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Maximizing Reuse and Interoperability in Industry 4.0 with
a Minimal Data Exchange Format for Machine Data
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Abstract: Data interoperability in Industry 4.0 is a continuous challenge for industry and research.
Many organizations face the challenge of managing data lakes that, without proper governance, risk
becoming disorganized ‘data swamps’ with disparate data models and formats. This heterogeneity
leads to inefficient data utilization. Standardization efforts have produced suites of extensive models
as they try to accommodate diverse requirements while still being comprehensive. Their complexity
has hindered their adoption. To address this, we propose a minimal intermediate meta model for a
frequently considered type of data in smart manufacturing, namely Machine Data. This type of data is
central to industrial IoT platforms and research efforts on Digital Shadows & Twins. It encompasses raw
time series and event data from sensors and digital controllers. This model-in-the-middle is intended
to bridge the gap between heterogeneous source systems and highly structured and semantically clean
input for data science techniques. To be broadly applicable, it has to be minimal and favor abstraction
over details. We equip it with a standardized exchange format based on CSV, which reduces friction
in data sharing. Furthermore, we provide a precise mathematical formalization that connects it to
the language of data science methods. This enables the generic implementation of methods that can
easily be reused and combined. Finally, we validate the model together with initial tool support in
the large-scale cluster of excellence Internet of Production (IoP). We conclude that it is possible
and feasible to accelerate the realization of the ambitions for the future of manufacturing using such
minimal models.
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1 Introduction

The pursuit of smart manufacturing in Industry 4.0 has introduced and amplified numerous
requirements for digital infrastructure. One of these core requirements is the capability for
collection, management and utilization of various kinds of production-related data. This
data is typically collected from very heterogeneous sources and eventually consumed by
separately developed smart solutions. However, many organizations find themselves with
data lakes (or even swamps [ML16]) filled with disparate data models and formats. In these
cases, lack of interoperability complicates the utilization of available data. This situation
is exacerbated in multi-disciplinary engineering environments [BLG17]. Even within a
domain, use-case-specific tools are often custom developed instead of reusing or configuring
generic tooling and methods. This slows down organizations and wastes resources.
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Past and present standardization efforts like the open manufacturing platform2 (OMP), the
industrial digital twin association3 (IDTA), or even commercial projects like the Azure
Common Data Model typically yield powerful but complex and verbose specifications. As
data model collections are designed to be comprehensive and able to cover any specific
requirement, they quickly end up growing unwieldy, inhibiting their broad adoption.
Particularly the lack of reference implementations makes it difficult for potential adopters to
make use of them without incurring high development costs.

The cluster of excellence Internet of Production (IoP) [Br23] at RWTH Aachen University is
a prime example of a multi-disciplinary engineering environment. The DFG-funded project
is a testbed for the development of technologies for realizing the aspirations of Industry
4.0. It connects leading engineering and computer science expertise of over 25 institutes
and employs around 200 researchers. Most relevant manufacturing processes like milling,
hot/cold rolling, 3D printing, injection molding, textile processing, etc. are represented in
the project with actual shopfloors of machines.

As the project also faces the challenge of growing data-silos resulting in stifled cross-domain
collaboration, a survey of the data owners within the project was conducted. Among 80+
collected data models, though almost all of them were unique, a categorization effort revealed
that many models clearly shared enough concepts to be represented by abstracted meta
models. In this paper, we consider the type of data that was most prevalent in the survey and is
central to smart manufacturing in general: Machine Data. This is raw time series and events
produced by sensors and digital controllers of cyber-physical (production) systems [LBK15;
Le08]. The number of commercial industrial IoT platform product offerings by top tech
companies like Google (Google Cloud for Manufacturing), Amazon (AWS IoT), Microsoft
(Azure Industrial IoT) and others, along with the amount of research in this field [Ch22;
Mo18], clearly demonstrates its importance.

