
Challenges of Anomaly Detection in the
Object-Centric Setting: Dimensions and the

Role of Domain Knowledge

Alessandro Berti1,2 , Urszula Jessen3,4 , Wil M.P. van der Aalst1,2 , Dirk
Fahland4

1 Process and Data Science Chair, RWTH Aachen University, Aachen, Germany
2 Fraunhofer FIT, Sankt Augustin, Germany

3 Process Insights, ECE Group Services, Hamburg, Germany
4 Eindhoven University of Technology, The Netherlands

{a.berti, wvdaalst}@pads.rwth-aachen.de; {u.a.jessen, d.fahland}@tue.nl

Abstract. Object-centric event logs, allowing events related to differ-
ent objects of different object types, represent naturally the execution
of business processes, such as ERP (O2C and P2P) and CRM. However,
modeling such complex information requires novel process mining tech-
niques and might result in complex sets of constraints. Object-centric
anomaly detection exploits both the lifecycle and the interactions be-
tween the different objects. Therefore, anomalous patterns are proposed
to the user without requiring the definition of object-centric process
models. This paper proposes different methodologies for object-centric
anomaly detection and discusses the role of domain knowledge for these
methodologies. We discuss the advantages and limitations of Large Lan-
guage Models (LLMs) in the provision of such domain knowledge. Follow-
ing our experience in a real-life P2P process, we also discuss the role of
algorithms (dimensionality reduction+anomaly detection), suggest some
pre-processing steps, and discuss the role of feature propagation.

Keywords: Object-Centric Anomaly Detection · Object-Centric Fea-
ture Extraction · Procurement Processes · Large Language Models

1 Introduction

Process mining, a branch of data science, derives insights from data recorded
by information systems on business processes. Traditional techniques assume
each event is linked to a single case, causing repeated data extractions, minimal
consideration of the interactions between different object types, and issues like
deficiency (events excluded if they don’t fit the case notion), convergence (events
related to several objects of the same object type are replicated in different
cases), and divergence (events in a case having the same activity may be related
to different objects, leading to misleading causalities) [1]. Object-Centric Process
Mining (OCPM) eliminates the single-case assumption, accommodating events
involving various object types. Several techniques for process discovery [2] and

ar
X

iv
:2

40
7.

09
02

3v
1

 [
cs

.D
B

]
 1

2
Ju

l 2
02

4

https://orcid.org/0000-0002-3279-4795
https://orcid.org/0000-0002-7282-8451
https://orcid.org/0000-0002-0955-6940
https://orcid.org/0000-0002-1993-9363

2 A. Berti, U. Jessen, et al.

Fig. 1: Outline of the contributions proposed in the paper. The approaches high-
lighted with “DK” require domain knowledge.

conformance checking [13,18] have been proposed in the object-centric setting. In
practice, the main challenge is the large number of object types in real-life logs.
For example, a Purchase-to-Pay (P2P) log includes multiple object types such
as purchase requisitions, orders, invoices, and payments, and their interactions.
It is challenging to define process models or constraints that cover the lifecycle
and interactions of numerous object types. Additionally, assessing results from
mainstream conformance checking techniques is difficult [12], with techniques
often focusing on just one perspective: control-flow, time or data.

Anomaly detection [19] is the process of identifying data points, events, or ob-
servations that deviate significantly from the expected pattern within a dataset.
This technique is essential in various fields, including fraud detection, network se-
curity, fault detection, and medical diagnostics. Anomaly detection in the OCPM
setting focuses on identifying business objects that behave differently from oth-
ers. By analyzing interactions, anomalies such as discrepancies in quantities and
amounts between invoices and orders can be detected. Additionally, integrating
temporal data enables anomaly detection based on workload variations. Chal-
lenges arise when anomaly detection spans multiple features and interactions
among different object types. The computational complexity increases with the
addition of features, and the complexity of interpreting results manually becomes
substantial.

In this paper, we discuss challenges in object-centric anomaly detection, fo-
cusing on methodologies for obtaining explainable and actionable insights. We
introduce techniques that use domain knowledge to identify contextual outliers
and methods for interpreting anomalies without domain knowledge (structural
outliers). This includes a review of prevalent anomaly detection and feature se-
lection methods. Our analysis used a real-life P2P process event log, employing
the pm4py process mining library and the OC-PM tool. Figure 1 summarizes
the paper’s contributions. We explore methods to identify anomalous features:

AF1 We introduce an oracle that evaluates features with their numerical values
to determine anomalies. This oracle utilizes domain knowledge5.

