
Developing a High-Performance Process Mining
Library with Java and Python Bindings in Rust

Aaron Küsters[0009−0006−9195−5380], Wil M.P. van der Aalst[0000−0002−0955−6940]

Process and Data Science (PADS), RWTH Aachen University, Germany
{kuesters,wvdaalst}@pads.rwth-aachen.de

Abstract. The most commonly used open-source process mining soft-
ware tools today are ProM and PM4Py, written in Java and Python,
respectively. Such high-level, often interpreted, programming languages
trade off performance with memory safety and ease-of-use. In contrast,
traditional compiled languages, like C or C++, can achieve top perfor-
mance but often suffer from instability related to unsafe memory manage-
ment. Lately, Rust emerged as a highly performant, compiled program-
ming language with inherent memory safety. In this paper, we describe
our approach to developing a shared process mining library in Rust with
bindings to both Java and Python, allowing full integration into the ex-
isting ecosystems, like ProM and PM4Py. By facilitating interoperability,
our methodology enables researchers or industry to develop novel algo-
rithms in Rust once and make them accessible to the entire community
while also achieving superior performance.

Keywords: Process Mining · Rust · FFI · Java · Python.

1 Introduction

The field of process mining is concerned with analyzing the execution of (busi-
ness) processes. Most techniques situated in the field leverage event data of past
process executions to gain insights into processes. Process mining techniques can
mostly be categorized into the subfields of process discovery, conformance check-
ing and performance analysis. Process discovery is concerned with discovering
process models, often Petri nets, from event data. Based on a given process model
and event data, conformance checking can be applied to measure how well the
past executions conform to the restrictions of the process model. Similarly, per-
formance analysis can identify performance issues in actual process executions,
like bottlenecks, based on a process model and event data.

There are dozens of commercial process mining tools, like Celonis, SAP Sig-
navio or UiPath Process Mining. As for open-source solutions, ProM and PM4Py
are the two most popular process mining tools today. The ProM framework was
first developed in 2005 and features a graphical user interface (GUI) [10]. ProM
is based on a plugin system, which allows researchers to easily make newly devel-
oped techniques available to the public. Users can download and update plugins

ar
X

iv
:2

40
1.

14
14

9v
1

 [
cs

.S
E

]
 2

5
Ja

n
20

24

2 Aaron Küsters, Wil van der Aalst

using an included plugin manager. The ProM framework and its plugins are im-
plemented in Java. PM4Py (Process Mining for Python) is a Python library first
presented in 2019 [4]. PM4Py has no plugin system or GUI, but instead exposes
its own implementations of popular techniques and algorithms as a Python soft-
ware library. This library can, in turn, be used by researchers and other end
users for applying process mining directly or developing their own techniques as
Python programs.

Some very popular and established process mining techniques are imple-
mented in both PM4Py and ProM, however novel, lesser-known or specialized
techniques are often only implemented for one of the two. Porting implementa-
tions across the two solutions, and thus also across Java and Python, involves
considerable effort and care, also caused by the different associated programming
paradigms. This situation creates a fragmentation of where novel algorithms are
implemented. Researchers or industry typically cannot afford or justify the in-
vestment in time and money to develop their approach with both ProM and
PM4Py, and instead are forced to choose just one option. This fragmentation
decreases the immediate usability and flexibility of newly developed approaches,
which is not only disadvantageous for their creator because of the smaller po-
tential audience but also hinders innovation (e.g., new scientific publications
building on top of past work).

As mentioned previously, ProM is implemented in the Java programming
language, while PM4Py is implemented in Python. Java and Python are both
popular high-level, often at least partially interpreted, languages with automatic
garbage collection. In particular, this means that programs written in those
languages are commonly not directly compiled to machine code but instead
transformed to an intermediate lower-level representation, which is translated to
machine code when actually running the program by an associated interpreter.
Nowadays, these transformations are also combined with so-called just-in-time
compilation, leveraging information about the current execution for further op-
timization. The interpreter also keeps track of the allocated memory and auto-
matically manages memory allocation and deallocation when needed (garbage
collection). These concepts make Java and Python easy to use and programs
written in them memory safe (i.e., all references point to valid objects in mem-
ory), but not without cost. Depending on the actual use case, there is an expected
performance penalty associated with interpreted and garbage-collected language
runtimes because of the corresponding overhead of these tasks. Thus, based on
these criteria, Java and Python trade off performance for memory safety and
ease-of-use. The programming languages C or C++, on the other hand, are sit-
uated on the other extreme of this trade-off: Memory management is designated
as a responsibility of the programmer and the language is compiled to machine
code, but it allows leveraging very high performance. As memory references have
to be managed by the programmer, programs written in C often suffer from prob-
lems related to unsafe memory management, like crashes, subtle bugs, or also
security vulnerabilities.

High-Performance Process Mining Library in Rust 3

Lately, the programming language Rust has gained popularity as a highly
performant, compiled language with a focus on memory safety and concurrency.
Rust guarantees memory safety using a so-called borrow checker, which, as part
of the compilation, analyzes and tracks the lifetime of references across the pro-
gram. This approach guarantees full memory safety without a garbage collector
and the associated performance penalty.

In this paper, we present an approach of implementing algorithms once in
Rust and then creating language bindings (e.g., for Java and Python) to make
this implementation accessible from other programming languages and environ-
ments. While the algorithms and integrations implemented in the context of
this paper are situated in the field of process mining, the approach is generally
applicable. Figure 1 shows an overview of the main advantages of the proposed
implementation approach.

See Implementation

Implement Once, Use Everywhere

See Evaluation

Improved Speed

Fig. 1: The two main advantages of our proposed approach. The main algo-
rithm (like Alpha+++ or XES parsing in this paper) is implemented only once
in Rust. Java and Python bindings make this implementation available to es-
tablished tool ecosystems (like ProM and PM4Py). Additionally, our evaluation
indicates great potential speedups of Rust implementations, compared to base-
line implementations in Java or Python.

The remainder of this paper is organized as follows. First, we discuss related
work in Section 2. We continue with elaborating on our implementation approach
in Section 3, covering the overall architecture, implementation details and our
provided starter kit template. Next, in Section 4, we evaluate the runtime of our
implementations by measuring and comparing the execution time of both the
Alpha+++ process discovery algorithm and an XES event log parser. Finally,
we conclude this paper in Section 5.

4 Aaron Küsters, Wil van der Aalst

2 Related Work

In this section, we first present related work on the example process discovery
algorithm used throughout the later sections (Section 3 and Section 4). Next,
we also explore prior scientific work on Rust implementations and runtime per-
formance comparisons across programming languages.

There are many different types of process discovery techniques and concrete
algorithms, like the Inductive miner or Alpha algorithm. These algorithms aim to
construct a process model, commonly in the form of an accepting Petri net, based
on an input event log. In the later sections, we use the Alpha+++ algorithm,
which is based on the classic Alpha algorithm, as an example implementation.
For a more detailed overview of process discovery, we refer interested readers
to [2,1]. The Alpha+++ algorithm presented in [11] is a process discovery algo-
rithm with a focus on real-life event data. It builds on top of the foundational
concepts of the original Alpha algorithm, which was introduced in [3]. The result
of these algorithms is a process model in the form of an accepting Petri net. In
particular, these algorithms construct a set of Petri net places by first extracting
directly follows relationships of the input event log. The Alpha+++ algorithm
has multiple consecutive filtering steps to remove place candidates which do not
fit to the observed behavior in the input event log. First, aggregated frequency
information is used to filter out clearly unbalanced place candidates. This can
be done quickly because it does not require iterating over the full input event log
for every place candidate. As a second filtering step, the remaining place can-
didates are additionally filtered by replaying the observed behavior in the log.
This allows filtering even more candidates, but is computationally expensive.

