport [19] pack-
age, and post-normalized edit distance for pEMSC1. Besides,
there are three main considerations: possibly negative transi-
tion weights, the large product in the path probability computa-
tion, and the stopping criterion. In practice, transition weights
can become negative during optimization for models with
unlikely behavior. While we tried approaches like clipping,
logarithmic barrier functions, or optimizing in the log domain,
simply using absolute weights yielded good results. We allow
weights to become negative but use their absolute value in
computations. For a path λ ∈ Λ, we compute its probability as
exp

(
log(gpN,mI ,Λ

(λ))
)

. The logarithm converts the product
into a summation, leading to faster computations. We stop the
optimization after 5000 iterations or if the sum of pEMSC
losses over the last 25 iterations does not differ significantly
from that of their preceding 25 iterations.

V. EVALUATION

We evaluate our method Wasserstein Weight Estimation
(WaWE) using various real-life event logs and process discov-
ery algorithms. We assess WaWE’s computational feasibility
and compare it to related work on SPNs. Additionally, we con-
sider the simulation model discovery method Simod [11]. The
experiments were conducted on an AMD Ryzen Threadripper
1920X 12-Core CPU with 90 GB main memory.

a) Setup: Like in [5], we consider three real-life event
logs—namely, Road Traffic Fine Management (RTFM) [20],
Sepsis [21], and BPI Challenge 18 Reference Log (BPIC18-
ref) [22] (projected “reference” documents). For these event
logs, we discover process models using (i) Inductive Miner

1https://github.com/tbr-git/wasserstein-spn-weight-estimation

Infrequent noise threshold 0.2 (IMf02) [13], (ii) a Heuris-
tic Miner (HM) variant [23], (iii) Directly Follows Miner
(DFM) [24], and (iv) Split Miner (SM) [25]. We only deviated
from the default parameters for HM and SM. The model
discovered by HM on RTFM allows for a single trace, so
we reduced the thresholds. Simod uses SM and hyperparam-
eter tuning but requires start lifecycle events and resource
information. Former were created by duplicating the complete
events. Moreover, we introduced artificial resources, each
handling a single activity. This should not affect the stochastic
process model as the discovery does not consider resource
information. For SM, we re-discovered the model using the
hyperparameters returned by Simod, as Simod’s models have
separate transitions for the start and completion of activities.

For each Petri net, we discovered three SPNs using the
weight estimators MSAPE, FDE, and ABE as introduced
in [5]. Thereby, we ensure that we take into account the best—
or at least a well—performing estimator for each scenario
considered in [5]. Moreover, we consider two stochastic pro-
cess discovery approaches: the Toothpaste Miner with noise
threshold 0.2 (TP02) [7] and the Rogge-Solite Stochastic
Discovery (RDS) [12] algorithm.

Except for Simod, which does not return an SPN, we evalu-
ate the SPNs with respect to EMSC [1], Entropy-based Recall
(Ent. Rec.), and Entropy-based Precision (Ent. Prec.) [6]. For
Simod, we generate 100k cases to approximate the stochastic
language of the simulation model. Thereby, we can still
compute the log-log variant of EMSC [26].

A. Parameterization WaWE

The setup of WaWE involves five primary hyperparameters:
the maximum number of (i) paths and (ii) log variants,
(iii) whether we use an SPN’s weights for a warm start,
(iv) whether we execute the second optimization phase, and
(v) whether we normalize residuals or employ pEMSC using
ξ⃗m−max. We therefore tested various parameters to evaluate
WaWE’s sensitivity. When considering the size of the pEMSC
problem, restricting it to 400 paths and traces typically leads
to fast optimization, whereas a size of 800 by 800 already
notably increases the runtime. Besides, a maximum number
of 2000 traces in the log’s language ensures that the entire
event log is considered in all test event logs. The x-axis
in Figure 4a depicts the parameter combinations where we
excluded residual normalization with a second optimization
phase for readability reasons. We repeated the experiment 30
times. Given that raw metric values vary across event logs and
process discovery algorithms, we show differences relative to
a reference parameterization. As reference implementation, we
use pEMSC with at most 800 paths and log variants, disable
warm-starting, and disable phase II. Like the Wilcoxon signed-
rank test, we examine differences in mean pEMSC (using
ξ⃗m−max). To limit computational complexity, we sample the
15k most probable paths in the model. Besides, we consider
pEMSC rather than EMSC to penalize models that cannot be
easily sampled. Finally, in Figure 4a, we display bootstrapped
confidence intervals on the differences in mean pEMSC for