5 It can be either a human analyst or an LLM

Challenges of Anomaly Detection in the Object-Centric Setting 3

AF2 An anomaly detection algorithm assigns scores to objects, allowing a domain
knowledge owner to examine the lifecycles of objects with the lowest scores
for detailed anomaly patterns analysis.

AF3 The anomaly scores of objects can be aggregated to generate a feature-level
anomaly score.

The paper is structured as follows: Section 2 reviews related work. Section
3 defines key concepts for object-centric feature extraction. Section 4 outlines
methods for detecting anomalous object-centric features. Section 5 discusses a
case study. Section 6 concludes the paper.

2 Related Work

Feature Extraction and Anomaly Detection: Fundamental work on feature ex-
traction and machine learning for traditional event logs is discussed in [15]. In
the object-centric context, graph-based feature extraction from event logs is de-
tailed in [5], identifying various P2P process issues such as maintenance contracts
and maverick buying. These features, integrated into pm4py [9] and OC-PM [4],
support various machine learning algorithms. The approach described in [6] uses
these features for anomaly detection among other applications. Anomaly detec-
tion methods in process mining are reviewed in [14], with [11] utilizing Large
Language Models for semantic anomaly detection, and [10] focusing on identify-
ing and explaining anomalies’ root causes.
Object-Centric Conformance Checking : The approach described in [13] divides
object-centric conformance checking into lifecycle-based and interaction-based
analysis. In [16], object-centric behavioral constraint models are introduced as
declarative rules for activity behaviors and relationships, yet lacking a confor-
mance checking approach. In [18], rules are verified on object lifecycles and inter-
actions, but these rules must be manually defined without a discovery method.
Object-centric Petri nets for conformance checking are discussed in [2]. In par-
ticular, [17] uses object-centric alignments to match event log behavior with a
Petri net model, and [3] defines fitness and precision in this context.

3 Preliminaries

In this section, we present some of the basic concepts used in the rest of the
paper.

3.1 Object-Centric Event Logs

Object-centric event logs relax the assumption that an event is related to a single
case notion. Instead, an event can be related to different objects of different
object types.

Definition 1 (Universes). We define the following universes: UΣ is the universe of
strings (with <Σ being the lexicographic order); UOT ⊆ UΣ is the universe of object

4 A. Berti, U. Jessen, et al.

types; UO ⊆ UΣ is the universe of objects (identifiers); UE ⊆ UΣ is the universe of
events (identifiers); Uact ⊆ UΣ is the universe of activities (i.e., event types); Uatt ⊆ UΣ

is the universe of attribute names; Utimest ⊆ R+ is the universe of timestamps; Uval is
the universe of attribute values.

Definition 2 presents the definition of object-centric event log, requiring the
universes introduced in Definition 1.

Definition 2 (Object-Centric Event Log). An object-centric event log is a tuple
L = (E,O, πotyp, πact, πtime, πomap, πvmap, πovmap, <) in which: E ⊆ UE is the set of
events; O ⊆ UO is the set of objects; πotyp : O → UOT maps each object to an object
type; πact : E → Uact maps each event to an activity; πtime : E → Utimest maps each
event to a timestamp; πomap : E → P(O) maps each event to a set of related objects;
πvmap : E → (Uatt ̸→ Uval) maps each event to an attribute map (associating a name to
a value); πovmap : O → (Uatt ̸→ Uval) maps each object to an attribute map; < defines
a total order on the events.

The total order < is based on the timestamp and the lexicographic order
between the event identifiers.

Definition 3 (Auxiliary Object-Centric Definitions). Given an object-centric
event log L = (E,O, πotyp, πact, πtime, πomap, πvmap, πovmap, <), we define:

– Lifecycle of an Object lif : O → P(E), lif(o) = {e ∈ E | o ∈ πomap(e)}
– Start/End events for the Lifecycle of an Object start(o) = argmin<lif(o),

end(o) = argmax<lif(o)
– Eventually-Follows Graph for an Object efg : O → P(E × E), efg(o) =

{(e1, e2) ∈ lif(o)× lif(o) | e1<e2}.
– Directly-Follows Graph for an Object dfg : O → P(E × E), dfg(o) =

{(e1, e2) ∈ efg(o) | ̸ ∃e3,o∈πomap(e3) e1<e3<e2}.
– Objects of a given Object Type For any ot ∈ UOT , Oot = {o ∈ O | πotyp(o) =

ot}
– Objects Interaction interact : O → P(O), interact(o) = {o′ ∈ O | ∃e∈E o ∈

πomap(e) ∧ o′ ∈ πomap(e)}. For any ot ∈ UOT , interactot : O → P(Oot),
interactot(o) = {o′ ∈ interact(o) | πotyp(o

′) = ot}.
– Objects Creation For any ot ∈ UOT , creationot : O → P(Oot), creationot(o) =

{o′ ∈ interactot(o) | πtime(start(o)) < πtime(start(o
′))}.

