
High-Level Event Mining:
Overview and Future Work

Bianka Bakullari� 1[0000−0003−2680−0826] and Wil M. P. van der
Aalst1[0000−0002−0955−6940]

RWTH Aachen University
{bianka.bakullari, wvdaalst}@pads.rwth-aachen.de

Abstract. Process mining traditionally relies on input consisting of low-
level events that capture individual activities, such as filling out a form or
processing a product. However, many of the complex problems inherent
in processes, such as bottlenecks and compliance issues, extend beyond
the scope of individual events and process instances. Consider congestion,
for instance—it can involve and impact numerous cases, much like how
a traffic jam affects many cars simultaneously. High-level event mining
seeks to address such phenomena using the regular event data available.
This report offers an extensive and comprehensive overview at existing
work and challenges encountered when lifting the perspective from indi-
vidual events and cases to system-level events.

1 Motivation

Process mining techniques are utilized to analyze and improve processes by using
real event data extracted from information systems. These data are captured in
the form of an event log, which comprises events that occurred during the execu-
tion of processes [1]. These events involve various tasks, resources, facilities, and
costs, among others. The attributes of an event specify which of these process
components the event concerns. In particular, the activity attribute indicates the
process task executed during the event. Each event is associated with a unique
instantiation of the process, as denoted by the case attribute of the event. Most
process mining methods analyze processes in terms of their process instances,
and general claims about the process are often derived from an aggregation of
observations at the level of individual cases. For example, process performance is
assessed by aggregating the durations of individual process instances, and bot-
tlenecks are identified by examining the average time spent between activities.
However, process behavior is not solely a characteristic of individual cases, as
these are not independent from each other. Active cases may concurrently de-
mand shared process capacities, potentially overloading the process and workers,
leading to costly congestion and delays as the process operates beyond its stan-
dard capacity [8]. Consequently, business processes may encounter various issues
due to the fluctuating number of tasks that need to be managed within short
time periods. This type of behavior can be dynamic in nature; it may emerge

ar
X

iv
:2

40
5.

14
43

5v
1

 [
cs

.D
B

]
 2

3
M

ay
 2

02
4

2 B. Bakullari and W.M.P. van der Aalst

locally and be short-lived, thus eluding detection when aggregating entire event
data.

Consider, for instance, the citizenship application process illustrated in Fig-
ure 1. Initially, each applicant submits their citizenship application at the foreign
office of their city of residence (activity submit). Following a waiting period, the
application undergoes review (activity review). If necessary, the applicant may
be asked to provide updated or additional documents (activity update). These
are reviewed once more, and finally, a decision is reached, either approving (ac-
tivity approve) or denying (activity deny) the citizenship. In this process, Jane is
responsible for managing submission and update-related tasks. Mike and Sarah
are foreign office workers responsible for reviewing and making decisions on the
applications. This process exemplifies one where performance can significantly
fluctuate based on the frequency of incoming cases. Suppose, for example, that
when applications are assigned for review to Mike in large quantities, they have
a higher likelihood of being denied. Additionally, the approval process may take
longer for applications handled by Sarah if she is very busy when they come
up for review. Such patterns may recur during periods of increased application
submissions. While examining aggregated data over extended periods, fluctua-
tions in waiting times for approval and the proportion of denied cases may not
be apparent. However, these patterns persist and indicate underlying issues in
the process that impact resources, the process runs of active cases, and overall
process performance. Therefore, there is a crucial need to develop new concepts
that explicitly capture such behavioral observations to offer a more comprehen-
sive and system-aware perspective of processes.

In our prior work [2][3], we introduced the concept of "high-level events" to
encapsulate and interpret holistic observations, like outlier behavior linked to
load and delays. This idea of representing such outlier behaviors as events them-
selves was initially suggested by Zahra et al. [15]. Additionally, the performance
spectrum presented in [6] clearly showed that processes—even within the same
segment—exhibit non-stationary behavior which is not observable under aggre-
gation. This dynamic behavior often appears as batching behavior, as discussed
in [9], where batching can notably influence performance. Authors in [12] ex-
tended this concept by detecting batching behavior not only within individual
tasks but also across linked activities. Moreover, the authors explored the ap-
plication of machine learning techniques in [4] and [5], utilizing the number of
active cases as an additional feature for determining the optimal timing of inter-
ventions on running cases. In [14], the authors show how information regarding
workload and resource availability can be extracted from raw event data and en-
coded into congestion graphs. From these congestion graphs, congestion-related
features can be extracted which are then used for predicting the time until next
activity. Additionally, the concept of contextual association, introduced in [7],
highlights instances where a group of cases collectively exhibits concept drift in
response to a shared object undergoing change. Moreover, to address the chal-
lenge of analyzing overly fine-grained event data, unsupervised event abstraction

High-Level Event Mining 3

Fig. 1. The citizenship application process involves initial submission, review, optional
updates, and decision-making steps at the foreign office. Jane manages submissions
and updates, while Mike and Sarah review and decide whether the applications will be
approved or denied

techniques have been proposed, as discussed in [10] [11], allowing for meaningful
results by lifting the data to a higher level of abstraction.

This report is structured as follows: Section 2 lays down fundamental defi-
nitions crucial for understanding the proposed methods. In Section 3, we delve
into the concept of high-level events, providing examples and insights into their
detection and interpretation. Section 4 elaborates on connecting individual high-
level events through proximity values, leading to the emergence of cascades and
threads. Section 5 demonstrates how to analyze the representation of specific
case groups within thread variants. In Section 6, we introduce a method to mea-
sure process robustness against disruptions by defining the latter as sudden large
queues at individual activities. Finally, Section 7 concludes the report, touching
upon future research directions.

2 Preliminaries

In the remainder, for any set X, set P(X) denotes the power set of X, and X∗

denotes all sequences over set X.

Definition 1 (Events, Event log). Uev is the universe of events and Act ,
Case, Res are the sets of activity names, case identifiers and resource names,
respectively. T is the totally ordered set of timestamps. L = (E,Attr , π) is an
event log where E ⊆ Uev is a finite set of events, {act , case, res, time} ⊆ Attr is a
set of attribute names and π ∈ E ×Attr ̸→ Val a (partial) function that assigns
each event e a value π(e, att) or is undefined (written π(e, att)=⊥). For any
e ∈ E, π(e, act) ∈ Act , π(e, case) ∈ Case, π(e, res) ∈ Res, and π(e, time) ∈ T .

I.e., an event log consists of a set of events with various attributes. The attributes
related to the case, activity, timestamp, and resource are defined for all events
in the log. For any attribute att ∈ Attr , for simplicity we write att(e) instead of
π(e, att).

4 B. Bakullari and W.M.P. van der Aalst

Definition 2 (Traces, Steps, Segments). The cases of an event log L =
(E,Attr , π) are cases(L) = {case(e) | e ∈ E}. For any case c ∈ cases(L) with
corresponding event set Ec = {e ∈ E | case(e) = c}, the trace of c is the sequence
σ(c) = ⟨e1, ..., e|Ec|⟩ ∈ E∗

c containing all events from Ec ordered by time, i.e.,
∀1≤i<j≤|Ec| time(ei) < time(ej). A step is a pair of directly following events in
a case in L. More precisely, the steps of L are steps(L) = {(e, e′) ∈ E × E |
∃c∈cases(L) σ(c) = ⟨..., e, e′, ...⟩}. Moreover, we define S(L) = {(act(e), act(e′)) |
(e, e′) ∈ steps(L)} as the segments of L.

A trace is the timely ordered sequence of events that belong to the same case.
A step is a pair of events that occur consecutively within a trace in the log. A
segment is a pair of activities that directly follow each other in the log.

Definition 3 (Previous and Next event). Given event log L = (E,Attr , π)
and the steps set steps(L), for any e ∈ E, next(e) = e′ whenever there is an
event e′ ∈ E such that (e, e′) ∈ steps(L), and next(e) =⊥ otherwise. Similarly,
for any e ∈ E, prev(e) = e′ whenever there is an event e′ ∈ E such that (e′, e) ∈
steps(L), and prev(e) =⊥ otherwise.

Definition 4 (Framing, Time Windows). A framing is a function ϕ ∈ T → N
mapping timestamps to numbers such that ∀t1,t2∈T t1 < t2 ⇒ ϕ(t1) ≤ ϕ(t2). Each
w ∈ rng(ϕ) represents time window −→w = [wstart , wend], where wstart = min{t ∈
T | ϕ(t) = w} and wend = max{t ∈ T | ϕ(t) = w}.

Given an event log L = (E,Attr , π) and a framing ϕ, set WL,ϕ = {w ∈ N |
min{ϕ(time(e)) | e ∈ E} ≤ w ≤ max{ϕ(time(e)) | e ∈ E}} contains all time
windows of L w.r.t. framing ϕ. Note that for any e ∈ E, ϕ(time(e)) = w whenever
e occurred within −→w . In the remainder, we simply refer to w when we mean
time window −→w . For simplicity, we misuse the notation and write e ∈ w to
indicate that time(e) ∈ −→w , we write e ≤ w to indicate that time(e) ≤ wend ,
and similarly, e ≥ w to indicate that time(e) ≥ wstart . Moreover, we use set
Ew = {e ∈ E | e ∈ w} to refer to all events occurring during w. Finally, in the
remainder we assume the framing function ϕ is fixed and we simply give W as
the set of time windows induced by ϕ when the log is clear from the context.