To address the aforementioned lack of a common data model, we propose a minimal
intermediate meta model for this Machine Data to serve as an exchange format. It bridges
the gap between application-specific (raw) data and the highly structured and semantically
enriched input for data science (AI, ML, statistical, etc.) techniques. In other words, it is
a so-called model-in-the-middle. Fig. 1 presents these contrasting situations. The arrows
represent realizations of use-cases that require data transformations. Currently, even routine
visualizations require custom and often ad-hoc transformations. Intermediate models enable
definition of generic algorithms that can be easily reused via configuration. Equipping
them with concrete file format specifications reduces friction when sharing data intra- and
inter-organizationally. This accelerates the interdisciplinary development of methods for
Industry 4.0, e. g., Digital Shadows & Twins [Be21].

Our initial proposal can serve as a blueprint for other domain-specific meta models. A
successful example for this comes from the adjacent discipline of process mining (PM),

2 https://openmanufacturingplatform.github.io/

3 https://industrialdigitaltwin.org/

https://openmanufacturingplatform.github.io/
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Fig. 1: Connecting source data and data science (AI, ML, statistical, etc.) approaches. The status quo
with mostly one-to-one pipelines on the left versus the intended state on the right where approaches
developed for meta models can be effectively reused.

where the XES (eXtensible event stream) [GV14] exchange format connects information
systems like enterprise resource planning systems to PM algorithms. Connections between
such models can further increase data utility.

The structure of this paper is as follows. In Sect. 2, we discuss related work before introducing
the basic concepts of our Machine Data Model in Sect. 3. We further present a precise
mathematical formalization in Sect. 4 that equips the meta model with clear semantics.
Sect. 5 details our concrete CSV-file based exchange format and initial tool support. We
then present a validation of the model and provided implementations in Sect. 6 and conclude
the paper in Sect. 7.

2 Related Work

Related work lies in very different adjacent areas due to the interdisciplinary nature of
this challenge. On the one hand, there are industry initiatives for standardization. Their
focus mostly lies on comprehensive representation. Then, there is concrete research on IoT
data models which focuses more on connecting such data to algorithms. Lastly, there is
more general research on knowledge representation-based approaches, like semantic web
technologies (SWT), to make heterogeneous data algorithm-accessible via ontologies.

Among the industry initiatives for data model standardization mentioned before are OMP
and IDTA, the latter has been dissolved in 2020. Their efforts on so-called semantic data
structuring had been continued in the eclipse semantic modeling framework4 (ESMF). It
offers a very general semantic aspect meta model which is tailored to general IoT sensor data.

4 https://projects.eclipse.org/projects/dt.esmf

https://projects.eclipse.org/projects/dt.esmf
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The IDTA has so far published 79 sub models for their asset administration shell. Their time
series data specification has 39 pages and supports, e. g., arbitrary user-defined “notions
of time”. This is an artifact of “trying to model it all” and complicates the automated
algorithmic usage.

AutomationML e.V.5 has specified AML as a data exchange format for the representation of
hierarchical object topologies, relations and properties over the various stages of a production
system’s lifecycle. While explicitly extensible, AML is not suitable for at-runtime sensor
data representation.

Given its role as a key enabling technology for the digitalization of machine control and
monitoring, a discussion of OPC UA6 is warranted. The data modeling framework of
this protocol is, in the end, one of the languages of the truly raw data. In particular, the
companion specifications, of which there are currently 123, guide how the considered type
of data is collected. Research such as [Le17; Sc19] which connect UML and SWT modeling
to OPC UA data models, helps data owners to efficiently work with meta models such as
ours. The OPC foundation, along with the aforementioned IDTA and AutomationML e.V.
have also collaborated on a vision paper [Dr23] where they conclude that there will not be
the one model but rather that it is their task to combine, connect and reference appropriate
domain-specific standards.

All of the above are targeted at (industrial) IoT data in general and thus at the same time
outscope und underscope basic and generic Machine Data exchange. Furthermore, they
have a strong focus on comprehensive representation, rather than connecting data to method,
which is the gap we want to close.