– Objects Continuation For any ot ∈ UOT , continuationot : O → P(Oot),
continuationot(o) = {o′ ∈ interactot(o) | πtime(end(o)) = πtime(start(o

′))}.
– Objects Co-birth For any ot ∈ UOT , cobirthot : O → P(Oot), cobirthot(o) =

{o′ ∈ interactot(o) | πtime(start(o)) = πtime(start(o
′))}.

– Objects Co-death For any ot ∈ UOT , codeathot : O → P(Oot), codeathot(o) =
{o′ ∈ interactot(o) | πtime(end(o)) = πtime(end(o

′))}.
– Common Attributes for the Objects of a given Object Type For any

ot ∈ UOT , OATTot = {a ∈ Uatt | a ∈ dom(πovmap(o)) ∀o ∈ Oot}

Definition 3 outlines key concepts such as lifecycle and establishes the directly-
and eventually-follows graph. It also forms associations through various object
interactions, initially discussed in [5]. An example is the object co-birth graph,
linking objects that start their lifecycle simultaneously. In the case study [6],
these interactions help identify objects with incomplete lifecycles and detect or-
ders lacking associated payments. Additionally, we define OATTot as the set of
attributes applicable to all objects of a specific type.

Challenges of Anomaly Detection in the Object-Centric Setting 5

3.2 Object-Centric Feature Maps

To apply machine learning algorithms to object-centric event logs, we need to
convert them to a set of numerical features. To extract such numerical features,
we report the methodology introduced in [5].

Definition 4 (Object-Centric Feature Map). Given an object-centric event log
L = (E,O, πotyp, πact, πtime, πomap, πvmap, πovmap, <), an object type ot ∈ UOT , and a
set of strings Σ ⊆ UΣ , a feature map is a function Oot → (Σ → R).

First, we introduce in Definition 4 a generic definition of object-centric feature
map. Then, in Definition 5, we introduce an example object-centric feature map
computed using the definitions introduced in Definition 3.

Definition 5 (Example of Object-Centric Feature Map). Let + be the string
concatenation operator. Given an object-centric event log L = (E,O, πotyp, πact, πtime,
πomap, πvmap, πovmap, <) and an object type ot ∈ UOT , we define Fot : Oot → (Σ → R)
such that:

– Numeric Attribute Values For any att ∈ OATTot, if v = πovmap(o)(att) ∈ R,
then Fot(o)(“numvalue”+ att) = v

– One-Hot Encoding of String Attribute Values For any att ∈ OATTot, if
v = πovmap(att) ∈ UΣ , then Fot(o)(“strvalue”+ att+ “ ”+ v) = 1

– Count of the Activities For any a ∈ Uact , Fot(o)(“lifecyclecontains” + a) =
|{e ∈ lif(o) | πact(e) = a}|

– One-Hot Encoding of the Start Activities For any a ∈ Uact , Fot(o)(“lifecyclestartswith”+
a) = 1a=πact(start(o))

– Lifecycle Start Time Fot(o)(“lifecyclestarttime”) = πtime(start(o))
– Lifecycle End Time Fot(o)(“lifecycleendtime”) = πtime(end(o))
– Lifecycle Duration Fot(o)(“lifecycleduration”) = πtime(end(o))− πtime(start(o))
– Directly Follows Graph For any a1, a2 ∈ Uact , Fot(o)(“dfg ”+ a1 + “ ”+ a2) =

|{(e1, e2) ∈ dfg(o) | πact(e1) = a1 ∧ πact(e2) = a2}|
– Number of Interactions for a given Object Type For any ot′ ∈ UOT ,

Fot(o)(“interactions”+ ot′) = |interactot′(o)|
– Number of Creations for a given Object Type For any ot′ ∈ UOT , Fot(o)(“creation”+

ot′) = |creationot′(o)|

We assume Σ to contain at least the aforementioned features.