Note that the methods described in [2][3] can be applied even when the
resource attribute is absent from the data, provided that all high-level events
requiring resource information are excluded from the analysis. Furthermore, all
techniques discussed in this report assume the use of a fixed set of time windows,
typically of equal size, for observing all high-level events.

3 High-level Events: Definition and Interpretation

3.1 Defining Process Components, Aspects, and High-Level Events

High-level events are used to conceptualize observations of process behavior at
the system level. The process aspects typically analyzed concern features like
varying process load (congestion), a universal trait across different domains.

High-Level Event Mining 5

Congestion aspects can manifest at the levels of activities (e.g., cases waiting in
a queue), resources (e.g., resource workload), and segments (e.g., waiting time
between two tasks). Analogous to system dynamics, various process aspects can
be measured in different time windows throughout the process [13]. For instance,
the number of process instances entering the queue for activity a, the number
of events handled by resource r, and the number of cases entering segment (a, b)
are examples of process aspects measurable in any given time window. Each time
window focuses on a specific set of events related to an individual aspect. These
events occur close in time (e.g., within the same time window) and in a particular
context, which relates to the process aspect, such as referring to the same activity,
being handled by the same resource, or indicating the same subsequent activity.
Depending on the event set linked to a specific aspect in a given time window,
there is a real number reflecting the value of that aspect during that window. For
example, consider an event log L = (E,Attr , π), where a is an activity and (a, b)
is a segment. The aspect enqueue relates to the number of cases entering the
queue before a specific activity in a window. For window w ∈ W and activity
a, this event set would be {e ∈ Ew | act(next(e)) = a}. A high-level event
indicating a large new queue at a during w would emerge when the size of
this event set is unusually large, defining the value of the enqueue aspect. The
handover aspect focuses on the work handover ratio at a specific segment in
a given window. For window w ∈ W and segment (a, b), the corresponding
event set is Ihd = {e ∈ Ew | act(prev(e)) = a ∧ act(e) = b}. A high-level
event related to a high work handover ratio at (a, b) during w could arise if the
number of resources previously handling activity a is significantly greater than
those handling b at w, thus determining the value of handover at this segment.

Following this, we introduce a unifying definition for all functions that de-
termine the corresponding set of events and the value of various process aspects
at the activity, resource, or segment level.

Definition 5 (Process components). Given event log L = (E,Attr , π), let
A(L) = {act(e) | e ∈ E} be the activities of L, R(L) = {res(e) | e ∈ E} be the
resources of L, and S(L) the segments of L. The components of L comp(L) =
A(L) ∪ R(L) ∪ S(L) refer to the union of all activities, resources and segments
in the event log.

Definition 6 (Aspect functions). Uasp is the universe of process aspects.
Given event log L = (E,Attr , π) with time windows W , for any process as-
pect asp ∈ Uasp, there is a corresponding aspect function fL

asp ∈ comp(L)×W ̸→
P(E)×R which (partially) maps component and window pairs of L onto a set of
events and a real number. In particular, whenever fL

asp ∈ A(L)×W → P(E)×R
we call asp an activity-based aspect, whenever fL

asp ∈ R(L)×W → P(E)×R we
call asp a resource-based aspect, and similarly, whenever fL

asp ∈ S(L) ×W →
P(E)×R we call asp a segment-based aspect. We drop the superscript L when
the event log is clear from the context, and for any component c ∈ comp(L) and
window w ∈ W , we write fev

asp(c, w) and fval
asp(c, w) to refer to the event set and

the value of aspect asp evaluated at c and w, respectively.

6 B. Bakullari and W.M.P. van der Aalst

As previously explained, a high-level event related to a specific aspect, compo-
nent, and time window is detected whenever the value of that aspect, measured
for that component at that time window, exceeds a given threshold. In the fol-
lowing definition, we limit the types of high-level events to those that pertain to
aspects at the activity, resource, and segment levels.

Definition 7 (High-level event). Given event log L = (E,Attr , π) and time
window set W , let ASP = ASPA ∪ ASPR ∪ ASPS ⊆ Uasp be a subset of process
aspects where ASPA are activity-based aspects, ASPR are resource-based aspects,
and ASPS are segment-based aspects. Let fthresh ∈ (ASPA ×A)∪ (ASPR ×R)∪
(ASPS × S) → R be a threshold mapping which assigns a dedicated threshold to
every pair of aspect and component of the corresponding type. For any process
aspect asp ∈ ASP , component c ∈ comp(L), and any window w ∈ W , we detect
high-level event h = (asp, c, w) ∈ ASP × comp(L) × W whenever fval

asp(c, w) ≥
fthresh(asp, c).

3.2 High-Level Events at the Activity, Resource, and Segment Level

In the following, we (re)introduce some high-level events referring to various
aspects at the activity, resource, and segment levels. The labels used to describe
these aspects in this report are slightly adjusted from those in existing work.
Given an event log L = (E,Attr , π) and a set of time windows W , let A, R, S
represent its sets of activities, resources, and segments, respectively.

Examples of activity-based aspects include exec, enqueue, queue ∈ Uasp . For
any activity a ∈ A and window w ∈ W :

– fev
exec(a,w) = {e ∈ Ew | act(e) = a} is the set of events executing a during
w, and fval

exec(a,w) = |fev
exec(a,w)| is the size of that set. A high-level event

(exec, a, w) would indicate that activity a was executed unusually often dur-
ing w.

– fev
enqueue(a,w) = {e ∈ Ew | act(next(e)) = a} is the set of events occurring

during w whose next task will be activity a. The occurrence of each of these
events indicates that the corresponding case enters the queue at a during
w. fval

enqueue(a,w) = |fev
enqueue(a,w)| is the size of that set. A high-level event

(enqueue, a, w) would indicate that a high volume of cases entered the queue
for activity a during w.

– fev
queue(a,w) = {e ∈ E | e ≤ w ∧ next(e) ≥ w ∧ act(next(e)) = a} is the set

of events that occurred before or during w whose next task will be activity
a. The occurrence of each of these events indicates that the corresponding
case enters the queue at a at some point before or during w and is still in
the queue during w. fval

queue(a,w) = |fev
queue(a,w)| is the size of that set. A

high-level event (queue, a, w) would indicate that a high volume of cases is
in the queue for activity a during w.

In the illustrations showing the event sets of different aspects, we reference the
process depicted in Figure 1. Each dot represents an event executing the cor-
responding activity (determined by the line on the y-axis) at a specific time

High-Level Event Mining 7

(positioned on the x-axis). The vertical dotted lines split the time scope into
time windows. A line connecting two events of different activities indicates that
the later event directly followed the previous event in the same case. The darker
dots comprise the event set of the particular aspect at a fixed time window w.

In Figure 2, the left illustration shows which review events occur during w
(event set fev

exec(review , w)), whereas the right illustration shows which events
indicate cases enqueuing for review during w (event set fev

enqueue(review , w)).
These events can be related to activities submit and update since they precede
review in the process. Figure 3 depicts the events which indicate the enqueuing
at activity review before or during w (event set fev

queue(review , w)).

Fig. 2. The dark dots (left) correspond to events from set fev
exec(review , w) which indi-

cate executions of activity review during window w. The dark dots (right) correspond to
events from set f ev

enqueue(review , w)) which indicate cases enqueuing for activity review
during window w.

Fig. 3. The dark dots correspond to events from set f ev
queue(review , w) which indicate

cases in the queue for activity review that have entered the queue before or during
window w.

Examples of resource-based aspects include do, todo,workload ∈ Uasp . For
any resource r ∈ R and window w ∈ W :

– fev
do (r, w) = {e ∈ Ew | res(e) = r} is the set of events handled by resource
r during window w, and fval

do (r, w) = |fev
do (r, w)| is the size of that set. A

high-level event (do, r, w) would indicate that resource r was particularly
busy handling events during w.

8 B. Bakullari and W.M.P. van der Aalst

– fev
todo(r, w) = {e ∈ Ew | res(next(e)) = r} is the set of events occurring

during w whose next upcoming task will be handled by resource r. The oc-
currence of each of these events indicates a new task lining up for resource r.
fval
todo(r, w) = |fev

todo(r, w)| is the size of that set. A high-level event (todo, r, w)
would indicate that resource r received a high volume of new tasks during
w.

– fev
workload(a,w) = {e ∈ E | e ≤ w ∧ next(e) ≥ w ∧ res(next(e)) = r} is the set

of events having occurred before or during w whose next upcoming task will
be handled by resource r. The occurrence of each of these events indicates
that a new task is added to the total workload of r at some point before
or during w and is still part of the workload during w. fval

workload(r, w) =
|fev

workload(r, w)| is the size of that set. A high-level event (workload , r, w)
would indicate that there was a high volume of tasks waiting for resource r
during w.