Next, the work in the process mining domain on data models and exchange formats
(XES [GV14] and OCEL [Gh21]) could serve as a valuable example. The XES standard
enabled interoperable algorithm development and still serves as the format to use when
exchanging event logs in research. Current developments on integrating IoT data into
PM [BDS22; Ma23] can be inspiration but the models themselves cannot be used directly,
as they include higher level concepts like business processes.

Additionally, research on the representation of cyber physical systems (CPS) is of interest
in this domain [LBK15; Le08]. It is a perfect fit for Machine Data, as it treats discrete
events/states and continuous measurements appropriately, being less event-centric than the
typical IoT data perspective. Most relevant is the specialized consideration of production
systems, e. g., by Monostori [Mo14] and Biffl et al. [BLG17]. The latter authors refer to
SWT as a potential solution for heterogeneous data access. Among this angle one may
categorize ontology based data integration (OBDI). One example is the extensive review by
Ekaputra et al. [Ek17] on OBDI in multi disciplinary engineering environments. In their
terms, our work could be likened to the global as a view (GAV) approach where a global

5 https://www.automationml.org/

6 https://opcfoundation.org/about/opc-technologies/opc-ua/

https://www.automationml.org/
https://opcfoundation.org/about/opc-technologies/opc-ua/
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Fig. 2: Schematic example of a Machine Data instance. There are focal point measurements (sampled
at 500Hz) for the object laser, while the object CNC-mill has two measurements and additionally
logged discrete events.

ontology (here, a meta model) is used to transform and view independently created base
data models. Work in this field is mostly of a higher-order nature, i. e., gives guidance on
how to perform modeling, and lacks concrete specifications.

In contrast to holistic data modeling attempts like the above-mentioned IoT initiatives, or the
more methodological descriptions of SWT, we propose a concrete, minimal model that is
equipped with mathematically usable semantics and comes with a reference implementation
and tool support.

3 Conceptualization of Machine Data

The concepts introduced into our model are carefully chosen to be as generic as possible
while still providing enough semantic structure to enable automated analyses. We intend the
model to be extensible, positioning possible extensions as compositions of this model with
new concepts.

The minimal information we consider viable in the modeling of Machine Data is such
that we can answer the following W-questions about each data point: when?, what? and
(abstractly) where?. In addition to that, we enforce consistent shapes for data points by
introducing specifications that define how to interpret the data points, essentially typing them.
We call data points observations and differentiate between discrete events and continuous
measurements. The conceptual where? is answered by an object identifier. Refer to Fig. 2
for an example instance. It shows how measurement time series as well as discrete events
can be associated to various objects.
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Fig. 3: The proposed meta model for Machine Data. Events and Measurements are syntactically
similar but kept separate to reflect their distinct semantics.

The main concept is Time. It answers the when?. Machine Data captures the dynamic
behavior of systems, not a static ontology of machine properties or production system
configurations. The latter is indispensable in many applications but its inclusion would
dilute the focus of this model.

The second concept are Observations. That is, a piece of information that was digitally
recorded at some point in time. This relates to the SOSA ontology [Ja19] concept of the
same name. Observations contain values and have an associated and fixed specification. The
specification determines the interpretation of the values as an ordered vector of features.
Thus, grouping by specification enables viewing a collection of observations as a multivariate
sequence. Together, this is the what?.

We differentiate between two different types of observations to reflect their natural semantic
difference. Events and Measurements. Events are discrete observations that emerge from a
system/process. They typically indicate a state change or transition. Regardless of included
values, even just the fact that a certain type of event occurred, reveals something about the
process that produced it. For example, a machine overheated event, even without further
attributes, provides information about the observed system. Measurement observations
on the other hand are expected, even actively and regularly created —sensed. It is purely
their values that describe the emergent behavior of a physical system. An empty position
measurement may tell us on a meta level that something is wrong, e. g., the sensor may be
broken, but it is not inherently valuable.

Lastly, we introduce the concept of Objects as an identifier to which observations are
related. This concept is intended to associate measurements and events not just to a time but
also to an additional orthogonal dimension, the abstract where?. This additional indexing
dimension allows observations related to different objects, e. g., machines, to be contained
in one Machine Data instance. It enables comparative and correlative analyses. Finally, it
provides a clue to human analysts about the typical object of interest, which often serves as
the subject of analysis.

