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Abstract. An event log stores information about executed activities
in a process. Conformance-checking techniques are used to measure the
quality of a process model using an event log. Part of the investigated
quality dimensions is precision. Precision puts the behavior of a log and
a model in relation. There are event logs that also store information
about enabled activities besides the actual executed activities. These
event logs are called translucent event logs. A technique for measuring
precision is escaping arcs. However, this technique does not consider in-
formation on enabled activities contained in a translucent event log. This
paper provides a formal definition of how to compute a precision score
by considering translucent information. We discuss our method using a
translucent event log and four different models. Our translucent precision
score conveys the underlying concept by considering more information.
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1 Introduction

In each organization, processes play a vital role. The execution of processes may
leave event data in information systems. Typically, an event consists of three
attributes: a case identifier, an activity, and a timestamp. We call a collection of
these data an event log. Such event logs are used in process mining [1]. Confor-
mance checking, an area of process mining, consists of various quality dimensions,
including precision [12]. Precision evaluates whether a process model allows for
more behavior than captured in the event log. Suppose L describes the behavior
in an event log, and M captures the behavior contained in a process model. In
that case, we can define the general idea of precision as follows: !

precision = L0 M|
|M]|
* We thank the Alexander von Humboldt (AvH) Stiftung for supporting our research.

! The notion of “behavior” is left vague here. There is the challenge that the event log
is a finite sample, but the model may describe infinitely many traces (due to loops).
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Table 1: Example translucent event log.

Event Case Activity ircl‘i];)/lli(lies STtIaHpr Event Case Activity iﬁ;‘iﬁis S’I);;mmep
e1 1 a {a} 13:37:37  e9 2 b {b, c} 13:37:45
ez 1 b {b, c} 13:37:38 e 2 c {c} 13:37:46
es 1 ¢ {c} 13:37:39  enn 2 e {d, e} 13:37:47
€4 1 e {d, e} 13:37:40 ez 3 a {a} 13:37:48
es 2 a {a} 13:37:141 ez 3 c {b, c} 13:37:49
€6 2 ¢ {b, c} 13:37:42  ews 3 b {b} 13:37:50
er 2 b {b} 13:37:43  e15 3 e {d, e} 13:37:51
es 2 d {d, e} 13:37:44
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Fig. 1: Sketch of our approach to measure translucent precision.

Besides capturing only executed activities, an event can capture information
on enabled activities. If an event log consists of such events, we call the event
log a translucent event log [2]. A translucent event log can be, e.g., created when
tasks performed in a desktop environment are captured to create training data
for software bots [9]. An example of a translucent event log is shown in Table 1.
When measuring precision between a translucent event log and a process model,
it is vital to consider the information on enabled activities. In this paper, we
present the first approach to a precision method that considers the information
captured in translucent event logs and fits the intuitive meaning of precision. Our
approach is based on escaping arcs [19]. An overview is depicted in Figure 1.

2 Related Work

A technique for measuring precision is based on escaping arcs [3,7,8,19]. Given
an event log, a prefix automaton is built. Traces are replayed on the model, and
it is checked whether the model allows for more behavior than in the automaton.
Another approach is based on anti-alignments [15]. The previous approach does
not capture model deviation if it is not directly involved in the replay. This
approach aims to solve this issue. An anti-alignment is an execution sequence
in a given model that significantly differs from all traces in the log [13,14].
Another approach relies on negative events [16]. Negative events are sets of
events that were prohibited from taking place. Such events are induced for each
position in the event log. [20] introduces behavioral precision. [10, 11] refine the
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approach. There exist stochastic-aware precision measures [18] and approaches
for object-centric process mining [5]. However, none of the presented approaches
uses information on enabled activities provided in the event log.