In the illustrations depicting the event sets of different resource-based aspects,
the colored circles surrounding the dots representing various events indicate the
corresponding resource: gray for Jane, blue for Mike, and red for Sarah. Fig-
ure 4 (left) shows all events occurring within time window w along with their
associated resources. The dark dots represent events executed by Sarah during
window w (event set fev

do (Sarah, w)). The right illustration displays only a sub-
set of the events that highlight tasks accumulating for Sarah during w (a subset
of fev

todo(Sarah, w)). Some of these future tasks may be related to the activities
approve and deny, which typically follow the completion of the prior activity
review. Figure 5 depicts a subset of the events that indicate tasks accumulat-
ing for Sarah before or during w (a subset of fev

workload(Sarah, w)). These events
represent a portion of Sarah’s total workload during w.

Fig. 4. The dots encircled in red in the left illustration represent events that were
executed by Sarah during window w (set fev

do (Sarah, w)). The dark dots in the right
illustration correspond to a subset of the events occurring during w (specifically review
events) whose next task (activity approve or deny) will be handled by Sarah (set
fev
todo(Sarah, w)).

High-Level Event Mining 9

Fig. 5. The dots encircled in red represent events that were executed by Sarah. The
dark dots correspond to a subset of the events occurring before or during w (specifically
review events) whose next task (activity approve or deny) will be handled by Sarah
(set fev

workload(Sarah, w)).

Examples of segment-based aspects include enter , exit , cross, handover ,
delayStart , delayEnd , delayIn delayNow ∈ Uasp . For any segment s = (a, b) ∈ S
and window w ∈ W :

– fev
enter (s, w) = {e ∈ Ew | act(e) = a ∧ act(next(e)) = b} is the set of events

executing a during w whose next activity will be b. The occurrence of each of
these events represents a case entering segment (a, b) during w. fval

enter (s, w) =
|fev

enter (s, w)| is the size of that set. A high-level event (enter , s, w) would
indicate a high volume of cases entering segment (a, b) during w.

– fev
exit(s, w) = {e ∈ Ew | act(prev(e)) = a ∧ act(e) = b} is the set of events

executing b during w whose previous activity was a. The occurrence of each of
these events represents a case exiting segment (a, b) during w. fval

exit(s, w) =
|fev

exit(s, w)| is the size of that set. A high-level event (enter , s, w) would
indicate a high volume of cases exiting segment (a, b) during w.

– fev
cross(s, w) = {e ∈ E | e ≤ w ∧ next(e) ≥ w ∧ act(e) = a∧ act(next(e)) = b}

is the set of events having executed a before or during w and whose next task
will be b. The occurrence of each of these events represents a case crossing
segment (a, b) during w. fval

cross(s, w) = |fev
cross(s, w)| is the size of that set. A

high-level event (cross, s, w) would indicate a high volume of cases crossing
segment (a, b) during w.

– fev
handover (s, w) = {e ∈ Ew | act(prev(e)) = a ∧ act(e) = b} is the set

of events executing b during w whose previous activity was a. The occur-
rence of each of these events represents a case exiting segment (a, b) during
w. fval

handover (s, w) = |{res(prev(e)) | e ∈ fev
handover (s, w)}|/|{res(e) | e ∈

fev
handover (s, w)}| reflects the handover ratio at (a, b) during w, calculated as

the ratio between the number of resources handling the previous activity a
and those handling the current activity b. A high-level event (handover , s, w)
would indicate a significant discrepancy in the number of resources handling
these two activities.

– fev
delayStart(s, w) = {e ∈ Ew | act(e) = a ∧ act(next(e)) = b} is the set of

events executing a during w whose next activity will be b. Each event repre-
sents a case entering segment (a, b) during w. fval

delayStart(s, w) =

10 B. Bakullari and W.M.P. van der Aalst

1
|f ev
delayStart (s,w)|

∑
e∈fev

delayStart (s,w)

(
time(next(e)) − time(e)

)
is calculated as the

average waiting time between a and b for all cases which entered segment
(a, b) during w. A high-level event (delayStart , s, w) would indicate that the
average waiting time between a and b for cases entering segment (a, b) during
w was unusually long.

– fev
delayEnd(s, w) = {e ∈ Ew | act(prev(e)) = a∧act(e) = b} is the set of events

executing b during w whose previous activity was a. Each event represents a
case exiting segment (a, b) during w. fval

delayEnd(s, w) =
1

|f ev
delayEnd (s,w)|

∑
e∈fev

delayEnd (s,w)

(
time(e) − time(prev(e))

)
reflects the average

waiting time between a and b for all cases exiting segment (a, b) during w.
A high-level event (delayEnd , s, w) would indicate that the average waiting
time between a and b for cases exiting segment (a, b) during w was unusually
long.

– fev
delayIn(s, w) = {e ∈ E | e ≤ w ∧ next(e) ≥ w ∧ act(e) = a ∧ act(next(e)) =
b} is the set of events having executed a before or during w and whose
next task will be b. Each event represents a case that is crossing segment
(a, b) during w. fval

delayIn(s, w) =
1

|f ev
delayIn(s,w)|

∑
e∈fev

delayIn(s,w)

(
time(next(e)) −

time(e)
)

reflects the average waiting time between a and b for all cases
crossing segment (a, b) during w. A high-level event (delayIn, s, w) would
indicate that the average waiting time between a and b for cases crossing
segment (a, b) during w was particularly long.

– fev
delayNow (s, w) = {e ∈ E | e ≤ w∧next(e) ≥ w∧act(e) = a∧act(next(e)) =
b} is the set of events having executed a before or during w and whose next
task will be b. Each event represents a case crossing segment (a, b) during

w. The value fval
delayNow (s, w) =

1
|f ev
delayIn(s,w)|

(∑
e∈fev

delayIn(s,w)

s.t. next(e)∈w

(
time(next(e))−

time(e)
)
+
∑

e∈fev
delayIn(s,w)

s.t. next(e)>w

(
wend − time(e)

))
is calculated by combining the

waiting times between a and b when b occurs within w and adding the
waiting times between a and the end of window w when b occurs after w.
A high-level event (delayNow , s, w) would indicate that the current average
waiting time between a and b for the cases crossing segment (a, b) during w
was particularly long.

We will reference the segment (submit , review) from the citizenship application
process to illustrate aspects enter, exit, and cross. In Figure 6, the left illus-
tration shows the submit events of cases whose next activity is review. These
are the events from set fev

enter ((submit , review), w). In contrast, the right il-
lustration shows the review events of cases whose previous activity was sub-
mit. These are the events from set fev

exit((submit , review), w). Figure 7 depicts
events of cases which are crossing segment (submit , review) during w (event set
fev
cross((submit , review), w)). Specifically, these are the submit events that oc-

curred before or during w whose next activity will be review.

High-Level Event Mining 11

Fig. 6. The dark dots (left) correspond to events from set fev
enter ((submit , review), w)

which indicate cases entering segment (submit , review) during window w. The dark
dots (right) correspond to events from set fev

exit((submit , review), w) which indicate
cases exiting segment (submit , review) during window w.

Fig. 7. The dark dots correspond to events from set fev
cross((submit , review), w) which

indicate cases crossing segment (submit , review) during window w.

3.3 Addressing Challenges in Detecting and Interpreting High-Level
Events

It is important to note that there are four distinct aspects related to the time
cases spend waiting in a particular segment. A high-level event related to de-
layStart may occur when cases enter a segment during a particularly busy period,
suffering a prolonged wait, although they may not necessarily exit the segment
within the same time window. Conversely, a high-level event related to delayEnd
may emerge when multiple cases that have experienced long waits at a seg-
ment exit that segment closely together, potentially easing congestion at that
time. This exit could occur even though they possibly entered the segment at
different times. Furthermore, the aspect delayIn measures the average waiting
time for all cases crossing a segment within a specific time window, while de-
layNow provides a more operational perspective by showing the average waiting
time up until the current time window. Depending on the specific questions be-
ing addressed, different perspectives on delays may be relevant. To prevent the
identification of high-level events concerning delays that occur simply because
a negligible number of cases have extremely long waiting times, it is advisable
to include additional criteria that also consider the number of cases involved
before declaring a high-level event. This approach ensures a more robust and
meaningful analysis of delays within process segments.

12 B. Bakullari and W.M.P. van der Aalst

It is essential to recognize that the aspects mentioned can be categorized into
two distinct groups; the aspects that describe an action within a given window,
and those that describe a state at that window. The first group includes the
aspect set {exec, enqueue, do, todo, enter , exit , handover , delayStart , delayEnd}.
The event set for these aspects always pertains to events that occur specifically
within the time window where the aspect function is evaluated. Consequently,
if two high-level events h1 = (asp, c, w1) and h2 = (asp, c, w2) refer to the same
aspect and component but occur in different time windows, the events responsi-
ble for their emergence are always disjoint: fev

asp(c, w1)∩ fev
asp(c, w2) = ∅. In con-

trast, the second group includes aspect set {queue,workload , delayIn, delayNow}.
These capture the state of the process at a certain point in time, as the events
leading to the emergence of the corresponding high-level event do not necessar-
ily belong to the window in which the high-level event is observed. Thus, when
high-level events concerning the same aspect and component occur in subsequent
time windows, it may not indicate entirely new behavior, but rather an evolving
state of the process as new events are added to and removed from the responsible
event set at each window.