There are a few published case studies of researchers or industry using Rust
for implementation projects. In [12] Kösters presents a bioinformatics library
written in Rust, focusing on speed and memory safety. The author compared the
performance of the newly implemented algorithms with established C++-based
implementations and observed comparable results. In [5], the authors explore the
potential advantages of using Rust in the context of astrophysics, where program-
ming languages like Fortran or C are largely used. As a proof of concept, the
authors implemented a simulation algorithm in Rust, Fortran, C and Go and
compared the execution times. In their evaluation, Rust achieved the highest
performance, closely followed by Fortran. Similarly, in [6], Costanzo et al. inves-
tigated both the performance and required programming effort for algorithms in
the context of High-Performance Computing (HPC). The performance evalua-
tion indicated that, while C has some smaller performance advantage in certain
configurations, the overall performance is largely comparable between Rust and
C. In the evaluation of programming effort, however, Rust proved advantageous
because of the provided high-level language features, easy parallelization and
memory safety.

High-Performance Process Mining Library in Rust 5

3 Implementation

In this section, we describe the implementation details of our approach. We
start with an architectural overview. Next, we discuss details on FFI bindings to
Java and Python. After that, we present WebAssembly as an alternative binding
method and demonstrate the possibility of JavaScript bindings. Subsequently, we
discuss methods of exchanging data between the main implementation and the
thin language wrappers. Next, we present an overview of porting the Alpha+++
algorithm to Rust and implementing the required process mining functionality, as
well as bindings to Python and Java. Finally, we provide a starting kit template
of the proposed approach for interested readers.

3.1 Overview

The main idea of our approach is, simply put, write once, use everywhere. Fig-
ure 2 shows an architectural overview of the different implementation compo-
nents. Complex algorithms and logic is (once) implemented in a Rust software
library. To make this implementation accessible from other languages, platforms
and programs, thin wrappers written in the target languages are used. They are
thin, as they only serve as a simple interface to the main Rust implementation.
In particular, they do not require duplicate implementation of the complex al-
gorithms or logic. Thus, not much implementation effort is required in exposing
the main program to multiple other frameworks, programs, and languages. The
complete shared library implementation is available as an open-source project.1

Main Implementation

Java Wrapper Python Wrapper JavaScript Wrapper

JS
...

Java Native Interface Python/C API WebAssembly

Java (GUI) Program
Java Software Library
Mobile Android App

...

Python Software Library
Python Script

Jupyter Notebook
...

Standalone Web App
Live Demo Website

ElectronJS Desktop App
...

Fig. 2: Overview of the approach: A main implementation is written once in
Rust. Thin wrappers for Java, Python, or other languages bind to the main
implementation and expose functionality for easy use. Other programs (like a
Java GUI program, a Python script) can make use of the exposed functionality.

1 https://github.com/aarkue/rust-bridge-process-mining/

https://github.com/aarkue/rust-bridge-process-mining/

6 Aaron Küsters, Wil van der Aalst

3.2 FFI Bindings to Java and Python

In this subsection, we will take a closer look into how bindings can be im-
plemented for Java and Python. Both languages feature powerful and mature
foreign function interfaces (FFI) that allow dynamically calling native functions
from a compiled library. For Java, this functionality is implemented as part of
the Java Native Interface (JNI). For Python, it is exposed as the Python/C API.
Most other popular languages also expose similar functionality. In Listing 1, we
showcase a very basic usage example of a native library function using Java’s
JNI. For Python, the native functionality can be similarly exposed as a Python
package with native implementation parts.

class FibHelper {

static {

System.loadLibrary("native_fib"); // Load native library

}

private static native int fibonacci(int n); // Declare native method

public static int calcFibonacciNumber(int n) { // Expose functionality

if (n < 0) {

throw new IllegalArgumentException("Position must be >= 0");

} else {

return fibonacci(n);

}

}

}

Listing 1: An example Java class using the (imaginary) native library
native fib to calculate numbers of the Fibonacci sequence. The native function
fibonacci can only be used inside this class. For outside use, a different function
calcFibonacciNumber is exposed, which performs additional argument checks.

It is generally recommended to define or use native functionality in as few
places as possible [14]. This is also one of the reasons why we advise implement-
ing thin wrappers in the target language (i.e., in Java and Python) to handle the
native library calls. Additionally, wrappers can implement error handling or ar-
gument checking and other safeguards, like the calcFibonacciNumber function
in Listing 1.

So far, we primarily looked at the implementations of the thin wrapper bind-
ings written in the target languages. On the Rust side, we make use of the
libraries PyO3 2 and jni3, to implement bindings to Python and Java, respec-

2 https://github.com/PyO3/pyo3
3 https://github.com/jni-rs/jni-rs

https://github.com/PyO3/pyo3
https://github.com/jni-rs/jni-rs

High-Performance Process Mining Library in Rust 7

tively. Both of the libraries implement the core binding functionality and provide
helpers to convert passed arguments to and from the target language.

Finally, to use the native Rust code from Java or Python, the Rust code
is first compiled into a shared/dynamic library (i.e., .so or .dll files). That
library file is then loaded by the target language wrapper, as shown in the top
part of Listing 1 for Java. For Python, the underlying concepts are the same, but
Maturin4 automatically handles building Python libraries with these bindings.

3.3 WebAssembly and JavaScript

In addition to the previously presented Java and Python binding options, we also
introduceWebAssembly as a potential additional compilation target. While there
are also FFI bindings for the Node.js JavaScript runtime, JavaScript execution
in the browser cannot make use of such features. Instead, there exists another
approach to allow high-performance programs to run in web browsers and other
platforms. WebAssembly is a portable binary program format that can nowadays
be executed in all major browsers. Rust programs or libraries can easily be
compiled to WebAssembly, although a few restrictions apply. For example, some
features of the Rust standard library (e.g., file access std::io or system time
std::time) cannot be used for general WebAssembly targets.5 However, general
computing tasks and many of the popular available Rust libraries work flawlessly
when executed as WebAssembly.

WebAssembly provides full portability, which allows users to try out We-
bAssembly programs without downloading, configuring or installing any addi-
tional software. Apart from that, WebAssembly also provides sandboxed exe-
cution. This makes WebAssembly not only an attractive format for targeting
browsers and the web, but also to implement portable, sandboxed, and high-
performance programs in general.

3.4 Exchanging Data

In this subsection, we will describe different approaches to passing input data
and arguments from and to functions of the shared Rust implementation. The
data exchange techniques presented here all make an independent copy of the
passed data. This allows fast execution without any communication overhead
after the initial transfer of data. As an alternative, it would also be possible
to interact with the Java or Python execution environment from Rust, e.g., to
evaluate function calls or object properties. We argue, however, that copying all
required data once instead creates a clearer separation of concerns and makes
the shared implementation more easily re-useable and also easier to implement.