3 Preliminaries

Definition 1 (Sets, Powersets, Multisets, Sequences). Given a set X and
a function f, f(X) = {f(z) | x € X} denotes applying the function f on all
elements of set X. For sets X andY , X XY = {(z,y) | v € X,y € Y} denotes the
cartesian product. The powerset of a set X is denoted as P(X) = {X' | X' C X}.
B(X) denotes the set of all multisets over set X. E.g., if X = {x,y, 2z}, a possible

bag is [z, x,y] = [22,y]. Given a set X, a sequence 0 = (01,...,0,), 0 € X*,
denotes a sequence over X . o; denotes the sequence’s i-th element. The length of
a sequence o is denoted as |o|. Given a sequence o = (01, ..., 0||) and a function

[ flo) = (f(o1),..., f(0)5))). prefi(o) = (01,...,04) refers to the prefix of a
sequence containing the first i elements. pref, = (). Given a sequence o and a
set X', ol denotes a sequence projections, e.g., (a,b,c,d) [{ac} = (a,c).

Translucent event logs capture information on enabled activities in addition to
executed ones. Hence, the executed activity must also be enabled in the corre-
sponding event. Also, we assume that all enabled activities in an event log are
performed at some point. U, is the universe of case identifiers, U, s is the
universe of activity names, and Uy, is the universe of timestamps.

Definition 2 (Translucent Event Log, Trace). U, is the universe of events.
€ € Uey i an event, Tegse(€) € Uease 18 the case of e, Tiime(€) € Upime is the
time of e, Ten(€) C Uqer are the enabled activities of e, maet(€) € Ten(€) is the
activity of e. In addition, U, cp, Ten(€) = Uocp{Tact(€)}. A translucent event log
L is a set of events L C U,,. For simplicity, we assume that events in L are
totally ordered s.t. for ej,eqa € L, e1 < eg implies Time(€1) < Time(€2). A trace
is a sequence of all events of a case ordered from earliest to latest, i.e., o¢ =
(e1y...,€n), 8.t. for ¢ € mease(L), {€1,...,en} = {e € L | mease(e) = ¢} and
€1 < ... < ey. The set of traces of L is denoted as XL = {01 | ¢ € monse(L)}.

For the example translucent event log shown in Table 1, megse(€2) = 1, maet(€2) =
b, Ten(e2) = {b,c}, and Time(ea) = 13:37:38, and LT = {{e1, e, e3,¢€4),... }.

Definition 3 (Marked Labeled Petri Net). A labeled Petri net is a tuple
N = (P, T,F, A ), where P is a set of places, T is a set of transitions s.t.
PNT=0,and F C (T x P) U (PxT) is a set of directed arcs. A C Uget U{T}
is a set of activity labels, and l : T — A is a labeling function where T denotes
the activity of silent transitions. A marking M € B(P) is a multiset of places.
We write (N, M) to refer to the Petri net N in marking M.

We focus on sound workflow nets [4]. Petri net firing rules can be found in [1].

Definition 4 (Firing Sequence). Let N = (P,T,F, A,l) be a Petri net. The
successive firing of all transitions in o € T* is denoted as (N, My) % (N, M, 11).
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Fig. 2: Structures based on the event log shown in Table 1.

Let M;, € B(P) be the initial marking. We define a marking M' € B(P) as
reachable in (N, M,), if there exists o € T*, s.t. (N, M;,) = (N, M'). The set
of all reachable markings starting in (N, M;,) is denoted as (N, M;y,).

In the remainder of our work, we assume the existence of alignments between a
Petri net and a log [6]. For this work, we assume that our log fits perfectly. For
our approach, we need to remove silent transitions from alignments.

Definition 5 (Alignment). Let N = (P, T, F, A,l) be a Petri net and L C Uy,
be a translucent event log. T, = {t € T | I(t) = 7} denotes the set of silent
transitions. For a trace o € X, its perfectly fitting alignment on a Petri net N is
denoted as path(o, N) € T*. We link non-silent transitions to the corresponding
events, i.e., T s (0:) = (path(o, N) I\, )is for alli € {1, |o[}.

To access the behavior of a Petri net, we use reachability graphs. Each node in
such a graph is a marking of a Petri net. Nodes are connected if a transition
exists, s.t. firing the transition leads from one marking to the other.