Fig. 3 depicts the aforementioned concepts using an ER modeling approach. An observation
consists of a timestamp, an object of reference, an observation specification and a variable
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number of values which are viewed through the spec. Syntactically, events and measurements
are mostly analogous, as they are both specializations of observations. However, we separate
them here, as discussed before. Fig. 2 exemplifies how this differentiation is useful for
visualizations. Treating events as time series by default is not appropriate.

Next, we introduce our formalization that is the basis for the expression of semantics and
the data format definition.

4 Specification of Machine Data

In this section, we give a precise specification in terms of a mathematical formalization
of the previously presented concepts. It connects this data model unambiguously to the
vocabulary of data science and machine learning approaches. Conversely, this association
extends toward classical mechanical engineering formulas and methods.

4.1 Definitions

We first define universe sets for the main concepts. All non-universe sets used in this section
are assumed to be finite (as is reasonable in real-life settings).

Definition 1 (Universes). We define the following universes as sets of valid identifiers and
values.

• T is a totally ordered universe of timestamps.
• Σ∗ is the universe of all finite strings.
• Ulabel ⊆ Σ∗ is the universe of observation specification identifiers.
• Uspec is the universe of observation specifications.
• Uobs is the universe of observations.
• Ufeat ⊆ Σ∗ is the universe of feature identifiers.
• Uval is the universe of feature values. We use ⊥ ∉ Uval to explicitly denote missing values

and write U⊥
val B Uval ∪ {⊥} for the extended value domain.

• Uobj ⊆ Σ∗ is the universe of object identifiers.

We first define the mathematical objects corresponding to the individual concepts before
giving a definition of a complete Machine Data instance. While the ER diagram in Fig. 3
does not explicitly show it, here, we make use of the inheritance/specialization structure
between the concepts.

Definition 2 (Observation Specification). An observation specification 𝑠 ∈ Uspec has a
type type(𝑠) ∈ {𝐸, 𝑀} C OT , a label label(𝑠) ∈ Ulabel and features F (𝑠) = ( 𝑓1, . . . , 𝑓𝑘) ∈
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(Ufeat)𝑘 specifying 𝑘 ∈ N0 distinct features, i. e., 𝑓𝑖 ≠ 𝑓 𝑗 for 𝑖 ≠ 𝑗 . The identifier of an
observation spec is id(𝑠) = (type(𝑠), label(𝑠)) ∈ OT × Ulabel C Uspecid. Specifications
with type(𝑠) = 𝐸 are event specifications, those with type(𝑠) = 𝑀 are a measurement
specifications and are required to specify at least one feature, i. e., |F (𝑠) | ≥ 1.

Intrinsically, we regard observations as raw timestamped data. The spec and object reference
are added on in the Machine Data instance.

Definition 3 (Observation). An observation 𝑜 ∈ Uobs has a timestamp time(𝑜) ∈ T and
partial mapping of features 𝜗(𝑜) ∈ Ufeat ↛ Uval with a finite natural domain. Undefined
values are treated as missing, i. e., 𝜗(𝑜) ( 𝑓 ) = ⊥ for 𝑓 ∈ Ufeat \ dom(𝜗(𝑜)).

The observation value domain Uval is left generic here, as we do not specify concrete types
like integers, floating-point numbers, etc. In the end, it is implementation-specific which
particular data types are supported and can benefit from special handling. We elaborate on
this in Sect. 5.

Observations and their specifications can be related to each other as follows. Let 𝑜 ∈ Uobs
be an observation and 𝑠 ∈ Uspec be an observation spec.

• 𝑜 is consistent with 𝑠, if 𝑜 does not define any values not included in the features of 𝑠,
i.e., dom(𝜗(𝑜)) ⊆ set(F (𝑠)).