In Definition 6, each aspect function yields both the value and the underlying
event set responsible for computing the value. It is important to note that for the
detection of high-level events, only the value is relevant. Unless there is a need
to access the attributes of the underlying low-level events for the method being
used, an explicit computation of the event set is not necessary. For instance, in
[2] only the values are relevant for the generation of high-level events. In [3],
the event sets are also computed because the case attribute of these events is
relevant later in the method. Specifically, in [3], aspect functions are referred to
as patterns, the aspects are called pattern types, and the combinations of segment
and window pairs are referred to as coordinates.

Many aspects take into account the next and previous events of those occur-
ring within the current time window. It should be noted that the first events
of any case do not have a previous event, and similarly, the last events of any
case do not have a next event. This leads to situations where, for example, the
queues of activities for start events cannot be captured, as the presence of the
corresponding case in the log is only recognized after the occurrence of the start
event.

When analyzing high-level behavior, a key challenge is identifying the types
of high-level events that are interesting and relevant. This involves selecting
the appropriate aspects and components, as well as establishing thresholds for
detecting high-level events. One should ensure that resource-based aspects are
only analyzed when the resource attribute is available in the data. Furthermore,
focusing on aspects that describe action rather than states can make the inter-
pretation of their recurrence more intuitive. If the selection of aspects and/or
components is not predetermined, or if there is a desire to limit the number
of high-level events while retaining the most important ones, it is possible to
choose high-level events based on their coverage and distribution. For instance,
given an event log L = (E,Attr , π) and a set of time windows W , the coverage

High-Level Event Mining 13

for any aspect asp that describes action and any component c can be defined
as cov(asp, c) = 1

|E|
∑

w∈W |fev
asp(c, w)|. This metric indicates the proportion of

events covered when analyzing aspect asp for component c. High-level events
referring to aspects and components that are more prevalent in the data and
thus have higher coverage are generally more interesting. Conversely, high-level
events that arise from outlier values in the data can also be particularly mean-
ingful. To effectively capture this, one could define an aggregated value from the
list ⟨fval

asp(c, w1), f
val
asp(c, w2), ..., f

val
asp(c, w|W |) of aspect function values across dif-

ferent windows. This aggregated value helps to identify significant deviations or
trends in the data, providing insights into rare but impactful high-level events.

In Definition 7, thresholds for detecting high-level events are uniquely set for
each combination of aspect and component. This allows for a tailored approach
to high-level event detection, ensuring that the thresholds are appropriately set
for the specific characteristics of each aspect and component. One effective way
to establish these thresholds is by setting them at the pth percentile of all values
across the window set. This method guarantees that at least one high-level event
will emerge for each aspect and component pair, capturing all significant devi-
ations from typical values. Having independent thresholds for different aspects
is sensible because these aspects represent different process perspectives, mak-
ing value comparisons between them often meaningless. However, using the same
threshold for the same aspect across different components can be beneficial. This
approach enables implicit comparisons of the same aspect values across various
activities, resources, or segments, providing insights into the relative intensity or
frequency of the aspect within different areas of the process. Furthermore, the
threshold function can be adapted so that it allows for the analysis of both unusu-
ally high and low occurrences. By flipping the inequality sign in Definition 7, one
can shift the focus from detecting high levels of congestion or activity (typically
seen as problematic) to identifying low levels. This analysis of low congestion or
activity could be useful in scenarios where underutilization is a concern, helping
to highlight areas of the process that may benefit from efficiency improvements
or reallocation of resources.

To enhance runtime efficiency, preprocessing steps like filtering the event
log might be necessary, but these methods risk producing invalid results when
detecting high-level events. For instance, projecting the event log onto specific
activities or segments can simplify the data but may alter the original log by
discarding certain activities and creating new activity pairs seen as segments
in high-level events. Moreover, removing entire traces from the event log can
significantly impact the observed process load across all windows where the
removed cases were active. This type of filtering could lead to a misrepresentation
of process dynamics and result in inaccurate high-level events.

The intuition behind high-level events is that, similar to low-level events, they
describe what happened and when it happened. While each high-level event is
unique, detecting high-level events is interesting when there are recurring pat-
terns. Analogous to the activity attribute of low-level events, one can determine
a label that describes what happened when the high-level events emerged. In

14 B. Bakullari and W.M.P. van der Aalst

existing work, this label is a combination of both the aspect and the component
related to the high-level event. In the remainder, we assume that the aspect set
ASP ⊆ Uasp analyzed for any given event log only contains aspects from the
ones presented in this section.

Definition 8 (High-level activity). Given event log L = (E,Attr , π), window
set W , aspect set ASP ⊆ Uasp and threshold function fthresh , let HL,W,ASP,fthresh ⊆
ASP × comp(L) ×W be the set of high-level events detected w.r.t. L, W , ASP
and fthresh . For any h = (asp, c, w) ∈ HL,W,ASP,fthresh , the corresponding high-
level activity is act ′(h) = (asp, c) ∈ ASP × comp(L). I.e., the high-level activity
discards the time of emergence of the high-level event and refers (only) to both
its aspect and its component.

Note that discarding the time aspect is crucial for obtaining recurrent high-level
behavior. However, it is a design choice to consider both the aspect and the
component as the high-level activity as opposed to choosing only the aspect or
only the component.

4 High-Level Event Connection: Propagation and
Cascades

4.1 Approaches to Computing Proximity Functions

All events underlying each observed high-level event occur along the process run
of their corresponding cases. Hence, the high-level events that emerge throughout
the time windows are implicitly caused by the progression of cases within the pro-
cess. As tasks are handled sequentially for each case, whenever an event occurs,
it may contribute to process overloading at the current and/or subsequent activ-
ity, resource, and/or segment. The high-level events observed at a given point in
time may reflect the propagation of effects along the process components of the
cases that triggered the high-level events at earlier stages. Therefore, the high-
level events observed throughout the process are interdependent. Establishing
criteria to determine when two high-level events could be linked allows for the
analysis of more complex high-level behavior, specifically sequences of high-level
events and potentially recurring sequences of high-level activities. However, there
is no single correct method of defining these criteria, and furthermore, it directly
influences the interpretation of the resulting sequences of high-level events. Re-
gardless of how it is computed, in existing work, the strength of connection is
always a function that assigns a proximity value to any pair of high-level events.

Definition 9 (Proximity function). Let H = HL,W,ASP,fthresh be the set of
high-level events obtained from event log L with window set W , and aspects
ASP with threshold function fthresh . Any function ▷◁∈ H ×H → [0, 1] is called
a proximity function, where for any two high-level events h1, h2 ∈ H, ▷◁L(h1, h2)
yields the proximity between h1 and h2 with 0 being the farthest and 1 being the
closest.

High-Level Event Mining 15

In the following, we explore various options for proximity functions given a high-
level event set H emerging from event log L, windows W , aspect set ASP and
thresholds from fthresh .

The underlying component of each high-level event identifies the specific part
of the process the high-level event relates to. From this perspective, one can argue
that certain component pairs are “closer” to each other than others; for instance,
a pair of activities that are always executed sequentially are close, while any
resource is distant from activities it never executes. In [2], the proximity value
is determined solely based on the underlying components of the high-level event
pair. A function link ∈ comp(L)×comp(L) → [0, 1] is computed which assigns a
value between 0 and 1 to each component pair. Specifically, for any component
c ∈ comp(L) : link(c, c) = 1 (each component is closest to itself), and for
any two components c1, c2 ∈ comp(L) : link(c1, c2) = link(c2, c1) (the order is
irrelevant). The detailed computation for all combinations of pairs of activities,
resources, and segments can be found in [2]. The idea behind the link value is that
it increases with the number of events in the data that involve both components
simultaneously. Then, for any two high-level events h1 = (asp1 , c1, w1), h2 =
(asp2 , c2, w2) ∈ H, their proximity value ▷◁ (h1, h2) = link(c1, c2) if there is no
w′ ∈ W such that w1 < w′ < w2 and ▷◁ (h1, h2) = 0 otherwise. In other words,
the proximity value of high-level events emerging in subsequent windows equals
the link value of their underlying components, and it is 0 if the high-level events
occur farther apart from each other. It is important to note, however, that the
link value is determined by aggregating the entire event data. Therefore, it is
possible for two high-level events in subsequent windows to refer to components
that are generally close in the process, but share few or no common events from
those causing these specific high-level events. One could also employ a stricter
version of the link function, assigning value 1 only to identical components,
and 0 otherwise. Consequently, pairs of high-level events would only receive a
positive proximity value if they occur in subsequent windows and refer to the
same activity, resource, or segment.