Definition 6 (Reachability Graph). Let N = (P,T',F, A1) be a labeled
Petri net, with the inital marking M;, € B(P). The reachability graph (RG)
of the Petri net N is defined as RGN:Min = (S, E) with S = (N, M,,) and
E={(Mt,M)eSxTxS|Jer (N,M)S (N, M)}

The RG of the Petri net shown in Figure 2a is displayed in Figure 2b.

4 Translucent Precision

4.1 Log Behavior

We define events’ prefixes using transitions based on alignments to capture the
executed and enabled behavior.

Definition 7 (Executed and Enabled Behavior). Let L C U,,, be a translu-
cent event log, N = (P,T,F, A,l) be a Petri net, and T, = {t € T | I(t) = 7}
be the set of silent transitions. For a trace o € XL, we define wljxef(ai) =
N ons(pref;_1(a)). The evecuted behavior for e € L at some point is defined
as: Wgﬂefact(e) = {maet(€) | € € L A ﬂgﬁef(e) = wﬁef(e’)} Similarly, we define
the enabled behavior as: szxefen(e) =U » e)’eLN o Ten (€).
ﬂ-pref € :Trp’rﬁf (&

Given our example log shown in Table 1 and the Petri net depicted in Figure 2a,
7-‘-117\/;‘efact(61) = {a}’ Tr;)\;efact(eQ) = {b7 C}, 7T;)\:“efact(e‘l) = {6}, 7T-;7\77"61‘671(64) = {d7 6}.
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4.2 Model Behavior

When capturing model behavior, silent transitions provide a special challenge
since their execution is not captured in the log. Moreover, executing them at a
different point in time is often possible. As a result, we want to check if their
execution enables other transitions, respectively, activities. Such activities could
be captured as translucent activities. To do so, we first introduce 7-sequences. A
T-sequences is a sequence of transitions s.t. all, but the last transition is a silent
transition. Given the Petri net depicted in Figure 2a, possible T-sequences are
(ts,ta), (ts,t3), and (t5,t4). By using 7-sequences, we can transform an RG into
a direct RG. In this process, we remove T-transitions from the RG and establish
connections between the start and end of these sequences.

Definition 8 (Direct RG). Let N = (P,T,F, A,l) be a Petri net, with its
initial marking M,, € B(P), and let X be its set of T-sequences. The Direct RG
(DRG) of N is DRGNMin = (S| E) with S = (N, M;,,) being the set of reachable
markings and E = E'UE; s.t. E' = {(M,t,M') € SxT xS | 3ier\1, (N, M) 5N
(N, M")} and E. = {(M,0)5), M')S x T x S| 3,cgny (N, M) Z (N, M")}.

Figure 2c¢ shows the DRG based on the previously shown RG (see Figure 2b).
Following the transition sequence (t1, t2,t3) results in two markings: [pe, p5] and
[p4, ps]. Hence, following a transition sequence in the graph is not deterministic.
To solve this problem, we simplify the graph using automata theory [17].

Definition 9 (Deterministic DRG). Let N be a Petri net, with its initial
marking M;, € B(P), and DRGNMin = (S, E) be a DRG. The Deterministic
DRG (DDRG) is a DRG, DDRGNMin = (S’ E') s.t. §' = P(S) and E' =
{(Sl,t, 52) eS' xT xS | Jier Sy = U81651{82 ‘ (81,t782) S E}}

The DDRG of the DRG depicted in Figure 2c¢ is shown in Figure 2d. After

making the replay deterministic, we want to access the enabled activities in a
DDRG and, therefore, in the model. We use the states of the DDRG to do so.

Definition 10 (Enabled Activities in Model). Let N = (P, T, F, A,l) be a
Petri net, with its initial marking M;, € B(P), and DDRGN-Min = (S| E) be the
corresponding DDRG. For s,s' € St € T, if there exists an edge (s,t,s') € E,
we denote this with s - s'. For ¢ € T* and states 815+, 8|gl4+1 € S, we denote
51 2 (S1o+1), if Yi<i<|o| Si 2L sip1. Let L C U,y be a translucent event log.