https://github.com/tbr-git/wasserstein-spn-weight-estimation
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(b) Snippet of a model obtained by optimiz-
ing EMSC

(c) Computation times

Fig. 4: Effect of WaWE’s hyperparameters on (a) the pEMSC score (with unit penalization) of the resulting SPN compared to
a reference implementation, (b) the resulting model using EMSC as optimization criterion, and (c) the computation times.

various discovery algorithms (color) and event logs (shape).
A negative value indicates that, on average, the reference
parameterization performs better.

a) Results: For most log-model combinations, WaWE
using pEMSC is robust. The confidence intervals are mostly
narrow and centered around zero. In contrast, normalizing
residual probability often performs notably worse. Therefore,
one can expect good results by repeating the optimization
for a few times using the reference parameterization. Yet, for
some event logs and models, the reference parameterization
exhibits notable variance in pEMSC. In general, for the Sepsis
log, which contains many unique and long traces, and the
IMf02 model, which allows for a lot of behavior, pEMSC
exhibits large variance. Finally, warm-starting or adding a
second optimization phase can have a small positive effect.

Figure 4c shows the times measured for all hyperparameter
settings using pEMSC distinguishing different event logs and
whether we execute phase II. Usually, WaWE terminates in
less than 5 minutes, and, for simpler event logs, in less than
two minutes. As expected, adding a second phase considerably
increases computation times. While there are some outliers, we
conclude that WaWE is computationally feasible.

Finally, we also tried to directly optimize EMSC. Figure 4b
shows a snippet of an SPN where this lead to minimizing the
total probability of the path sample. Repeating the Payment
transition has a high weight (≈ 1.2) compared to exiting the
loop (≈ 10−5). Being further embedded in a concurrent part
of the model, even finding the most probable path using the
classical unfolding of likely states became infeasible. Thus,
we could not compute EMSC for this model.

B. Comparison State-of-the-Art

Table I shows a comparison between WaWE’s reference
parameterization, the simulation method Simod, and other
state-of-the-art stochastic process discovery approaches. De-
spite warm-starting the optimization can lead to better results,
the reference implementation is applicable to SPNs and Petri
nets. Like before, we consider at most 15k paths for EMSC.
Therefore, since EMSC might favor path samples that have
low total probability, we do not report a score if the sam-
ple covers less than 0.85 probability. We report the median
score of the 30 repetitions for WaWE. Finally, for a simple
assessment of an SPN’s complexity, we also report the number
graph elements (i.e., sum of nodes and edges). Detailed results
for each weight estimator by Burke et al. [5] as well as
preliminary results for the method by Leemans et al. [10]
can be found online2. Interestingly, incorporating latter method
does not really change the results shown in Table I. Usually,
the considered weight estimator perform better.

a) Results: In all but one case, WaWE matches or
improves over existing approaches in terms of the models’
EMSC score. In particular for IMf02, the improvement is quite
large. The process models that were most suitable for normal
weight estimation were discovered using SM. For the RTFM
and BPIC18-ref logs, both approaches achieve almost perfect
score, while, for Sepsis, WaWE yields a slightly lower EMSC
score. However, there is still some room for improvement in
the latter case as the best score achieved by WaWE over
all iterations is 0.647 (not shown in Table I). Besides, on
the same event log but different discovery algorithms, only
WaWE discovered models for which we could cover the
required probability mass with the limited number of paths.