4 https://github.com/PyO3/maturin
5 There are efforts to standardize a system interface for WebAssembly to also provide
such additional features. See also https://wasi.dev/.

https://github.com/PyO3/maturin
https://wasi.dev/

8 Aaron Küsters, Wil van der Aalst

Basic data types Simple function arguments, like strings, integer or floating-
point numbers, can be passed with little to no additional work. For the Python
bindings using PyO3 all commonly used types can be automatically converted
from the Python type to the corresponding Rust type. See Listing 2 for an
example. For the Java bindings, there are similar automatic conversion for the
primitive data types in Java (e.g., int or double). However, strings passed to
and from Java need to be explicitly converted, as shown in Listing 3.

Complex data structures More complex data structures can be serialized (for
instance as JSON) and sent to the Rust side (or back) via different methods.
For example, the data could be encoded as a string, a byte array or a refer-
ence to a temporary file containing the data. Building an object representation
of the complex data structure on both involved execution sides enables easier
use and manipulation of the data structures, leading to an improved developer
experience.

Persisting data in Rust If data should persist on the Rust side (e.g., because
data only needs to be loaded once and multiple commands should be handled
after that) we can break out of Rust’s automatic reference counting by using
Boxed/Unboxed values. Fundamentally, this involves first loading the data in
Rust and then returning a reference (long) to the place in memory where the data
is stored back to the calling program. On subsequent requests to the native Rust
implementation, the reference is passed as long as well. Rust can then unbox the
data stored at this reference again and process it. Finally, once the data can be
unloaded, a native call to the Rust library can instruct the data to be unloaded.
Note, that while this can improve performance significantly for multiple requests
involving the same data, it compromises some of the safety guarantees of Rust.
In particular, the caller in the target language must guarantee that the passed
pointer is valid and cleaned up (by calling the corresponding unload function)
eventually.

3.5 Implementing Alpha+++ and Process Mining Basics

We first implemented data structures and functionality for event logs, directly-
follows graphs and Petri nets, as a fundament for porting the Alpha+++ al-
gorithm. Similar to the previous Alpha+++ implementations in Python and
Java, the Rust implementation utilizes the activity projection of event logs, dis-
regarding any additional event log information not needed for discovery. Apart
from saving memory, this approach also allows for quicker exchange of data from
the wrapper implementations, as only a small part of the event log data needs
to be transferred. Our Alpha+++ Rust implementation is exposed in the Al-
phaRevisitExperiments6 ProM plugin using Java bindings, as shown in Figure 3.

6 https://github.com/promworkbench/AlphaRevisitExperiments

https://github.com/promworkbench/AlphaRevisitExperiments

High-Performance Process Mining Library in Rust 9

use pyo3::prelude::*;

#[pyfunction]

fn get_edit_distance(a: String, b: String) -> i32 {

let dis = calc_edit_distance(&a,&b);

return dis;

}

Listing 2: Example Rust function with Python bindings. PyO3 implements
the traits FromPyObject and IntoPy<PyObject> for many existing types. This
enables implicit, automatic conversion of the function arguments (String) and
return value (usize).

use jni::{

objects::{JClass, JString},

sys::jint,

JNIEnv,

};

use jni_fn::jni_fn;

#[jni_fn("org.example.EditDistance")]

pub fn getEditDistance<'local>(

mut env: JNIEnv<'local>,

_: JClass,

a_jstr: JString,

b_jstr: JString,

) -> jint {

let a = &env.get_string(&a_jstr).unwrap().to_str().unwrap();

let b = &env.get_string(&b_jstr).unwrap().to_str().unwrap();

let dis = calc_edit_distance(&a, &b);

return dis;

}

Listing 3: Example Rust function with Java bindings. The jni library enables
conversion from and to basic data types like jint/i32. String, however, requires
explicit conversion.

10 Aaron Küsters, Wil van der Aalst

Fig. 3: Screenshot of the AlphaRevisitExperiments ProM plugin featuring a
Mine Petri Net (in Rust) button for executing the Alpha+++ discovery in Rust
instead of Java.

3.6 Starter Kit

We published a starter kit template to make our implementation approach easily
accessible. It contains all the basic project structure and organization required
to start developing a shared Rust library with Java and Python bindings. The
starter kit contains four main parts: The main shared library, Java bindings,
Python bindings and a (executable) binary Rust project. It also provides exam-
ples demonstrating how to consume the bindings in Java and Python code. Inter-
ested readers can visit https://github.com/aarkue/rust-bridge-template

to bootstrap their own project or experiment.

https://github.com/aarkue/rust-bridge-template

High-Performance Process Mining Library in Rust 11

4 Evaluation

In this section, we will present results on the performance of the featured imple-
mentations. We will start with a performance comparison of our implemented
Rust-based XES event log importer and then continue with evaluating the im-
plementations of the Alpha+++ algorithm.

All evaluations were run on a laptop with an AMD Ryzen 9 5900HX CPU (8
cores/16 threads) and 32 GB of memory, and each measurement was computed
N = 10 times. We report statistical error in the form of standard deviation in
all figures and evaluation tables.

Table 1: Overview of the event logs used for evaluation.
Event Log #Events #Activities #Cases #Variants Reference

RTFM 561,470 11 150,370 231 [13]

Sepsis 15,214 16 1,050 846 [15]

BPI Challenge 2019
(Sample of 3000 Cases)

18,972 34 3,000 470 [7]

BPI Challenge 2020
(Request for Payment)

36,796 19 6,886 89 [9]

BPI Challenge 2020
(Domestic Declaration)

56,437 17 10,500 99 [8]

4.1 XES Import

We implemented an XES event log importer in Rust. To make it easily available,
we created performant Python bindings using polars7, which handles transfer-
ring the event log DataFrame. The XES importer is available as the standalone
Python package rustxes, which is also published on PyPi.8 and can be used to
import XES event logs as a polars DataFrame. If both the rustxes and PM4Py
package are installed, the Rust XES importer can be used directly from PM4Py.9

This PM4Py integration was implemented by Alessandro Berti and also supports
transferring event data to the GPU for further processing.10

To evaluate the performance of our XES importer, we imported the five
commonly used XES event logs introduced in Table 1 from Python. Some of
these XES event log files are also compressed as a .xes.gz archive, which all
evaluated implementations can support as well. We then measured the execu-
tion time for importing the XES files with the following three different parsing
implementations:

7 https://github.com/pola-rs/polars/
8 https://github.com/aarkue/rustxes https://pypi.org/project/rustxes/
9 Using pm4py.read_xes(log_path, variant="rustxes")

10 https://github.com/pm4py/pm4py-core/blob/release/pm4py/objects/log/

importer/xes/variants/rustxes.py

https://github.com/pola-rs/polars/
https://github.com/aarkue/rustxes
https://pypi.org/project/rustxes/
https://github.com/pm4py/pm4py-core/blob/release/pm4py/objects/log/importer/xes/variants/rustxes.py
https://github.com/pm4py/pm4py-core/blob/release/pm4py/objects/log/importer/xes/variants/rustxes.py

12 Aaron Küsters, Wil van der Aalst

PM4Py (iterparse) is the current standard XES import algorithm in PM4Py,
which supports many advanced XES features and is certified against the X1
XES standard certification.