In Definition 5, we distinguish between features related to the object at-
tributes, features related to the lifecycle of an object, and features related to the
interactions between the objects. However, the features of neighboring objects
are still not exploited. An approach to resolve such limitation is proposed in
Definition 6.

Definition 6 (Feature Propagation). Let + be the string concatenation operator.
Given an object-centric event log L = (E,O, πotyp, πact, πtime, πomap, πvmap, πovmap,
<) two object types ot, ot′ ∈ UOT , and two feature maps Fot : Oot → (Σ1 → R),
Fot′ : Oot′ → (Σ2 → R), we define a propagated feature map F ′

ot,agg : Oot → (Σ3 → R)
where:

– agg : B(R) → R is an aggregation function (for instance, the mean or the median).

6 A. Berti, U. Jessen, et al.

– Σ3 = Σ1 ∪ {“prop”+ σ2 | σ ∈ Σ2}
– For any o ∈ Oot and σ1 ∈ Σ1, F

′
ot,agg(o)(σ1) = Fot(o)(σ1)

– For any o ∈ Oot and σ2 ∈ Σ2, F
′
ot,agg(o)(“prop” + σ2) = agg({Fot′(o

′)(σ2) | o′ ∈
interactot′(o)})

Definition 6 allows merging two feature maps, considering both the features of
an object (attributes+lifecycle+interactions) and an aggregation of the features
of the neighboring objects.

4 Approach

The section detail three methods to identify anomalous feature values. Sec-
tion 4.1 uses the feature map and domain knowledge for anomaly recognition
(methodology AF1). Section 4.2 applies anomaly detection algorithms to score
objects and examines those with the lowest scores (methodology AF2). Sec-
tion 4.3 aggregates these scores at the object level to assign scores to features
(methodology AF3).

4.1 Anomalous Features Identification through Oracles (AF1)

Starting from an object-centric feature map, we can already get useful insights
about anomalous values. A domain knowledge owner, simply looking at the
feature map and its values, could spot a list of anomalous patterns in the process
according to the domain knowledge (methodology AF1). Listing 1.1 shows an
example detection of patterns.

Listing 1.1: Anomalies spotted by an
LLM starting from the feature table
(AF1)

1. ∗∗High Duration of Lifecycle∗∗: The range of lifecycle
durations is broad, with the maximum value at
722,032,120 while the 75% quantile is 1,215,387,
indicating potential abnormally long lifecycles.

2. ∗∗Activity Occurrence Consistencies∗∗: ”Submit
Purchase Order for Approval” and ”Approve
Purchase Order” activities typically occur once
per object but have outliers with up to 100
occurrences. Investigate objects where these
activities are repeated excessively.

3. ∗∗Degree of Centrality∗∗: There’s a significant jump
in degree centrality values from the 75% quantile
to the maximum. High centrality objects,
potential interaction hubs, warrant further
investigation.

4. ∗∗Rare Activities∗∗: Activities like ”Reject Purchase
Order” and ”(Re)Open Purchase Order” are
infrequent. Focusing on these can reveal
anomalies.

5. ∗∗Object Interactions∗∗: Objects with an unusually
high number of interactions in the graph may
indicate anomalies.

6. ∗∗Lifecycle Start and Completion Time∗∗: Analyze
objects with exceptionally short or long lifecycles
compared to the dataset trend.

7. ∗∗Objects Starting/Ending Lifecycle Together∗∗:
Examine cases where a notably high number of
objects start or end their lifecycle simultaneously
with the current object.

Listing 1.2: Anomalies spotted by an
LLM on the lifecycle of a single object
(AF2).

1. ∗∗Duplicate Time Stamps∗∗: Both the ”Approve
Requisition” and ”Create Purchase Order”
events are recorded at the exact timestamp of
2010−10−06 03:44:22, suggesting an immediate
creation of the PO after requisition approval,
which is atypical due to the expected minor
delay between these actions. Similarly, ”
Submit Purchase Order for Approval” and ”
Approve Purchase Order” share the timestamp
of 2010−10−06 03:45:41, indicating unusual
instant approval.

2. ∗∗Order of Events∗∗: ”Approve Purchase Order” is
followed by another ”Submit Purchase Order
for Approval” event at the same timestamp,
suggesting redundancy and possibly a
recording error or system glitch.