2https://doi.org/10.6084/m9.figshare.26819437

https://doi.org/10.6084/m9.figshare.26819437


TABLE I: Comparing WaWE’s reference implementation
(right) to related work (left). For non-stochastic discovery
algorithms (underlined), we report the best score achieved by
the estimators by Burke et al. [5]. On the right-hand side of
each cell, we report the median score achieved by WaWE.
Finally, we report the size of the SPNs summing the number
of transitions, places, and arcs.

EMSC pEMSC Ent. Rec. Ent. Prec. Size
Log Name Alg.

BPIC18-ref DFM 0.98 — 0.98 0.98 — 0.98 0.73 — 0.73 1.00 — 1.00 21
HM 0.98 — 0.99 0.98 — 0.98 1.00 — 0.88 1.00 — 0.99 41

IMf02 0.96 — 0.99 0.95 — 0.99 0.96 — 0.96 1.00 — 1.00 32
RDS 0.96 — 0.98 0.95 — 0.98 0.93 — 0.83 0.84 — 1.00 62
SM 0.99 — 0.99 0.98 — 0.98 0.85 — 0.85 1.00 — 0.99 51

Simod 0.85 — 0.99 51
TP02 0.90 — 0.98 0.90 — 0.98 0.73 — 0.73 1.00 — 1.00 18

RTFM DFM 0.95 — 0.95 0.95 — 0.95 0.82 — 0.82 1.00 — 1.00 27
HM 0.95 — 0.97 0.95 — 0.97 0.92 — 0.92 1.00 — 1.00 40

IMf02 0.76 — 0.86 0.76 — 0.86 0.93 — 0.93 0.91 — 0.99 74
RDS 0.58 — 0.61 0.45 — 0.61 0.68 — 1.00 0.27 — 0.23 131

SM 0.98 — 0.98 0.98 — 0.98 0.94 — 0.94 0.99 — 0.99 60
Simod 0.97 — 0.98 60
TP02 0.88 — 0.90 0.88 — 0.90 0.87 — 0.87 1.00 — 1.00 27

Sepsis DFM - — 0.60 0.45 — 0.60 0.58 — 0.58 0.25 — 0.63 90
HM - — 0.47 0.33 — 0.46 0.49 — 0.49 0.08 — 0.29 82

IMf02 - — 0.43 0.16 — 0.40 0.79 — 0.79 0.21 — 0.17 86
SM 0.62 — 0.59 0.61 — 0.59 0.32 — 0.32 0.29 — 0.30 144

Simod 0.57 — 0.59 144
TP02 0.72 — 0.75 0.72 — 0.75 1424

While the Ent. Rec. and Ent. Prec. scores are quite similar as
well, WaWE achieves higher precision for Sepsis. In contrast,
on BPIC18-ref, WaWE achieves slightly lower recall in two
cases. Compared to Simod, WaWE seems to be a promising
approach that can lead to simulation models that better capture
probabilities in the control flow.

VI. CONCLUSION AND FUTURE WORK

In this paper, we propose an end-to-end approach for
optimizing the weights of a given Stochastic Labeled Petri
Net (SPN) with respect to its Earth Mover’s Stochastic Confor-
mance (EMSC) score. To this end, we introduce an Optimum
Transport (or Wasserstein) formulation of EMSC which lower-
bounds EMSC but is better suited for optimization. Using
duality theory, we obtain a subgradient with respect to this
formulation which we backpropagate to the SPN’s weights.
Intuitively, we thereby optimize the similarity between the
distribution of traces generated by the SPN and the distribution
of traces observed in the event data. We show that the proposed
method performs well compared to existing stochastic process
discovery and process simulation approaches.

For future work, we plan to consider more event logs and to
compare our approach to the simultaneously proposed weight
optimization approach by Leemans et al. [10]. Besides, as the
idea to use a Wasserstein loss is more generally applicable
for generative models, we want to investigate applications in
process simulation. In particular, we aim to include the time
dimension into an end-to-end optimization approach.
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