• 𝑜 is complete for 𝑠, if 𝑜 defines all values of the features of 𝑠, i.e., dom(𝜗(𝑜)) ⊇
set(F (𝑠)).

We write the application of 𝑜 ∈ Uobs to 𝑠 ∈ Uspec with F (𝑠) = ( 𝑓1, . . . , 𝑓𝑘) as

𝑠[[𝑜]] B 𝜗(𝑜) (F (𝑠)) = (𝜗(𝑜) ( 𝑓1), . . . , 𝜗(𝑜) ( 𝑓𝑘)) ∈ (U⊥
val)

𝑘 .

Note that the resulting tuple may contain missing values ⊥. This notation is reminiscent of
applying a variable mapping to a logical formula in formal logic.

Given these basic elements, we can define Machine Data as a combination of specifications,
observations, and their connection.

Definition 4 (Machine Data). A Machine Data instance is a tuple MD =

(𝑆, 𝑂, spec_id, object) consisting of a set of specs 𝑆 ⊆ Uspec, a set of observations
𝑂 ⊆ Uobs and two mappings spec_id : 𝑂 → Uspecid and object : 𝑂 → Uobj. Additionally,
the following has to hold.

∀𝑠, 𝑠′ ∈ 𝑆 : id(𝑠) = id(𝑠′) =⇒ 𝑠 = 𝑠′ (1)
∀𝑜 ∈ 𝑂 ∃𝑠 ∈ 𝑆 : spec_id(𝑜) = id(𝑠) (2)

That is, (1) there may not be any duplicate spec identifiers and (2) all referenced specs need
to be present in 𝑆. This makes the following definition of an observation to specification
mapping unique and well-defined:

spec : 𝑂 → 𝑆, 𝑜 ↦→ 𝑠 such that spec_id(𝑜) = id(𝑠)
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Lastly, we require observations to be consistent with their specs, i. e.,∀𝑜 ∈ 𝑂 : 𝑜 is consistent
with spec(𝑜).

The definitions we introduce here give a fixed structure on how to interpret Machine Data
instances mathematically. This structure maps closely to the conceptual structure given in
the previous section as well as to the concrete implementation in the following section. As
mentioned before, this connects data to data-based methods in an unambiguous manner.
One such example are methods for time series analysis.

4.2 Time Series Extraction

Subsequently, we provide a formalized example illustrating the extraction of concrete time
series data.

Let MD = (𝑆, 𝑂, spec_id, object) be a Machine Data instance. For a spec 𝑠 ∈ 𝑆, its
corresponding observations are 𝑂𝑠 B spec−1 (𝑠) = {𝑜 ∈ 𝑂 | spec(𝑜) = 𝑠}. The referenced
objects for 𝑠 are objects𝑠 (𝑀𝐷) = {object(𝑜) | 𝑜 ∈ 𝑂𝑠}. Per object obj ∈ objects𝑠 (𝑀𝐷),
the observations related to it are 𝑂𝑠,obj = {𝑜 ∈ 𝑂𝑠 | object(𝑜) = obj}.

Such a set of observations can be ordered by time, yielding a sequence seq (𝑂𝑠,obj) =

𝑜1, 𝑜2, . . . , 𝑜𝑛 with 𝑡𝑖 = time(𝑜𝑖) ≤ time(𝑜 𝑗 ) = 𝑡 𝑗 for 1 ≤ 𝑖 < 𝑗 ≤ 𝑛 = |𝑂𝑠,obj |. In case of
duplicate timestamps, such a sequentialization may not be unique. We assume a deterministic
choice to select one in this case. Applying the sequence to the spec yields a sequence of
value tuples corresponding to the features of 𝑠,

seq𝑠 (𝑂𝑠,obj) B 𝑠[[seq (𝑂𝑠,obj))]] = 𝑠[[𝑜1]], 𝑠[[𝑜2]], . . . , 𝑠[[𝑜𝑛]] .

Note that 𝑠[[𝑜𝑖]] ∈ (U⊥
val)

| F (𝑠) | , so there may be explicit missing values ⊥ in these tuples,
unless all 𝑜𝑖 are complete for 𝑠.