PM4Py (line by line) is a different XES import algorithm included in PM4Py,
which is a more simple implementation, supporting only basic XES features.

rustxes is our proposed implementation. It can parse nested attributes, log
globals and other advanced XES features, but currently only exposes such
advanced information as JSON-encoded attribute value strings to the Python
bindings.

In Figure 4, we present some of our measured results. Across the considered
event logs, rustxes consistently outperforms the naive PM4Py (line by line) im-
plementation by a factor of 2.5–3 and the more advanced PM4Py (iterparse)
implementation by a factor of 5–6. Results on other event logs, especially if they
contain many instances of advanced XES features, may differ, as only rustxes
and PM4Py (iterparse) actually parse such advanced information. Note, that
the reported durations for rustxes include all data transfer and data conversion
from Rust to Python, and thus, in fact, demonstrate the potential speedup for
a drop-in replacement. Table 2 additionally shows all observed median, mean,
and standard deviation values.

rustxes PM4Py (line_by_line) PM4Py (iterparse)
0

0.5

1

1.5

2

BPI Challenge 2020 (Domestic Declarations)
Speedup: 3.38× – 5.92×

XES Parser

P
ar

se
 D

ur
at

io
n

[s
]

rustxes PM4Py (line_by_line) PM4Py (iterparse)
0

0.2

0.4

0.6

0.8

1

1.2

1.4

BPI Challenge 2020 (Request for Payment)
Speedup: 3.00× – 5.88×

XES Parser

P
ar

se
 D

ur
at

io
n

[s
]

rustxes PM4Py (line_by_line) PM4Py (iterparse)
0

5

10

15

20

Road Traffic Fine Management Process
Speedup: 2.62× – 5.58×

XES Parser

P
ar

se
 D

ur
at

io
n

[s
]

rustxes PM4Py (line_by_line) PM4Py (iterparse)
0

0.1

0.2

0.3

0.4

0.5

0.6

Sepsis Cases - Event Log
Speedup: 2.85× – 5.06×

XES Parser

P
ar

se
 D

ur
at

io
n

[s
]

Fig. 4: Performance comparison of XES import implementations. For all eval-
uated event logs, the rustxes performed better than the two other implementa-
tions.

High-Performance Process Mining Library in Rust 13

Table 2: Evaluation results for XES import implementations.
Event Log Parser Median Mean SD
BPI Challenge 2020
(Request for Payment)

rustxes 0.2365s 0.2364s 0.0063s
PM4Py (line by line) 0.7027s 0.7095s 0.0376s
PM4Py (iterparse) 1.3958s 1.3889s 0.0335s

BPI Challenge 2020
(Domestic Declarations)

rustxes 0.3440s 0.3437s 0.0215s
PM4Py (line by line) 1.1402s 1.1612s 0.0561s
PM4Py (iterparse) 2.0043s 2.0339s 0.1119s

BPI Challenge 2019
(Sample of 3000 Cases)

rustxes 0.1196s 0.1332s 0.0241s
PM4Py (line by line) 0.3187s 0.3274s 0.0389s
PM4Py (iterparse) 0.8274s 0.8283s 0.0433s

Road Traffic Fine
Management Process

rustxes 3.4589s 3.4166s 0.1948s
PM4Py (line by line) 9.0920s 8.9453s 0.3792s
PM4Py (iterparse) 19.0315s 19.0525s 1.0110s

Sepsis Cases - Event Log
rustxes 0.1016s 0.1189s 0.0472s
PM4Py (line by line) 0.3360s 0.3393s 0.0545s
PM4Py (iterparse) 0.5857s 0.6014s 0.0632s

4.2 Alpha+++

To evaluate the performance of the Alpha+++ Rust implementation, we mea-
sured the absolute discovery duration of the newly developed Rust implementa-
tion compared to the existing implementations in Java and Python (from [11])
across multiple commonly used event logs. Figure 5 shows the execution times per
event log and algorithm configuration for the different implementations. Overall,
the performance improvements of the Rust implementation are considerable. The
Rust implementation consistently achieves speedups of 50× and more in many
configurations compared to the Java and Python implementation. Notably, the
Rust implementation also makes use of parallelization, while the initial Java and
Python implementations do not. To measure the influence of multithreading in
the Rust implementation, we additionally ran evaluations while restricting it to a
single computing thread. As expected, the single-threaded mode performs worse,
but only by a factor of around 6, compared to the multithreaded mode. This
indicates that the biggest performance differences between the Java, Python and
Rust-based implementations are not caused by multithreading.

It is important to mention that we do not consider this evaluation to compare
the maximum achievable performance in the different languages. In particular,
the Java and Python implementations were not separately optimized for per-
formance after their initial creation. Instead, we want to highlight the potential
performance improvements that are achievable with a cross-platform Rust im-
plementation in such scenarios.

In Figure 6, we additionally showcase measured durations for passing event
log data from Java to Rust. In the first scenario, the activity projection of an
event log (as tuples of unique traces with their number of occurrences) is passed

14 Aaron Küsters, Wil van der Aalst

2.51s 2.51s
2.36s 2.29s 2.28s

2.16s

1.23s 1.24s 1.24s 1.26s 1.24s 1.22s

0.17s 0.17s 0.16s 0.16s 0.16s 0.15s
0.03s 0.03s 0.02s 0.03s 0.02s 0.02s

α+++|2.0|b0.5|t0.5|r0.5 α+++|2.0|b0.3|t0.7|r0.6 α+++|2.0|b0.2|t0.8|r0.8 α+++|4.0|b0.5|t0.5|r0.5 α+++|4.0|b0.3|t0.7|r0.6 α+++|4.0|b0.2|t0.8|r0.8
0

0.5

1

1.5

2

2.5

Python Java Rust (Single Thread) Rust (Multithreading)

BPI Challenge 2019 (Sample of 3000 Cases)
Mean Speedup with Rust (Multithreading): 72.1×

algorithm configuration

du
ra

tio
ns

 [s
]

0.68s 0.68s 0.67s

0.85s 0.85s 0.84s

0.59s 0.59s 0.59s
0.65s

0.6s 0.59s

0.07s 0.07s 0.07s
0.13s 0.14s 0.13s

0.01s 0.01s 0.01s 0.02s 0.02s 0.02s

α+++|2.0|b0.5|t0.5|r0.5 α+++|2.0|b0.3|t0.7|r0.6 α+++|2.0|b0.2|t0.8|r0.8 α+++|4.0|b0.5|t0.5|r0.5 α+++|4.0|b0.3|t0.7|r0.6 α+++|4.0|b0.2|t0.8|r0.8
0

0.2

0.4

0.6

0.8

Python Java Rust (Single Thread) Rust (Multithreading)

BPI Challenge 2020 (Domestic Declarations)
Mean Speedup with Rust (Multithreading): 40.88×

algorithm configuration

du
ra

tio
ns

 [s
]