N
T pres (€)

Fore € L and s € S we define xDDRG™ (e) = s s.t. {M;} ———s. Thus,

state

N, M, N,M;, t
Thoigen (€)= {I(t) | rerses mhme @ " (e) = s}

Given the example DDRG provided in Figure 2d, rDDRGY:Min (e1) = {a},

DDRGNJ\/Iin DDRGN‘Min modelen
Tmodelen (e2) = {b,c}, my oo, (e3) = {b,c}.

4.3 Computing Precision Scores

We first define a precision score, similar to escaping arcs, which does not consider
enabled activities in the provided event log. Then, a score considering them.
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(a) Visualization of the computation of the precision score.
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(b) Visualization of computing the translucent precision score.

Fig. 3: Visualization of the computation of the precision scores. Black arcs rep-
resent executed activities in the log, blue arcs represent enabled activities in the
log, and red arcs represent activities enabled in the model but not in the log.

Definition 11 (Precision Score). Given a translucent event log L C Ue,, a
Petri net N with initial marking M;, and DDRGN-Min  we define precision as:

1 ‘ﬂ- refact( )|
prec(L,N) = — - L —
I 2 mnie ()

Definition 12 (Translucent Precision Score). Given a translucent event log
L C U,,, a Petri net N with its initial marking M;, and its DDRGNMin e
define the translucent precision score as follows:

DDRGN Min (e)\

1 |7T r&fen( ) n T modelen
prec,(L,N) = — - 2 T
BN =g 2 T e

Note that we have to limit the numerator because activities that are not al-
lowed in the model could be enabled. Illustrations for the methods are shown
in Figure 3. For our running example, we denote a precision score of 0.7 and a
translucent precision score of roughly 0.78.

5 Evaluation

To evaluate our approach, we use the translucent event log shown in Table 1.
Furthermore, we use the running example Petri net (Figure 2a) and three ad-
ditional Petri nets (Figure 4) to evaluate whether the computed scores fit the
meaning of precision. The results of our precision scores are displayed in Ta-
ble 2. Both scores are low for the flower model. This shows that an imprecise
model stays imprecise even when enabled activities are considered. The preci-
sion score from the example model suffers from b always being enabled after
executing a and before executing e, thus allowing more behavior than caught in
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(b) Appropiate Petri net. Discovered by apply-
(a) Flower model. ing the discovery algorithm presented in [2].

(c) Trace-separate model.

Fig. 4: Additional Petri nets.

Table 2: Precision and translucent precision scores for different models.

Model Precision Score Translucent Precision Score
Flower Model (Figure 4a) 0.22 0.26
Example Model (Figure 2a) 0.70 0.78
Appropriate Model (Figure 4b) 0.90 1.00
Trace-separate Model (Figure 4c) 1.00 1.00

the log. Concerning the appropriate model, the traditional precision score suf-
fers from the parallelism between b and ¢, and the choice between d and e. The
translucent precision score considers enabled activities in the log, thus penalizing
the afore-described behavior less. For the trace-separate model, we observe that
both measurements yield a score of 1.0. In summary, the translucent precision
method has the intuitive meaning of the traditional method, and considering
enabled activities boosts the score for models that consider this information.

6 Conclusion

This paper presents the first notation and computational method of precision
using translucent event logs. We showed that a well-established method can be
extended to consider information on enabled activities. Also, we showed that our
method still follows the natural understanding of precision by penalizing impre-
cise models. Furthermore, we showed that considering information on enabled
activities is a valuable addition since process models that consider this knowledge
get less penalized. Also, our method can handle duplicated transitions.

The approach we presented focuses on a fitting translucent event log. Hence,
extending the approach to consider unfitting traces is valuable. Multiple methods
exist for determining precision. Extending these techniques to consider informa-
tion on enabled activities seems convenient. Moreover, methods for the other
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quality dimensions that consider translucent information should be introduced.
When considering the different areas of process mining, techniques that consider
the valuable information on enabled activities are needed.
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