For measurements, this sequentialization may be regarded as a 𝑘-dimensional multivariate
time series of the features of 𝑠, sampled at points 𝑡𝑖 ∈ T. Formally, ts𝑠 (𝑂𝑠,obj) : T ↛ (U⊥

val)
𝑘

and
ts𝑠 (𝑂𝑠,obj) : 𝑡𝑖 ↦→ (seq𝑠 (𝑂𝑠,obj))𝑖

with 𝑡𝑖 = time(seq (𝑂𝑠,obj)𝑖) and 1 ≤ 𝑖 ≤ 𝑛. The 𝑡𝑖 may not be regularly spaced, i. e.,
𝑡𝑖+1 ≠ 𝑡𝑖 + 𝑡 for some 1 ≤ 𝑖 < 𝑛 for any fixed time step 𝑡. However, further post-processing
in the form of resampling and interpolation [LAC17] enables transforming such irregular
time series to regular ones. Lastly, for numerical features, interpolation (not necessarily
linear) may allow ts𝑠 (𝑂𝑠,obj)↾[𝑡1 ,𝑡𝑛 ] (the restriction to the time interval between the first and
last observation in 𝑂𝑠,obj) to be treated approximately as a total and continuous function.
This makes specialized techniques such as signal processing applicable.
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5 Data Model File Format

We propose a concrete representation of the specification based on comma separated value
files. CSV files can be easily viewed and edited on any computer and without incurring
(essentially) any tool requirement. This main benefit is important for making the format
practical among potential users who are not native data and computer scientists. Our
experience with working in the inter-disciplinary environment of the IoP project strongly
informs this decision to favor low application/technology requirements. Following the
concrete specification, we briefly introduce our initial tool support which forms the basis of
our validation in the following section.

5.1 File Format Specification

To facilitate frictionless automated parsing, we first address some technicalities pertaining
to the loose specification of CSV itself.

Special characters The CSV delimiters are a commas ‘,’, decimal separators are periods
‘.’ and the quotechars are double quotes ‘"’.

File encoding Shall be UTF-8.
Field count Equal across all rows. Missing values (⊥) are represented with empty fields.
Timestamps Represented as specified in ISO 8601, i. e., YYYY-MM-DD

"T"hh:mm:ss.SSSSSSSSSZ with up to nanosecond precision.

As CSV is a text-based format, Uval is technically limited to string representable value
types. This is more a limitation on storage and parsing efficiency and automatable semantics
rather than a conceptional one. In practice, we recommend only working with the following
common data types, which are readily inferrable by standard software: floating-point
numbers, integers, booleans (represented by true/false), datetime (ISO 8601) and general
strings (quoted if necessary).

Many more complex data types, like JSON dictionaries with key-value
pairs, can be “unpacked/flattened” into multivariate observations. For example
{’x’: 5.0, ’y’: -3, ’uncertainty’: [0.2, 0.5]} can be flattened to the feature
tuple (x, y, uncertainty_x, uncertainty_y) and value tuple (5.0, -3, 0.2, 0.5).
This makes the features more accessible for automated algorithmic usage. Otherwise,
they would have to be manually re-interpreted at analysis-time and are thus most heavily
discouraged.

To further ease tooling development and data usage, we recommend Ulabel and Ufeat to be
restricted to strings following the conventions of valid identifiers of common programming
languages. That means not using spaces, punctuation or non-ascii symbols.

A Machine Data instance MD = (𝑆, 𝑂, spec_id, object) is represented by a header together
with a data CSV file. The header file has the following columns to represent observation
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Tab. 1: Schematic of a Machine Data header file. We refer to specs as 𝑠𝑖 ∈ 𝑆 for 1 ≤ 𝑖 ≤ 𝑚 = |𝑆 |.

type label f_1 . . . f_k

type(𝑠1) label(𝑠1) F (𝑠1)1 . . . F (𝑠1)𝑖
· · ·.

.