5.64s

4.77s

4.2s

5.82s

4.85s

4.33s

2.36s 2.36s 2.35s 2.37s 2.36s 2.33s

0.4s 0.35s 0.31s
0.64s 0.59s 0.54s

0.06s 0.05s 0.05s 0.09s 0.09s 0.07s

α+++|2.0|b0.5|t0.5|r0.5 α+++|2.0|b0.3|t0.7|r0.6 α+++|2.0|b0.2|t0.8|r0.8 α+++|4.0|b0.5|t0.5|r0.5 α+++|4.0|b0.3|t0.7|r0.6 α+++|4.0|b0.2|t0.8|r0.8
0

1

2

3

4

5

6

Python Java Rust (Single Thread) Rust (Multithreading)

Sepsis Cases
Mean Speedup with Rust (Multithreading): 52.46×

algorithm configuration

du
ra

tio
ns

 [s
]

0.96s
0.92s 0.91s

0.85s 0.84s 0.83s

0.45s 0.44s 0.45s 0.44s 0.45s 0.44s

0.07s 0.06s 0.06s 0.06s 0.06s 0.06s
0.01s 0.01s 0.01s 0.01s 0.01s 0.01s

α+++|2.0|b0.5|t0.5|r0.5 α+++|2.0|b0.3|t0.7|r0.6 α+++|2.0|b0.2|t0.8|r0.8 α+++|4.0|b0.5|t0.5|r0.5 α+++|4.0|b0.3|t0.7|r0.6 α+++|4.0|b0.2|t0.8|r0.8
0

0.2

0.4

0.6

0.8

1

Python Java Rust (Single Thread) Rust (Multithreading)

BPI Challenge 2020 (Request for Payment)
Mean Speedup with Rust (Multithreading): 59.62×

algorithm configuration

du
ra

tio
ns

 [s
]

Fig. 5: Performance comparison of the Alpha+++ discovery algorithm be-
tween the initial Python and Java implementation and the efficient Rust re-
implementation across different event logs.

High-Performance Process Mining Library in Rust 15

to Rust, which then computes the number of cases and returns that as a string.
The second scenario passes the complete event log to Rust, which then adds
artificial start and end activities to each case and passes the modified event log
back to Java. These scenarios only involve very light computational work and
thus mainly showcase the expected overhead of transferring event log data to
or from Rust. As expected, passing only the activity projection is significantly
faster than passing the complete event log. For activity projections, the measured
durations are consistently under 2 milliseconds. Passing full event logs is also still
fast (less than 0.5 seconds) for most event logs, but it surpasses 4 seconds for
RTFM. This is not only attributable to the larger number of cases and events in
the RTFM event log, but also the relatively few unique variants of the RTFM
log. For the activity projection, only unique variants together with their count
are transferred, which drastically compresses the data passed for RTFM. This
also explains the observed larger relative time difference between RTFM and
the other logs when passing the complete event log instead of just the activity
projection.

0.0009s

0.0016s 0.0016s

0.0004s

0.0007s

BPI Challenge 2020
(Domestic Declarations)

BPI Challenge 2019
(Sample of 3000 Cases)

Sepsis Cases BPI Challenge 2020
(Request for Payment)

RTFM
0

0.0005

0.001

0.0015

0.002

0.0025

Passing Event Log Projection

Event Log

D
ur

at
io

n
[s

]

0.3875s 0.1094s 0.079s 0.2203s

4.2645s

BPI Challenge 2020
(Domestic Declarations)

BPI Challenge 2019
(Sample of 3000 Cases)

Sepsis Cases BPI Challenge 2020
(Request for Payment)

RTFM
0

1

2

3

4

5

Passing Complete Event Log (Round-Trip)

Event Log

D
ur

at
io

n
[s

]

Fig. 6: Duration of passing data from Java to Rust and back. On the top, only
the activity projection of the event log is passed to Rust, while on the bottom,
the complete event log is passed to Rust and back.

16 Aaron Küsters, Wil van der Aalst

5 Conclusion

In this paper, we presented an approach for developing a shared Rust library
with bindings to Java and Python, as well as possibly additional platforms and
languages. We introduced the field of process mining and described the current
state of its software implementations, largely divided between the open-source
projects PM4Py and ProM. This division, in addition to duplicate implementa-
tion efforts and performance shortcomings, motivate our approach of developing
one single shared performant Rust-based implementation.

We detailed the basic architecture and implementation of our approach. Ad-
ditionally, we provided a bootstrap template that can serve as a starting point
for readers interested in developing their own implementation based on our ap-
proach11.

To demonstrate the feasibility and performance gain of our approach, we
ported the Alpha+++ algorithm to Rust and developed an XES event log parser.
Our evaluation indicated a very significant performance speedup of up to 70×
for Alpha+++ and up to 5× for our XES importer.

For future work, it would be interesting to see evaluation of other resource-
intensive algorithms ported to this Rust-based approach, for example other
process discovery algorithms or the computation of alignments. Additionally,
it should be investigated how to create a framework around such implementa-
tions, also considering sharing code across different projects and implementing
a plug-in system.

References

1. van der Aalst, W.M.P.: Process Mining - Data Science in Action, Second Edition,
pp. 163–236. Springer (2016). https://doi.org/10.1007/978-3-662-49851-4, https:
//doi.org/10.1007/978-3-662-49851-4

2. van der Aalst, W.M.P.: Foundations of process discovery. In: van der Aalst, W.M.P.,
Carmona, J. (eds.) Process Mining Handbook, Lecture Notes in Business Informa-
tion Processing, vol. 448, pp. 37–75. Springer (2022). https://doi.org/10.1007/978-
3-031-08848-3 2, https://doi.org/10.1007/978-3-031-08848-3_2

3. van der Aalst, W.M.P., Weijters, T., Maruster, L.: Workflow mining: Discover-
ing process models from event logs. IEEE Trans. Knowl. Data Eng. 16(9), 1128–
1142 (2004). https://doi.org/10.1109/TKDE.2004.47, https://doi.org/10.1109/
TKDE.2004.47

4. Berti, A., van Zelst, S.J., van der Aalst, W.M.P.: Process mining for
python (pm4py): Bridging the gap between process- and data science. CoRR
abs/1905.06169 (2019), http://arxiv.org/abs/1905.06169

5. Blanco-Cuaresma, S., Bolmont, E.: What can the programming language rust do
for astrophysics? Proceedings of the International Astronomical Union 12(S325),
341–344 (Oct 2016). https://doi.org/10.1017/s1743921316013168, http://dx.doi.
org/10.1017/S1743921316013168

11 https://github.com/aarkue/rust-bridge-template

https://doi.org/10.1007/978-3-662-49851-4
https://doi.org/10.1007/978-3-662-49851-4
https://doi.org/10.1007/978-3-662-49851-4
https://doi.org/10.1007/978-3-031-08848-3_2
https://doi.org/10.1007/978-3-031-08848-3_2
https://doi.org/10.1007/978-3-031-08848-3_2
https://doi.org/10.1109/TKDE.2004.47
https://doi.org/10.1109/TKDE.2004.47
https://doi.org/10.1109/TKDE.2004.47
http://arxiv.org/abs/1905.06169
https://doi.org/10.1017/s1743921316013168
http://dx.doi.org/10.1017/S1743921316013168
http://dx.doi.org/10.1017/S1743921316013168
https://github.com/aarkue/rust-bridge-template