The proximity value used between high-level events related to segment-based
aspects is refined in [3] to incorporate the set of underlying events involved.
Specifically, the proximity value can only be positive if the high-level events
occur “close” in time (referred to as time overlap) and location (referred to as
location overlap). For instance, let h1 = (asp1 , s1, w1), h2 = (asp2 , s2, w2) ∈ H
be two high-level events where w1 ≤ w2, s1 = (a, b), s2 = (c, d) ∈ S(L) are seg-
ments from the log and asp1 , asp2 are segment-based aspects. h1 and h2 satisfy
location overlap if and only if b = c. Moreover, let Eb(h1) ⊆ E be the events
that execute b which either cause high-level event h1 or are their immediate
predecessors or successors w.r.t. segment (a, b). Let −→wb(h1) = [min{time(e) |
e ∈ Eb(h1)},max{time(e) | e ∈ Eb(h1)}] be the time period between the first
and last event from Eb(h1). Similarly, let Ec(h2) ⊆ E be the events that ex-
ecute c which either cause high-level event h2 or are their immediate prede-
cessors or successors w.r.t. segment (c, d). Let −→wc(h2) = [min{time(e) | e ∈
Ec(h2)},max{time(e) | e ∈ Ec(h2)}] be the time period between the first and

16 B. Bakullari and W.M.P. van der Aalst

last event from Ec(h2). h1 and h2 satisfy time overlap if and only if −→wb(h1) ⊆−→wc(h2) or −→wc(h2) ⊆ −→wb(h1). In other words, h1 and h2 are close in space when
h1 ends where h2 begins, and they are close in time when h1 ends when h2

begins. Figure 8 depicts two scenarios in which a pair of high-level events sat-
isfy either time or location overlap, but not both. In the left illustration of this
figure, high-level events h1 = (enter , (a, b), w2) and h = (handover , (b, c), w2)
share activity b in the middle, and hence have location overlap with each other.
However, neither of the time periods in which the h1 ends and h2 begins is
encompassed by the other, hence the time overlap criteria is not satisfied. Con-
versely, in the example to the right, high-level events h1 = (enter , (a, b), w1) and
h = (handover , (b, c), w3) satisfy time overlap, as the time period in which h2

begins is encompassed by the time period in which h1 ends. However, these high-
level events appear in disconnected segments, hence they do not satisfy location
overlap.

Additionally, the proximity value between high-level events that occur close
in time and location depends on whether the underlying event sets belong to
the same process instances. Specifically, for any high-level event h = (asp, c, w),
its corresponding case set is cases(h) = {case(e) | e ∈ fev

asp(c, w)}. Hence, the
case overlap between the high-level events h1 and h2 is equal to co(h1, h2) =
|cases(h1) ∩ cases(h2)|/|cases(h1) ∪ cases(h2)|. For example, for the two high-
level events h1 = (exit , (a, b), w2) and h = (handover , (b, c), w3) from Figure 9,
the case overlap is equal to 3/5.

Finally, ▷◁ (h1, h2) = co(h1, h2) whenever h1 and h2 satisfy time and location
overlap, and ▷◁ (h1, h2) = 0 otherwise. Note that by this definition, high-level
events need not occur in subsequent time windows in order to have a posi-
tive proximity value. Intuitively, a pair (h1, h2) of high-level events related to
segment-based aspects has a high proximity value whenever a high number of
cases that “participate” in the first high-level event, also participate in the second
high-level event immediately in the next step.

To extend the method from [3] to cover high-level events related to all aspects
at the activity, resource, or segment level, one approach is to incorporate the
concept of instance overlap. This type of proximity function, detailed below,
relies on the underlying event sets responsible for triggering the high-level events,
revealing the portion of events associated with the second high-level event that
directly follow an event involved in the first high-level event.

Definition 10 (Instance overlap). Let HL,W,ASP,fthresh be the set of high-level
events obtained from event log L with window set W , and aspects ASP with
threshold function fthresh . For any two high-level events h1 = (asp1 , c1, w1), h2 =
(asp2 , s2, w2) ∈ HL,W,ASP,fthresh , io(h1, h2) ∈ [0, 1] yields the instance overlap
between h1 and h2, where

io(h1, h2) =
|{next(e) | e ∈ fev

asp1
(c1, w1)} ∩ {e ∈ fev

asp2
(c2, w2)}|

|{next(e) | e ∈ fev
asp1

(c1, w1)} ∪ {e ∈ fev
asp2

(c2, w2)}|
.

In other words, the instance overlap between a pair of high-level events quantifies
the proportion of events in the second high-level event set that immediately

High-Level Event Mining 17

Fig. 8. The high-level events (enter , (a, b), w2) and (handover , (b, c), w2) (left) sat-
isfy location overlap (their corresponding segments share activity b in the middle),
but they do not satisfy time overlap. The high-level events (enter , (a, b), w1) and
(handover , (c, d), w3) (left) satisfy time overlap (the time period in which the first
high-level event ends encompasses the time period in which the second high-level event
starts), but they do not satisfy location overlap (their corresponding segments are
disconnected).

follow events in the first high-level event set. Note that for segment-based aspects,
the instance overlap integrates time, location, and case overlap simultaneously.

4.2 Emergence and Interpretation of Cascades and Threads

The proximity value between two high-level events addresses the direct relation-
ship between them. Using the proximity value, one can trace pairs of high-level
events that are very close and thus obtain sequences of high-level events that
reflect the emergence and dissolution of high-level behavior through time.

Definition 11 (Propagation). Let H = HL,W,ASP,fthresh be the set of high-
level events obtained from event log L with window set W , and aspects ASP with
threshold function fthresh . Let ▷◁ be a proximity function and let 0 ≤ λ ≤ 1.
For any two high-level events h1, h2 ∈ H, we say h1 propagates to h2 w.r.t.
proximity function ▷◁ and proximity threshold λ (denoted h1 ⇝▷◁,λ h2) if and only
if ▷◁ (h1, h2) ≥ λ. In particular, ⇝ and λ define a binary relation ⇝▷◁,λ∈ H×H
over high-level event set H where (h1, h2) ∈⇝▷◁,λ if and only if h1 ⇝▷◁,λ h2.

In other words, a high-level event propagates to another high-level event when-
ever the pair is close enough, given a particular proximity function and a thresh-
old for the proximity values.

Definition 12 (Cascade). Let H = HL,W,ASP,fthresh be the set of high-level
events obtained from event log L with window set W , and aspects ASP with
threshold function fthresh . Let ⇝∈ H×H be a binary relation over the high-level
event set. Let casc⇝ ∈ H → N be a function that assigns a cascade identifier to
each high-level event w.r.t. ⇝ such that for any two high-level events h, h′ ∈ H,

18 B. Bakullari and W.M.P. van der Aalst

Fig. 9. There are four cases behind the event set of high-level event (exit , (a, b), w2) and
there are three cases behind the event set of the high-level event (handover , (b, c), w3).
In total, there are five distinct cases behind these two high-level events, and three cases
are part of both. Hence, the case overlap equals 3/5.

the following holds:

casc⇝(h) = casc⇝(h′) ⇔ h⇝ h′ ∨
∃h1,...,hn∈H s.t. h⇝ h1 ∧ hn ⇝ h′ ∧ ∀1≤i<n hi ⇝ hi+1.

For any cascade identifier cid ∈ rng(casc⇝), let Hcid = {h ∈ H | casc⇝(h) =
cid} be the high-level events that are assigned cascade id cid . Moreover, let
Wcid = {w ∈ W | (asp, c, w) ∈ Hcid} be the time windows in which those
high-level events occur, and let ⟨w1, ..., wn⟩ ∈ W ∗

cid where n = |Wcid | and {wi |
1 ≤ i ≤ n} = Wcid be the timely ordered sequence of those time windows. We
define C(Hcid) = ⟨H1, ...,Hn⟩ ∈ (P(Hcid))

∗ to be the cascade related to cas-
cade id cid , where it holds that Hcid = H1 ∪ ... ∪Hn and ∀1≤i≤n∀h∈Hi

h ∈ wi.
CH,⇝ = {C(Hcid) | cid ∈ rng(casc⇝)} ⊆ (P(H))∗ is the set of all cascades of
high-level event set H w.r.t. ⇝.

Given a binary relation over high-level events determined by a proximity function
and its corresponding threshold, any two high-level events are assigned the same
cascade ID whenever there is a direct or indirect propagation from one high-level
event to the other. When two high-level events have the same cascade identifier,
we say they belong to the same cascade. A cascade is a sequence of high-level
event sets ordered by the time window of their occurrence. This definition of
cascades highlights that there may be multiple high-level events occurring in the
same time window that propagate to (or from) a common high-level event in a
future (or past) time window.

Definition 13 (Thread). Let H = HL,W,ASP,fthresh be the set of high-level
events obtained from event log L with window set W , and aspects ASP with
threshold function fthresh . Let ⇝∈ H×H be a binary relation over the high-level
event set. Any sequence ⟨h1, ..., hn⟩ ∈ H∗ such that for all 1 ≤ i < n it holds that
hi ⇝ hi+1 is called a thread of H w.r.t. ⇝. Set TH,⇝ ⊆ H∗ contains all threads
of H w.r.t. ⇝.