.

type(𝑠𝑚) label(𝑠𝑚) F (𝑠𝑚)1 . . . F (𝑠𝑚) 𝑗

specs: type, label and a variable number of feature columns f_1 to f_k where 𝑘 is the
maximal number of features over all specs, i. e., 𝑘 = max𝑠∈𝑆 |F (𝑠) |. As we strictly specify
the order of columns, the header row is optional; it does not have to appear in the CSV file.
Refer to Tab. 1 for a schematic of this encoding structure. In addition, Tab. 2 shows a brief
example. The observations are stored similarly, that is, all observations are saved as rows

Tab. 2: Example Machine Data header table.

type label f_1 f_2 f_3

E machining_started spdl_speed
M force_sensor fx fy fz
M temp_sensor temperature stddev

into one CSV file. The first columns hold the fixed attributes time, object, type and label,
while the values are spread out to a variable number of value columns. They are ordered
according to the feature tuple of the corresponding spec. Tab. 3 gives a schematic of the
table structure which is almost analogous to the header file. The rows are not required to
be ordered by time. As duplicate timestamps are typically resolved by first-occurrence, a
deliberate sorting may be advisable. The header row with the defined column names is
again optional.
Tab. 3: Schematic of a Machine Data data file. We refer to observations as 𝑜𝑖 ∈ 𝑂 and their spec
𝑠𝑖 = spec(𝑜𝑖) for 1 ≤ 𝑖 ≤ 𝑛 = |𝑂 |.

time object type label f_1 . . . f_k

time(𝑜1) object(𝑜1) type(𝑠1) label(𝑠1) 𝑠1 [[𝑜1]]1 . . . 𝑠1 [[𝑜1]]𝑖
· · ·.

.

.

time(𝑜𝑛) object(𝑜𝑛) type(𝑠𝑛) label(𝑠𝑛) 𝑠𝑛 [[𝑜𝑛]]1 . . . 𝑠𝑛 [[𝑜𝑛]] 𝑗

The data file employs a non-normalized representation of all observations, characterized by
a heterogeneous usage of columns. We acknowledge that a proper database schema would
naturally separate the observations into separate tables (one per specification). However, the
reason for selecting this file representation as canonical is to simplify the use as an exchange
format that is supposed to be very accessible. Though the text-based file format may seem
verbose and prone to data duplication, this design choice is a deliberate trade-off to enhance
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readability and usability for users. The simplified structure accommodates those who may
not be database experts, making it easier for a broader range of professionals to engage with
the data. Data collection/editing in Excel is surprisingly common-practice in the industry,
based on our experience. In contrast to having one CSV file per logical table, this fixed
number of two files makes it less likely that a data set is transferred incompletely. Managing
a dynamic number of files, which can quickly grow unwieldy, is prone to (human) error.

Two alternatives that we considered are SQLite and HDF57. Both are single-file databases
and could store the separate tables cleanly. SQLite is relational while HDF5 (hierarchical
data format) uses hierarchical key-value pairs (this induces a tree structure like typical
OS file systems). The former is not optimized for potentially high-volume time series
data whereas the latter was specifically engineered for such uses and, e. g., comes with
compression and storage optimization. However, as emphasized before, the requirement of
having to interact with a data set via additional programs made both options infeasible as
the canonical format.

5.2 Tool Support

This proposed file format is supported by python tooling and example files on https:
//git-ce.rwth-aachen.de/machine-data/mdata. The python package is also available
on PyPi via pip install mdata. Further, there is a web-based application that provides
an interactive user interface for some of the capabilities of the former. The development
repository along with prebuilt docker containers is available at https://git-ce.rwth-
aachen.de/machine-data/mdata_app. An instance of this app is additionally publicly
hosted at https://mdata.cluster.iop.rwth-aachen.de/. The most important goals of
our tooling are providing support for data ingestion into the format and, on the other end,
creation of usable data science algorithm input.