High-Performance Process Mining Library in Rust 17

6. Costanzo, M., Rucci, E., Naiouf, M., Giusti, A.D.: Performance vs programming
effort between rust and c on multicore architectures: Case study in n-body. In:
2021 XLVII Latin American Computing Conference (CLEI). pp. 1–10 (2021).
https://doi.org/10.1109/CLEI53233.2021.9640225

7. van Dongen, B.: BPI Challenge 2019 (2019).
https://doi.org/10.4121/uuid:d06aff4b-79f0-45e6-8ec8-e19730c248f1, https:

//data.4tu.nl/articles/dataset/BPI_Challenge_2019/12715853

8. van Dongen, B.: BPI Challenge 2020: Domestic Declarations (2020).
https://doi.org/10.4121/uuid:3f422315-ed9d-4882-891f-e180b5b4feb5,
https://data.4tu.nl/articles/dataset/BPI_Challenge_2020_Domestic_

Declarations/12692543

9. van Dongen, B.: BPI Challenge 2020: Request For Payment (2020).
https://doi.org/10.4121/uuid:895b26fb-6f25-46eb-9e48-0dca26fcd030, https:

//data.4tu.nl/articles/dataset/BPI_Challenge_2020_Request_For_

Payment/12706886

10. van Dongen, B.F., de Medeiros, A.K.A., Verbeek, H.M.W., Weijters, A.J.M.M.,
van der Aalst, W.M.P.: The prom framework: A new era in process mining tool
support. In: Ciardo, G., Darondeau, P. (eds.) Applications and Theory of Petri
Nets 2005, 26th International Conference, ICATPN 2005, Miami, USA, June 20-
25, 2005, Proceedings. Lecture Notes in Computer Science, vol. 3536, pp. 444–
454. Springer (2005). https://doi.org/10.1007/11494744 25, https://doi.org/10.
1007/11494744_25

11. Küsters, A., van der Aalst, W.M.P.: Revisiting the alpha algorithm to enable real-
life process discovery applications. In: Gomes, L., Leitão, P., Lorenz, R., van der
Werf, J.M.E.M., van Zelst, S.J. (eds.) Joint Proceedings of the Workshop on Algo-
rithms & Theories for the Analysis of Event Data and the International Workshop
on Petri Nets for Twin Transition co-located with the 44th International Confer-
ence on Application and Theory of Petri Nets and Concurrency (Petri Nets 2023),
Caparica, Portugal, June 25-30, 2023. CEUR Workshop Proceedings, vol. 3424.
CEUR-WS.org (2023), https://ceur-ws.org/Vol-3424/paper4.pdf

12. Köster, J.: Rust-Bio: a fast and safe bioinformatics library. Bioinformatics 32(3),
444–446 (10 2015). https://doi.org/10.1093/bioinformatics/btv573, https://doi.
org/10.1093/bioinformatics/btv573

13. de Leoni, M., Mannhardt, F.: Road Traffic Fine Management Process
(2015). https://doi.org/10.4121/uuid:270fd440-1057-4fb9-89a9-b699b47990f5,
https://data.4tu.nl/articles/dataset/Road_Traffic_Fine_Management_

Process/12683249

14. Liang, S.: The Java native interface: programmer’s guide and specification.
Addison-Wesley Professional (1999)

15. Mannhardt, F.: Sepsis Cases - Event Log (2016).
https://doi.org/10.4121/uuid:915d2bfb-7e84-49ad-a286-dc35f063a460, https:

//data.4tu.nl/articles/dataset/Sepsis_Cases_-_Event_Log/12707639

https://doi.org/10.1109/CLEI53233.2021.9640225
https://doi.org/10.4121/uuid:d06aff4b-79f0-45e6-8ec8-e19730c248f1
https://data.4tu.nl/articles/dataset/BPI_Challenge_2019/12715853
https://data.4tu.nl/articles/dataset/BPI_Challenge_2019/12715853
https://doi.org/10.4121/uuid:3f422315-ed9d-4882-891f-e180b5b4feb5
https://data.4tu.nl/articles/dataset/BPI_Challenge_2020_Domestic_Declarations/12692543
https://data.4tu.nl/articles/dataset/BPI_Challenge_2020_Domestic_Declarations/12692543
https://doi.org/10.4121/uuid:895b26fb-6f25-46eb-9e48-0dca26fcd030
https://data.4tu.nl/articles/dataset/BPI_Challenge_2020_Request_For_Payment/12706886
https://data.4tu.nl/articles/dataset/BPI_Challenge_2020_Request_For_Payment/12706886
https://data.4tu.nl/articles/dataset/BPI_Challenge_2020_Request_For_Payment/12706886
https://doi.org/10.1007/11494744_25
https://doi.org/10.1007/11494744_25
https://doi.org/10.1007/11494744_25
https://ceur-ws.org/Vol-3424/paper4.pdf
https://doi.org/10.1093/bioinformatics/btv573
https://doi.org/10.1093/bioinformatics/btv573
https://doi.org/10.1093/bioinformatics/btv573
https://doi.org/10.4121/uuid:270fd440-1057-4fb9-89a9-b699b47990f5
https://data.4tu.nl/articles/dataset/Road_Traffic_Fine_Management_Process/12683249
https://data.4tu.nl/articles/dataset/Road_Traffic_Fine_Management_Process/12683249
https://doi.org/10.4121/uuid:915d2bfb-7e84-49ad-a286-dc35f063a460
https://data.4tu.nl/articles/dataset/Sepsis_Cases_-_Event_Log/12707639
https://data.4tu.nl/articles/dataset/Sepsis_Cases_-_Event_Log/12707639

18 Aaron Küsters, Wil van der Aalst

A Alpha+++ Runtime Evaluation Tables

Table 3: Results comparing the runtime of different implementations of Al-
pha+++ on BPI Challenge 2020 (Domestic Declarations)

Event Log Alpha+++ Variant Implementation Median Mean SD

BPI Challenge 2020
(Domestic Declarations)

α+++—2.0—b0.5—t0.5—r0.5
Python 0.6761s 0.6761s 0.0225s
Java 0.5925s 0.5925s 0.0080s
Rust (Single Thread) 0.0675s 0.0675s 0.0036s
Rust 0.0120s 0.0120s 0.0007s

α+++—2.0—b0.3—t0.7—r0.6
Python 0.6797s 0.6797s 0.0137s
Java 0.5875s 0.5875s 0.0030s
Rust (Single Thread) 0.0670s 0.0670s 0.0026s
Rust 0.0120s 0.0120s 0.0005s

α+++—2.0—b0.2—t0.8—r0.7
Python 0.6736s 0.6736s 0.0115s
Java 0.6029s 0.6029s 0.0094s
Rust (Single Thread) 0.0650s 0.0650s 0.0018s
Rust 0.0120s 0.0120s 0.0004s

α+++—2.0—b0.2—t0.8—r0.8
Python 0.6597s 0.6597s 0.0235s
Java 0.5944s 0.5944s 0.0032s
Rust (Single Thread) 0.0660s 0.0660s 0.0016s
Rust 0.0120s 0.0120s 0.0008s

α+++—2.0—b0.1—t0.9—r0.9
Python 0.6407s 0.6407s 0.0170s
Java 0.5895s 0.5895s 0.0027s
Rust (Single Thread) 0.0655s 0.0655s 0.0012s
Rust 0.0120s 0.0120s 0.0007s