High-Level Event Mining 19

In other words, a thread is a sequence of high-level events connected to each
other through propagation. By definition, all high-level events of the same thread
belong to the same cascade. Moreover, one can further define maximal threads
(as opposed to subthreads) which are threads of maximal length, as no other high-
level event can be added to the start or the end of the corresponding propagation
sequence.

Definition 14 (Cascade variant, Thread variant). Let H = HL,W,ASP,fthresh

be the set of high-level events obtained from event log L with window set W , and
aspects ASP with threshold function fthresh . Let ⇝∈ H×H be a binary relation
over the high-level event set and let CH,⇝ and TH,⇝ be the sets of all cascades
and threads of H and ⇝ respectively. For any cascade C = ⟨H1, ...,Hn⟩ ∈ CH,⇝,
we define its variant to be the sequence C′ = ⟨H ′

1, ...,H
′
n⟩ where for all 1 ≤

i ≤ n: H ′
i = {act ′(h) | h ∈ Hi}. I.e., a cascade variant is the sequence of its

high-level event sets projected onto their high-level activity sets. Similarly, for
any thread T = ⟨h1, ..., hm⟩ ∈ TH,⇝, we define its variant to be the sequence
T ′ = ⟨act ′(h1), ..., act

′(hm)⟩ as the sequence of its high-level events projected
onto their high-level activities. Sets C′

H,⇝ and T′
H,⇝ are the sets of all cascade

variants and thread variants of H and ⇝ respectively.

Figure 10 presents two different examples of how the pairs of high-level events
(exec, submit , w) and (delayEnd , (submit , review), w′) can occur. In the left ex-
ample, the second high-level event takes place three windows later than the first,
with three of the four events involved in the second high-level directly following
the four events involved in the first high-level event. Employing instance overlap
with any threshold ≤ 3/5 consequently connects these two events. The cor-
responding thread variant is ⟨(exec, submit), (delayEnd , (submit , review))⟩. The
right example illustrates how the same thread variant could manifest when using
link—the second high-level event occurs in the window immediately following
the first. While the segment (submit , review) is close to activity submit (note
that in the citizenship process from Figure 1, review always follows submit),
there is minimal overlap among the event sets involved in the high-level events.
This example underscores the varying interpretations of emerging thread vari-
ants depending on the defined propagation method.

Figure 11 illustrates two thread variants related to the hidden behaviors in
the citizenship application process, as discussed in Section 1. The aspect todo
helps identify when Mike and Sarah are suddenly overwhelmed with more work
than usual, while delayEnd aids in detecting when cases exiting a segment within
a brief period have encountered delays. Additionally, exec is useful for detecting
when an activity is executed more frequently than usual within a time window.
For example, using instance overlap, one could determine that cases assigned to
Mike in large quantities are more likely to be denied, or that cases assigned to
Sarah in large quantities tend to experience longer waits until final approval.

Note that in [3], each thread is referred to as an episode, whereas each thread
variant is referred to as the high-level path. In [2], a high-level event log is gen-
erated where the events correspond to the high-level events. A visualization of
the framework is shown in Figure 12. The activity attribute corresponds to the

20 B. Bakullari and W.M.P. van der Aalst

Fig. 10. The illustration shows two different instantiations of the thread variant
⟨(exec, submit), (delayEnd , (submit , review))⟩. In the left example, high-level events
(exec, submit , w) and (delayEnd , (submit , review), w′) occur in distant time windows.
However, many events that directly follow the events in the first high-level event are
also involved in the second. These high-level events are quite close regarding instance
overlap. In the right example, the same high-level events occur at subsequent time win-
dows. Moreover, the process components underlying them are very close in the process
(review always follows submit). Hence, w.r.t. the link method, they are very close to
each other. Depending on the method used to define propagation, the resulting thread
variant has a different interpretation.

Fig. 11. Two possible thread variants in the citizenship application process: the todo
aspect, indicating increased workload for Mike and Sarah; the delayEnd aspect, high-
lighting delays in case processing between r: review and a:accept ; and the exec aspect,
identifying unusually frequent activity execution. Using instance overlap, these thread
variants suggest higher denial rates for cases managed by Mike during busy periods
and extended approval times for cases assigned to Sarah when she is overwhelmed.

high-level activity, while the time attribute is obtained from the window where
the high-level event emerged (can be set to the start or the end of the time
window). High-level events are organized into high-level cases which correspond
to the cascades emerging using a proximity measure and a chosen threshold for
the high-level event pairs. One can exploit the event log format of the high-level
event log to apply existing process mining tools and techniques for further in-
sights. However, it is important to note that events of the same high-level case
in the new log are not necessarily totally ordered. High-level events occurring
in the same time window and belonging to the same cascade obtain identical
timestamps. As most process mining techniques assume that events of a case
can be totally ordered through time, one can introduce a new total order on the
high-level event set, such as using the lexicographical order of the activity labels.
Even when applied to the high-level log with the lexicographical total order, the
results of some existing process mining techniques can still be insightful.

High-Level Event Mining 21

Fig. 12. A visualization of the approach from [2]: On top, the input event data showing
the runs of three process instances (blue, red and green). The time scope is split into
time windows (step 1), and the events within the same time window may produce
certain process patterns. These patterns are captured as high-level events (step 2)
which are then collected into a high-level event log (step 3).

5 Interplay with the Underlying Instances

As outlined in the definition of high-level events, a specific set of events is al-
ways involved whenever such behavior emerges. Moreover, each event belongs to
a process instance, which, in turn, has its own set of attributes. Case-level at-
tributes can be defined as event attributes that hold the same value for all events
belonging to the same case. On one hand, the characteristics of a case may exac-
erbate the emergence of high-level behavior; for example, a demanding case can
tie up resources for longer periods. On the other hand, the outcome of a case can
also be influenced by high-level behavior occurring throughout its execution; for
instance, a case may not receive the necessary attention if it happens to enter
the process during a busy period. There is undoubtedly an interplay between the
high-level behavior that arises in the process and the cases that trigger it. The
method introduced in [3] explores this interplay by detecting which patterns of
high-level behavior emerge surprisingly often from specific case types. Possessing
this knowledge offers numerous advantages. Depending on the case property at
hand, one can adjust the process for specific types of cases to avoid expected
but undesirable high-level problems, or make better online predictions about
the progress of a case based on its involvement in specific patterns of high-level
behavior.

Next, we provide a brief overview of the method introduced in [3]. As dis-
cussed in the previous section, all emerging high-level events are associated with
segment-based aspects and are connected to each other using a proximity func-

22 B. Bakullari and W.M.P. van der Aalst

tion that considers factors such as time overlap, location overlap and case overlap.
Specifically, a high-level event h1 that occurs on segment (a1, b1) propagates to
a later high-level event h2 on segment (a2, b2) under the following conditions:
1) b1 = a2 (location overlap), 2) the time period of the b1-related events for h1

either encompasses or is encompassed by the time period of the a2-related events
for h2 (time overlap), and 3) there is a significant overlap in the cases involved in
both high-level events, e.g., ≥ 0.5 (case overlap). For each individual high-level
event h, given the set of the events that caused its occurrence, one can determine
their corresponding set of cases. These are the cases that “participate” in h. As
high-level events are connected into longer sequences through propagation, the
concept of participating cases can be extended to sequences. The following defi-
nition covers the concept of participating cases for all types of high-level events,
threads, and thread variants. To compute the propagation relation, one could
use instance overlap as defined in Definition 10 for the proximity function ▷◁,
combined with any threshold λ ∈ [0, 1] . For high-level events related to segment-
based aspects and thread variants created using time, location and case overlap,
the definition below aligns with the one used in [3].

Definition 15 (Participating cases). Let H = HL,W,ASP,fthresh be the set of
high-level events obtained from event log L with window set W , and aspects
ASP with threshold function fthresh . Let ⇝∈ H×H be a binary relation over the
high-level event set and let TH,⇝ and T′

H,⇝ be the sets of all threads and thread
variants of H and ⇝ respectively. For each high-level event h = (asp, c, w) ∈ H,
the participating cases of h are cases(h) = {case(e) | e ∈ fev

asp(c, w)}. More-
over, for any thread T ∈ TH,⇝, the participating cases of T are cases(T) =⋂

h∈T cases(h). Finally, for any thread variant T ′ ∈ T′
H,⇝, the participating

cases of T ′ are cases(T ′) =
⋃

X∈TH,⇝

s.t. X ′=T ′
cases(X).

To sum up, the participating cases of an individual high-level event consist of the
cases corresponding to the event set involved in that high-level event. Within
each thread, the participating cases encompass those that are involved in all
high-level events contained in the thread. Similarly, for each thread variant, the
participating cases constitute the union of all cases involved in threads whose
corresponding variants equal the given variant.