6 Validation with Domain Experts

Our proposed meta model was extensively discussed with a group of mechanical engineering
researchers at a project-wide Data Modeling Workshop conducted in the IoP. While there
was no consensus about the details on how to model all of the data they use, all 30 participants
from different domains agreed with these basic concepts. To validate the specification
together with its exchange format, we additionally worked with four data owners in the IoP
and one external partner and transformed their data sets into our format.

The data sets were exported from databases that store more than our targeted minimal
Machine Data, e. g., including machine configuration and other metadata like author.
The transformations are thus closer to extractions in some cases. However, the additional

7 https://www.hdfgroup.org/solutions/hdf5/

https://git-ce.rwth-aachen.de/machine-data/mdata
https://git-ce.rwth-aachen.de/machine-data/mdata
https://git-ce.rwth-aachen.de/machine-data/mdata_app
https://git-ce.rwth-aachen.de/machine-data/mdata_app
https://mdata.cluster.iop.rwth-aachen.de/
https://www.hdfgroup.org/solutions/hdf5/
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(a) Measurement time series of selectable features
together with events.

(b) Measurement feature histogram generation based
on event-defined segmentation.

Fig. 4: Two example generic visualizations based on Machine Data input.

concepts present in the data could be inspiration for an extended model that composes this
one with new concepts. Naturally, more models-in-the-middle are necessary to cover the
entire spectrum of production data.

Conceptually, all transformations are rather straightforward, that is, in terms of finding the
concepts of events and measurements in the data. On the syntactic level, i. e., file format
and structure, these data sets exemplified great heterogeneity. Collections of CSV files, a
heavily nested JSON file, folders of text-based files without filetype (MinIO8 (object-based)
database export) and an entire postgreSQL dump. No two data sets can be loaded let alone
visualized with the same code or tool. After transformation into our exchange format,
they become valid input for our provided initial tooling. We present two proof-of-concept
visualization widgets. Both are generic implementations of basic plotting code that are
configurable via a graphical user interface.

The first is a time series view in Fig. 4a that combines measurement time series with discrete
events. This is a complete staple and often the first visualization used by domain experts.
The second one shown in Fig. 4b produces histograms over feature values per manually
configurable segmentation delimited by events. In the data used here, events corresponding
to NC program start and end are selected. This feature histogram is particularly of interest
in machine condition monitoring where, e. g., particularly high process forces hasten
degradation of the machine tool. In general, the domain experts were very interested in such
aggregation methods and are currently developing their own. Discussions with the data
owners also led to considerations for future work concerning our tool support.

8 https://min.io/

https://min.io/
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7 Conclusion

A lack of standardization and interoperability due to unique data models impedes the
efficient development of Industry 4.0 solutions. This affects industry, as well as research
on the future of manufacturing. We identified that existing modeling efforts end up too
complex or specific by trying to be comprehensive, which has hampered their widespread
adoption. To rectify this, we proposed a minimal meta model for the most widely used
type of data: low-level Machine Data consisting of events and measurements. To connect
it to the language of data science as well as traditional engineering, we equipped it with
a mathematical formalization. By additionally providing a concrete exchange file format
along with initial tool support, we made it immediately usable. The tool support served
as a proof-of-concept for the possibility of creating generic implementations that can be
easily applied to any data set meeting the spec. Our validation with domain experts and data
owners within the IoP research project showed agreement with the concepts and enthusiasm
for the simplified data sharing.

As future work, we plan to extend the tool support for Machine Data in two main directions:
(1) semi-automatic data extraction/transformation pipelines, and (2) generic implementations
of universal time series visualizations/analysis tasks. Easing usage of the data model and
at the same time incentivising usage with tooling should drive adoption. Additionally, we
plan to release an extended model that supports derived/manually added annotations and
more comprehensively facilitates reuse of higher-level aggregation/enrichment algorithms.
Lastly, taking inspiration from OBDI, it is possible to define concrete domain-specific
ontology-based instantiations of this meta model. By annotating time series features and
objects with ontologies, automated semantic-aware approaches may be implemented. For
example, marking a 3-dimensional measurement as a 3D-position, would enable the time
series plot shown in Fig. 4a to be plotted as a 3D graph automatically.
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