α+++—4.0—b0.5—t0.5—r0.5
Python 0.8550s 0.8550s 0.0106s
Java 0.6149s 0.6149s 0.0772s
Rust (Single Thread) 0.1315s 0.1315s 0.0021s
Rust 0.0210s 0.0210s 0.0007s

α+++—4.0—b0.3—t0.7—r0.6
Python 0.8521s 0.8521s 0.0171s
Java 0.6008s 0.6008s 0.0027s
Rust (Single Thread) 0.1350s 0.1350s 0.0031s
Rust 0.0210s 0.0210s 0.0016s

α+++—4.0—b0.2—t0.8—r0.7
Python 0.8307s 0.8307s 0.0188s
Java 0.5930s 0.5930s 0.0068s
Rust (Single Thread) 0.1315s 0.1315s 0.0058s
Rust 0.0200s 0.0200s 0.0009s

α+++—4.0—b0.2—t0.8—r0.8
Python 0.8393s 0.8393s 0.0191s
Java 0.5896s 0.5896s 0.0036s
Rust (Single Thread) 0.1310s 0.1310s 0.0031s
Rust 0.0205s 0.0205s 0.0011s

α+++—4.0—b0.1—t0.9—r0.9
Python 0.8185s 0.8185s 0.0166s
Java 0.6025s 0.6025s 0.0074s
Rust (Single Thread) 0.1285s 0.1285s 0.0041s
Rust 0.0200s 0.0200s 0.0016s

High-Performance Process Mining Library in Rust 19

Table 4: Results comparing the runtime of different implementations of Al-
pha+++ on BPI Challenge 2020 (Request for Payment)

Event Log Alpha+++ Variant Implementation Median Mean SD

BPI Challenge 2020
(Request for Payment)

α+++—2.0—b0.5—t0.5—r0.5
Python 0.9575s 0.9575s 0.0207s
Java 0.4485s 0.4485s 0.0064s
Rust (Single Thread) 0.0650s 0.0650s 0.0035s
Rust 0.0115s 0.0115s 0.0007s

α+++—2.0—b0.3—t0.7—r0.6
Python 0.9210s 0.9210s 0.0231s
Java 0.4454s 0.4454s 0.0079s
Rust (Single Thread) 0.0610s 0.0610s 0.0021s
Rust 0.0110s 0.0110s 0.0008s

α+++—2.0—b0.2—t0.8—r0.7
Python 0.9154s 0.9154s 0.0104s
Java 0.4484s 0.4484s 0.0073s
Rust (Single Thread) 0.0640s 0.0640s 0.0022s
Rust 0.0110s 0.0110s 0.0003s

α+++—2.0—b0.2—t0.8—r0.8
Python 0.9113s 0.9113s 0.0133s
Java 0.4484s 0.4484s 0.0070s
Rust (Single Thread) 0.0630s 0.0630s 0.0026s
Rust 0.0110s 0.0110s 0.0005s

α+++—2.0—b0.1—t0.9—r0.9
Python 0.9010s 0.9010s 0.0181s
Java 0.4457s 0.4457s 0.0065s
Rust (Single Thread) 0.0620s 0.0620s 0.0021s
Rust 0.0110s 0.0110s 0.0006s

α+++—4.0—b0.5—t0.5—r0.5
Python 0.8591s 0.8591s 0.0175s
Java 0.4463s 0.4463s 0.0070s
Rust (Single Thread) 0.0605s 0.0605s 0.0029s
Rust 0.0110s 0.0110s 0.0006s

α+++—4.0—b0.3—t0.7—r0.6
Python 0.8423s 0.8423s 0.0207s
Java 0.4527s 0.4527s 0.0083s
Rust (Single Thread) 0.0590s 0.0590s 0.0029s
Rust 0.0110s 0.0110s 0.0006s

α+++—4.0—b0.2—t0.8—r0.7
Python 0.8335s 0.8335s 0.0155s
Java 0.4465s 0.4465s 0.0046s
Rust (Single Thread) 0.0615s 0.0615s 0.0022s
Rust 0.0110s 0.0110s 0.0005s

α+++—4.0—b0.2—t0.8—r0.8
Python 0.8357s 0.8357s 0.0161s
Java 0.4475s 0.4475s 0.0065s
Rust (Single Thread) 0.0605s 0.0605s 0.0024s
Rust 0.0110s 0.0110s 0.0009s

α+++—4.0—b0.1—t0.9—r0.9
Python 0.8202s 0.8202s 0.0200s
Java 0.4435s 0.4435s 0.0068s
Rust (Single Thread) 0.0580s 0.0580s 0.0022s
Rust 0.0110s 0.0110s 0.0006s

20 Aaron Küsters, Wil van der Aalst

Table 5: Results comparing the runtime of different implementations of Al-
pha+++ on BPI Challenge 2019 (Sample of 3000 Cases)

Event Log Alpha+++ Variant Implementation Median Mean SD

BPI Challenge 2019
(Sample of 3000 Cases)

α+++—2.0—b0.5—t0.5—r0.5
Python 2.5053s 2.5053s 0.0444s
Java 1.2314s 1.2314s 0.0072s
Rust (Single Thread) 0.1660s 0.1660s 0.0047s
Rust 0.0260s 0.0260s 0.0008s

α+++—2.0—b0.3—t0.7—r0.6
Python 2.5198s 2.5198s 0.0475s
Java 1.2391s 1.2391s 0.0053s
Rust (Single Thread) 0.1660s 0.1660s 0.0056s
Rust 0.0255s 0.0255s 0.0007s

α+++—2.0—b0.2—t0.8—r0.7
Python 2.3436s 2.3436s 0.0460s
Java 1.2436s 1.2436s 0.0038s
Rust (Single Thread) 0.1610s 0.1610s 0.0022s
Rust 0.0240s 0.0240s 0.0004s

α+++—2.0—b0.2—t0.8—r0.8
Python 2.3502s 2.3502s 0.0529s
Java 1.2367s 1.2367s 0.0072s
Rust (Single Thread) 0.1590s 0.1590s 0.0022s
Rust 0.0240s 0.0240s 0.0008s

α+++—2.0—b0.1—t0.9—r0.9
Python 2.2289s 2.2289s 0.0390s
Java 1.2387s 1.2387s 0.0023s
Rust (Single Thread) 0.1580s 0.1580s 0.0040s
Rust 0.0235s 0.0235s 0.0012s

α+++—4.0—b0.5—t0.5—r0.5
Python 2.2844s 2.2844s 0.0442s
Java 1.2575s 1.2575s 0.0106s
Rust (Single Thread) 0.1560s 0.1560s 0.0044s
Rust 0.0250s 0.0250s 0.0041s

α+++—4.0—b0.3—t0.7—r0.6
Python 2.2720s 2.2720s 0.0511s
Java 1.2353s 1.2353s 0.0024s
Rust (Single Thread) 0.1565s 0.1565s 0.0043s
Rust 0.0245s 0.0245s 0.0005s

α+++—4.0—b0.2—t0.8—r0.7
Python 2.1293s 2.1293s 0.0423s
Java 1.2281s 1.2281s 0.0052s
Rust (Single Thread) 0.1495s 0.1495s 0.0054s
Rust 0.0240s 0.0240s 0.0007s