The interplay between case types and high-level behavior (thread variants)
can be assessed using the correlation value obtained from χ2. This statistical test
measures the disparity between observed and expected frequencies for each com-
bination of values of two categorical variables. In our scenario, one can measure
a correlation value for each pair of thread variant and case attribute (see Table
1). The first categorical variable corresponds to the case attribute itself. To in-
corporate numerical case attributes, such as throughput time, binning methods
can be applied. This case attribute partitions the set of cases into categories
based on the possible values of the attribute. The second categorical attribute
reflects case participation in the given thread variant, dividing the cases into
two groups: “participating” and “non-participating.” The null hypothesis states
that there is no relationship between case participation in a given thread variant

High-Level Event Mining 23

and the chosen case attribute. A correlation is considered statistically signifi-
cant, leading to the rejection of the null hypothesis, if the corresponding p-value
is less than 0.05. It is important to clarify the definition of “non-participating”
cases for each thread (variant). These cases form the control group against which
the correlation is evaluated. Notably, not all cases not participating are part of
this control group. Specifically, cases not involved in any activities, resources,
or segments related to the high-level events of the thread are, by definition, not
part of the participating group. It is more sensible to compare the participating
cases with a control group of cases which could have been participating w.r.t. the
process components the high-level events concern. In [3], any emerging sequence
of high-level activities (thread variant) ⟨h(a1,b1), ..., h(an,bn)⟩ concerns a sequence
of underlying segments in the process. Due to the location overlap criteria used
for propagation, it holds that bi = ai+1 for all 1 ≤ i < n. Hence, a correspond-
ing sequence of activities ⟨a1, b1, b2, ..., bn−1, bn⟩ can always be obtained as the
control-flow sequence underlying the thread variant. The non-participating cases
are defined as the set of cases which execute that activity sequence throughout
their traces, but never participate in the high-level behavior at hand (the thread
variant). Hence, the control group are the cases which are not participating, but
could have participated from a control-flow perspective (see Figure 13).

Fig. 13. An illustration from [3] demonstrates the method: each dot represents an
application, with orange dots signifying those submitted by the applicants them-
selves and blue dots representing those submitted by lawyers. The large blue
circle encompasses all cases where the activity sequence ⟨submit , review , approve⟩
appears in their trace. Within this, the green circle highlights a subset
of cases that, throughout their processing, participate in the thread variant
⟨(enter , (submit , review)), (exit , (review , approve))⟩. This diagram reveals that applica-
tions submitted by lawyers are more prevalent among the cases involved in this specific
thread variant.

Assume that in the citizenship process described in Section 1, each applica-
tion can be submitted either by the applicant themselves or by a lawyer rep-
resenting them. Suppose that the thread variant from Figure 14 shows a no-
table correlation with the submitter of the application, with those submitted

24 B. Bakullari and W.M.P. van der Aalst

Table 1. Given some thread variant T ′, the participating cases and non-participating
cases are further split based on the chosen categorical attribute values (here: category
1 and category 2). The correlation between the attribute and the thread variant is
computed using the χ2 test of independence on the row partition (the chosen case-level
attribute) and on the column partition ((non-)participation in the thread variant).

Case-level attribute Participating cases of T ′ Non-participating cases of T ′

category 1 n1 n2

category 2 n3 n4

n1 + n3 = |cases(T ′)| n2 + n4

by lawyers being disproportionately represented among the participating cases.
This suggests that applications submitted by lawyers tend to be entered into
the process in large numbers over brief time intervals and are often approved in
batches. This pattern may indicate that lawyers are adept at identifying strate-
gical times for submission. Furthermore, these applications frequently receive
simultaneous approval, likely because the prerequisites for citizenship have al-
ready been thoroughly checked by the lawyers.

Fig. 14. An illustration of a thread variant that shows a significant correlation with
the submitter of citizenship applications: applications which tend to be submitted and
approved in batches are mostly submitted by lawyers. This indicates that lawyers might
strategically choose optimal submission times and that these applications often receive
faster, grouped approvals due to prior checking.

Furthermore, consider that the thread variant depicted in Figure 15 is pre-
dominantly associated with applications submitted directly by the applicants
themselves. This observation suggests that among applicants required to update
their documents and subsequently wait for a review, those who submit their own
applications are more likely to experience delays in both of these process stages.

Fig. 15. An illustration of a thread variant which is more commonly associated with
applications submitted directly by the applicants themselves, indicating that these
individuals often face delays in updating their documents and during the review stage.

High-Level Event Mining 25

To adapt the method for a broader scenario, one could define the underlying
component sequence for thread variants referring not only to segments but also to
activities and resources. Instance overlap from Definition 10 reflects the fraction
of events shared “in the middle” of any two high-level events. These shared events
could be used to establish the underlying component sequence and eventually
the control group for any thread variant.

It is important to emphasize that the number of threads can grow expo-
nentially with the number of cascades, making it infeasible to compute case
partitions for every thread variant. One approach, as employed in [3], is to focus
on threads where the fraction of shared cases from the first to the last high-level
event is high, similar to the threshold used for case overlap.

An extension to the method in [3] would be to consider not only thread
variants, but also cascade variants. This would need defining the participating
cases of cascades. Requiring that a case must be involved in all high-level events
of a cascade to be considered as participating may be overly strict; depending
on the high-level event types that emerge in the same window within the same
cascade, it can be impossible for any case to participate in all of them.

Even when restricting the analysis to a subset of thread/cascade variants,
there could still be numerous variants showing significant correlation with a
given case property. Ideally, these variants would be ranked from most inter-
esting to least interesting. The ranking could be based solely on the variants
set and be independent of the chosen case property. For instance, the ranking
of cascade/thread variants could be determined based on factors such as size,
frequency, and reach. The size of a variant is determined by its number of high-
level activities. Larger variants are less likely to arise randomly, making them
more “distinguishable” and thus contributing to a higher rank. Frequency, on the
other hand, reflects how often a variant occurs. More frequent variants are less
likely to represent random behavior, thereby enhancing their rank. The reach
of a variant is defined by the ratio between participating and non-participating
cases. A higher proportion of participating cases compared to non-participating
ones indicates a more prevalent behavior within the underlying process com-
ponents, leading to a higher rank. Note that size, frequency and reach capture
distinct aspects of variant interestingness. A weighted average of these factors
could yield a single rank value for each variant. With a predefined ranking of
variants, users could opt to view only the n highest-ranked variants among those
exhibiting significant correlation with a given case property.

6 Exploring Process Robustness

An interesting future research direction involves leveraging high-level event min-
ing to analyze process robustness and resilience. Robustness refers to the ability
of a system to maintain its expected performance or functionality despite vari-
ations in input, workload or conditions. It relates to the system’s capacity to
handle typical fluctuations, variations in workload, or minor disruptions with-
out experiencing significant adverse effects. Resilience is the capacity of a system

26 B. Bakullari and W.M.P. van der Aalst

to absorb disruptions and recover quickly by returning to a stable state or op-
timal performance. In other words, robustness relates to the system’s ability
to remain functional in the face of disruption, whereas resilience relates to the
system’s ability to bounce back to a normal state after some disruption. In the
context of process mining and system-level analysis, disruptions can manifest in
the form of process load fluctuations. For instance, adverse effects of process load
spikes can include increased delays for process instances and heightened workload
for resources. Analyzing process robustness and resilience requires identifying
disruptions and measuring their adverse effects.

Next, we will briefly outline a method that treats disruptions as sudden
load spikes at the activity level and evaluates their impact on case delay. In
process mining, it is typically assumed that the process owner has no control
over incoming case frequency and is subject to its variability. As the process
unfolds, certain activities must be performed by specific resources in a particular
order, and cases proceed through the process stages accordingly. At various time
intervals, sudden spikes in incoming cases may occur. In these situations, cases
may accumulate at initial activities, but spikes can also manifest elsewhere in the
process. When multiple cases arrive at the same process stage simultaneously,
they strain resource capacity, posing a threat to process stability. If one would
visualize the size of the queue at a given activity throughout different time
windows, the spikes in the graph would reveal the situations where the queue
abruptly expands due to simultaneous case entries.

Consider the process from event log L = (E,Attr , π) across time windows W .
A case enters the queue at activity a upon completing the preceding activity and
remains in the queue until a is executed. If numerous cases arrive at activity a
simultaneously, the queue can suddenly become too large. We define a disruption
at activity a ∈ A(L) during w ∈ W whenever the queue length at a during w is
large, with the cases enqueued during w contributing significantly to it.

Definition 16 (Disruption). Let L = (E,Attr , π) be an event log L and let
W be a set of time windows. For any activity a ∈ A(L), let qa ∈ N be a threshold
for the queue length at a and let pa ∈ [0, 1] be a threshold for the portion of the
recently enqueued cases in the queue. Given set D ⊆ A(L)×W of all disruptions,
we say there is a disruption at a during w (denoted (a,w) ∈ D) whenever
fval
queue(a,w) ≥ qa (the queue length is large) and fval

enqueue(a,w)/f
val
queue(a,w) ≥ pa

(the newly enqueued cases make up a big portion of the queue).

The effects of the disruption may manifest in various ways in the process.
For instance, cases entering the same queue at the same time or shortly after the
disruption may experience prolonged waiting times. Additionally, in response to
the sudden process load at the activity, resources may need to work more than
usual.

For any activity a and window w, cases that are in the queue during w spend
an average time equal to wt(a,w) = 1

|f ev
queue(a,w)|

∑
e∈fev

queue(a,w)

(
time(next(e)) −

time(e)
)

waiting until a. Note that the impact of a disruption onto case wait-
ing time may not be immediate. To analyze this impact, one could monitor the

High-Level Event Mining 27

waiting time for several time windows following w. To identify which time win-
dows may still be affected by the disruption, for any disruption (a,w) ∈ D, one
can determine a set W(a,w) ⊆ W of corresponding “potentially affected” time
windows, referred to as the resolution scope.

Definition 17 (Resolution scope). Let L = (E,Attr , π) be an event log L,
let W be a set of time windows, and let D ⊆ A(L) × W be the set of disrup-
tions. For any w ∈ W , let w− denote its preceding window. For any activity
a ∈ A(L) and window w ∈ W , takeover(a,w) = |f evqueue(a,w) \ f evenqueue(a,w)| is
the takeover at a during w, and it is the number of cases in the queue at a during
w that have entered the queue previous to w. Similarly, takeoverRatio(a,w) =
takeover(a,w)/|f evqueue(a,w)| is the takeover ratio at a during w, and it is the
proportion of cases in the queue at a during w that have entered the queue pre-
vious to w. For any a ∈ A(L), let ta ∈ N and tra ∈ [0, 1] be thresholds related
to the takeover and the takeover ratio at a. For any disruption (a,w) ∈ D, set
W(a,w) ⊆ W is its resolution scope, where for any w′ ∈ W :

w′ ∈ W(a,w) ⇔ w′ = w ∨
w′− ∈ W(a,w) ∧ takeover(a,w′) ≥ ta ∧ takeoverRatio(a,w′) ≥ tra.

In other words, the resolution scope of a disruption pertains to the windows
following the window of the disruption. Any window within the resolution scope
indicates that the process during that time window may still be experiencing the
effects of the disruption. Intuitively, the process is impacted by the disruption
at the time window it occurs, and it remains affected in the subsequent time
window if the queue at that new time window predominantly consists of a high
number of cases from the previously affected time window.

Using the resolution scope, one can assess how much the average waiting
time of cases active during the affected time windows differs from that of cases
that remain unaffected by the disruption. In the following definition, we propose
a method to measure waiting time robustness for any given activity.

Definition 18 (Waiting Time Robustness). Let L = (E,Attr , π) be an
event log L, let W be a set of time windows, and let D ⊆ A(L)×W be the set of
disruptions. For any activity a ∈ A(L), let events(D, a) =

⋃
(a,w)∈D

⋃
w∈W(a,w)

{e ∈ fev
queue(a,w)} be the set of events indicating cases queueing at a during time

windows that are affected by disruptions. Moreover, let wt(D, a) = 1
|events(D,a)|∑

e∈events(D,a)

(
time(next(e))− time(e)

)
be their average waiting time until a.

Conversely, let events(D, a) = {e ∈ E | next(e) = a} \ events(D, a) be the set
of events indicating cases queueing at a during time windows that are unaffected
by disruptions, and let wt(D, a) = 1

|events(D,a)|
∑

e∈events(D,a)

(
time(next(e)) −

time(e)
)

be their average waiting time until a. We define Rwt(D, a) = wt(D,a)

wt(D,a)
to

be the waiting time robustness indicator at activity a as the waiting time ratio
between cases that are affected by disruptions and the cases that are unaffected
by disruptions.

28 B. Bakullari and W.M.P. van der Aalst

Note that Rwt(D, a) indicates the extent to which cases experience prolonged
waiting times when they are involved in a disruption at activity a. A value close
to 1 suggests that the impact of these disruptions on waiting times is minimal.
Any value greater than 1 signifies a negative effect on waiting times due to these
disruptions. It is worth noting that values smaller than 1 might occur if resources
handle a significantly higher number of a activities than usual whenever sudden
large queues form at a.

7 Conclusion and Directions for Future Work

In this report, we elaborated on the concept of high-level event mining. This
is an important topic because many performance and compliance problems can
only be understood by zooming out and considering patterns involving multiple
events and cases. We formalized the notion of high-level events and provided
examples of high-level behavior concerning congestion related aspects arising at
the activity, resource and segment level. We also showed how to connect the
different high-level events leading to the notion of cascades and threads. All
high-level artifacts can be related to the initial events and cases causing their
emergence. Through high-level event mining, one can explore recurring cascades
and threads, analyze their correlation with the types of the underlying cases and
resources, and moreover, address process robustness and resilience.

Other promising paths for future research involve providing online predictions
and support for active cases. In the context of high-level events, this could mean
forecasting potential emergent high-level events in the upcoming time window.
Such predictions could be based on patterns of high-level behavior observed pre-
viously in the process. It is essential that the event data is divided into training
and test datasets to learn these behavior patterns, with the split aligning with a
temporal point that separates historical cases (training data) from future cases
(test data). Otherwise, removing cases from the time period used for training
affects the resulting high-level behavior that is detected.

Another challenging aspect for future work is determining a suitable framing
function which splits the time scope into time windows. Currently, the time win-
dow set is typically determined after users select a suitable window size based on
domain expertise. However, when analyzing various activities, resources, and seg-
ments, no single window size may adequately capture high-level behavior across
all components. One potential future direction could involve adapting existing
methodologies to accommodate variable window sizes for different components.
Alternatively, discarding the temporal partition altogether and instead utiliz-
ing methods that detect high-level events based on event accumulation within a
coordinate space (e.g., time and component) could be explored.

Lastly, an interactive tool could greatly assist users in exploring the outcomes
of existing methodologies. This tool could allow users to select the window size,
relevant aspects, components, case properties, and various thresholds, facilitating
a more comprehensive exploration of the results.

High-Level Event Mining 29

References

1. van der Aalst, W.M.P.: Process Mining: Data science in Action. Tech. rep. (2014)
2. Bakullari, B., van der Aalst, W.M.P.: High-level event mining: A framework. In: 4th

International Conference on Process Mining, ICPM 2022, Bolzano, Italy, October
23-28, 2022. pp. 136–143. IEEE (2022)

3. Bakullari, B., van Thoor, J., Fahland, D., van der Aalst, W.M.P.: The interplay
between high-level problems and the process instances that give rise to them. In:
Business Process Management Forum - BPM 2023 Forum, Utrecht, The Nether-
lands, September 11-15, 2023, Proceedings. pp. 145–162. Springer (2023)

4. Bozorgi, Z.D., Teinemaa, I., Dumas, M., La Rosa, M., Polyvyanyy, A.: Process
mining meets causal machine learning: Discovering causal rules from event logs.
In: ICPM (2020)

5. Bozorgi, Z.D., Teinemaa, I., Dumas, M., Rosa, M.L., Polyvyanyy, A.: Prescriptive
process monitoring for cost-aware cycle time reduction. In: ICPM (2021)

6. Denisov, V., Belkina, E., Fahland, D., van der Aalst, W.M.P.: The performance
spectrum miner: Visual analytics for fine-grained performance analysis of processes.
In: BPM (2018)

7. Dubinsky, Y., Soffer, P., Hadar, I.: Detecting cross-case associations in an event
log: toward a pattern-based detection. Software and Systems Modeling (2023)

8. Fahland, D.: Multi-dimensional process analysis. In: Business Process Management
- 20th International Conference, BPM 2022, Münster, Germany, September 11-16,
2022, Proceedings. pp. 27–33. Springer (2022)

9. Klijn, E.L., Fahland, D.: Performance mining for batch processing using the per-
formance spectrum. In: BPM Workshops (2019)

10. Li, C., van Zelst, S.J., van der Aalst, W.M.P.: A framework for automated ab-
straction class detection for event abstraction. In: Intelligent Systems Design and
Applications - 22nd International Conference on Intelligent Systems Design and
Applications (ISDA 2022) Held December 12-14, 2022 - Volume 2. pp. 126–136.
Springer (2022)

11. Li, C., van Zelst, S.J., van der Aalst, W.M.P.: Event abstraction for partial order
patterns. In: Business Process Management - 21st International Conference, BPM
2023, Utrecht, The Netherlands, September 11-15, 2023, Proceedings. pp. 38–54.
Springer (2023)

12. Martin, N., Pufahl, L., Mannhardt, F.: Detection of batch activities from event
logs. Information Systems 95, 77–92 (2021)

13. Pourbafrani, M., van der Aalst, W.M.P.: Discovering system dynamics simulation
models using process mining. IEEE Access 10, 78527–78547 (2022)

14. Senderovich, A., Beck, J., Gal, A., Weidlich, M.: Congestion graphs for automated
time predictions. Proceedings of the AAAI Conference on Artificial Intelligence 33,
4854–4861 (2019)

15. Toosinezhad, Z., Fahland, D., Köroglu, Ö., van der Aalst, W.M.P.: Detecting
system-level behavior leading to dynamic bottlenecks. In: ICPM (2020)

	High-Level Event Mining: Overview and Future Work