α+++—4.0—b0.2—t0.8—r0.8
Python 2.1709s 2.1709s 0.0446s
Java 1.2203s 1.2203s 0.0051s
Rust (Single Thread) 0.1505s 0.1505s 0.0023s
Rust 0.0230s 0.0230s 0.0013s

α+++—4.0—b0.1—t0.9—r0.9
Python 2.0295s 2.0295s 0.0331s
Java 1.2401s 1.2401s 0.0044s
Rust (Single Thread) 0.1460s 0.1460s 0.0011s
Rust 0.0220s 0.0220s 0.0006s

High-Performance Process Mining Library in Rust 21

Table 6: Results comparing the runtime of different implementations of Al-
pha+++ on Sepsis Cases

Event Log Alpha+++ Variant Implementation Median Mean SD

Sepsis Cases
α+++—2.0—b0.5—t0.5—r0.5

Python 5.6474s 5.6474s 0.0758s
Java 2.3630s 2.3630s 0.0061s
Rust (Single Thread) 0.4040s 0.4040s 0.0032s
Rust 0.0610s 0.0610s 0.0017s

α+++—2.0—b0.3—t0.7—r0.6
Python 4.7470s 4.7470s 0.0783s
Java 2.3601s 2.3601s 0.0096s
Rust (Single Thread) 0.3490s 0.3490s 0.0039s
Rust 0.0530s 0.0530s 0.0009s

α+++—2.0—b0.2—t0.8—r0.7
Python 4.2339s 4.2339s 0.0722s
Java 2.3656s 2.3656s 0.0076s
Rust (Single Thread) 0.3090s 0.3090s 0.0025s
Rust 0.0485s 0.0485s 0.0026s

α+++—2.0—b0.2—t0.8—r0.8
Python 4.1869s 4.1869s 0.0558s
Java 2.3505s 2.3505s 0.0161s
Rust (Single Thread) 0.3090s 0.3090s 0.0030s
Rust 0.0480s 0.0480s 0.0008s

α+++—2.0—b0.1—t0.9—r0.9
Python 3.4777s 3.4777s 0.0848s
Java 2.3572s 2.3572s 0.0073s
Rust (Single Thread) 0.2665s 0.2665s 0.0025s
Rust 0.0420s 0.0420s 0.0022s

α+++—4.0—b0.5—t0.5—r0.5
Python 5.8432s 5.8432s 0.0987s
Java 2.3702s 2.3702s 0.0174s
Rust (Single Thread) 0.6415s 0.6415s 0.0122s
Rust 0.0910s 0.0910s 0.0049s

α+++—4.0—b0.3—t0.7—r0.6
Python 4.8226s 4.8226s 0.0836s
Java 2.3603s 2.3603s 0.0041s
Rust (Single Thread) 0.5855s 0.5855s 0.0050s
Rust 0.0870s 0.0870s 0.0039s

α+++—4.0—b0.2—t0.8—r0.7
Python 4.3592s 4.3592s 0.0485s
Java 2.3580s 2.3580s 0.0041s
Rust (Single Thread) 0.5360s 0.5360s 0.0085s
Rust 0.0750s 0.0750s 0.0035s

α+++—4.0—b0.2—t0.8—r0.8
Python 4.3240s 4.3240s 0.0844s
Java 2.3209s 2.3209s 0.0432s
Rust (Single Thread) 0.5365s 0.5365s 0.0073s
Rust 0.0740s 0.0740s 0.0019s

α+++—4.0—b0.1—t0.9—r0.9
Python 3.7477s 3.7477s 0.0651s
Java 2.3627s 2.3627s 0.0233s
Rust (Single Thread) 0.4835s 0.4835s 0.0051s
Rust 0.0670s 0.0670s 0.0010s

22 Aaron Küsters, Wil van der Aalst

Table 7: Results comparing the runtime of different implementations of Al-
pha+++ on RTFM

Event Log Alpha+++ Variant Implementation Median Mean SD

RTFM
α+++—2.0—b0.5—t0.5—r0.5

Python 0.1702s 0.1702s 0.0032s
Java 0.0904s 0.0904s 0.0010s
Rust (Single Thread) 0.0350s 0.0350s 0.0011s
Rust 0.0100s 0.0100s 0.0006s

α+++—2.0—b0.3—t0.7—r0.6
Python 0.1603s 0.1603s 0.0033s
Java 0.0899s 0.0899s 0.0014s
Rust (Single Thread) 0.0340s 0.0340s 0.0014s
Rust 0.0100s 0.0100s 0.0005s

α+++—2.0—b0.2—t0.8—r0.7
Python 0.1466s 0.1466s 0.0029s
Java 0.0910s 0.0910s 0.0017s
Rust (Single Thread) 0.0340s 0.0340s 0.0013s
Rust 0.0090s 0.0090s 0.0007s

α+++—2.0—b0.2—t0.8—r0.8
Python 0.1490s 0.1490s 0.0026s
Java 0.0909s 0.0909s 0.0014s
Rust (Single Thread) 0.0340s 0.0340s 0.0010s
Rust 0.0090s 0.0090s 0.0004s

α+++—2.0—b0.1—t0.9—r0.9
Python 0.1412s 0.1412s 0.0021s
Java 0.0907s 0.0907s 0.0013s
Rust (Single Thread) 0.0340s 0.0340s 0.0034s
Rust 0.0090s 0.0090s 0.0007s

α+++—4.0—b0.5—t0.5—r0.5
Python 0.1825s 0.1825s 0.0038s
Java 0.0913s 0.0913s 0.0405s
Rust (Single Thread) 0.0365s 0.0365s 0.0014s
Rust 0.0110s 0.0110s 0.0005s

α+++—4.0—b0.3—t0.7—r0.6
Python 0.1737s 0.1737s 0.0037s
Java 0.0905s 0.0905s 0.0021s
Rust (Single Thread) 0.0350s 0.0350s 0.0009s
Rust 0.0100s 0.0100s 0.0009s

α+++—4.0—b0.2—t0.8—r0.7
Python 0.1550s 0.1550s 0.0022s
Java 0.0901s 0.0901s 0.0020s
Rust (Single Thread) 0.0350s 0.0350s 0.0015s
Rust 0.0100s 0.0100s 0.0006s

α+++—4.0—b0.2—t0.8—r0.8
Python 0.1554s 0.1554s 0.0027s
Java 0.0900s 0.0900s 0.0023s
Rust (Single Thread) 0.0350s 0.0350s 0.0027s
Rust 0.0090s 0.0090s 0.0005s

α+++—4.0—b0.1—t0.9—r0.9
Python 0.1479s 0.1479s 0.0022s
Java 0.0901s 0.0901s 0.0012s
Rust (Single Thread) 0.0340s 0.0340s 0.0017s
Rust 0.0090s 0.0090s 0.0005s

	Developing a High-Performance Process Mining Library with Java and Python Bindings in Rust
	Introduction
	Related Work
	Implementation
	Overview
	FFI Bindings to Java and Python
	WebAssembly and JavaScript
	Exchanging Data
	Basic data types
	Complex data structures
	Persisting data in Rust

	Implementing Alpha+++ and Process Mining Basics
	Starter Kit

	Evaluation
	XES Import
	Alpha+++

	Conclusion
	Alpha+++ Runtime Evaluation Tables