3. ∗∗Long Lifecycle Duration∗∗: The lifecycle of
PO 277871 extends unusually from
2010−10−06 to 2023−07−12, closed initially
on 2010−10−08 and then reopened 13 years
later, which deviates from standard P2P
process durations.

4. ∗∗Close and Reopen of PO∗∗: PO 277871 was
closed on 2010−10−08 and reopened on
2023−07−12, a rare occurrence that may
require verification with system administrators
to understand if it reflects actual procedural
needs or system setup anomalies.

Challenges of Anomaly Detection in the Object-Centric Setting 7

Definition 7 (Features’ Oracle). Given an object-centric event log L = (E,O,
πotyp, πact, πtime, πomap, πvmap, πovmap, <), an object type ot ∈ UOT , and a feature map
Fot : Oot → (Σ → R), we define as oracle any function ORACLEΣ : Σ → (R → R)

Definition 7 formally introduces an “oracle” function looking at the values of
the feature map and associating them with a real number. In our setting, we can
assume that the oracle associates negative real numbers with anomalous feature
values.

4.2 Scoring the Anomalousness of an Object (AF2)

Having an object-centric feature map, we could apply any anomaly detection
algorithm (such as isolation forests or local outlier factor) to assign an anomaly
score to the objects. The objects having lower anomaly score are considered
anomalous.

Definition 8 (Objects’ Score Function). Given an object-centric event log L = (E,
O, πotyp, πact, πtime, πomap, πvmap, πovmap, <) and an object type ot ∈ UOT , we define
as score function any function SCOREot : Oot → R.

In Definition 8, we formally introduce a score function associating each object
with a real number. In our setting, the score function is the anomaly detection
algorithm.

Definition 9 (Objects’ Score Rank Function). Given an object-centric event
log L = (E,O, πotyp, πact, πtime, πomap, πvmap, πovmap, <), an object type ot ∈ UOT ,
and a score function SCOREot : Oot → R, we define as rank any injective function
RANKSCOREot

: Oot → N such that for any o1, o2 ∈ O, o1 ̸= o2:

RANKSCOREot
(o1)<RANKSCOREot

(o2) ⇐⇒ SCOREot(o1)<SCOREot(o2)

Object ID Isolation Forest Scores Local Outlier Factor Scores
PO 23667 -0.200785 -40.049412
PO 23507 -0.200311 -7.200163
PO 23508 -0.200311 -7.200163
PO 23512 -0.200311 -7.200163
PO 23513 -0.200311 -7.200163
PO 23514 -0.200311 -7.200163
PO 23515 -0.200311 -7.200163
PO 23516 -0.200311 -7.200163
PO 23517 -0.200311 -7.200163
PO 277871 -0.195874 -7.622763
PO 23511 -0.189318 -7.200163
PO 3903 -0.187092 -54.929239
PO 133097 -0.175762 -8.086049
PO 23668 -0.174838 -39.503084
PO 23669 -0.174838 -39.503084
PO 23510 -0.174382 -7.217331
PO 86355 -0.172010 -3.117746
PO 85465 -0.171363 -0.125512
PO 23518 -0.170136 -7.212333
PO 23519 -0.170136 -7.212333
PO 23520 -0.170136 -7.212333
PO 23521 -0.170136 -7.212333
PO 23522 -0.170136 -7.212333
PO 84184 -0.169095 -1.549233
PO 3836 -0.168964 -213.993317
PO 3837 -0.168964 -213.982787
PO 3838 -0.168964 -213.974041
PO 3839 -0.168964 -213.967588
PO 3840 -0.168964 -213.960370
PO 3841 -0.168964 -213.953323

Table 1: Anomaly scores for
some purchase orders of the
considered log.

Feature (with Value) Count FEA SCORE
1 Occurrence of the activity Cancel Purchase
Order

300 -0.07

1 Occurrence of the activity (Re)Open Pur-
chase Order

167 -0.12

44 other orders are terminating with the same
event

45 -0.21

45 other objects are interacting with the order 45 -0.21
The activity Approve Purchase Order is not
executed

131 -0.07

There are 2 activities in the lifecycle of the
order

72 -0.09

29 other orders are terminating with the same
event

30 -0.19

30 other objects are interacting with the order 30 -0.19
27 other orders are terminating with the same
event

28 -0.19

28 other objects are interacting with the order 28 -0.19
20 other orders are terminating with the same
event

21 -0.18

There is a single event in the lifecycle of the
order

53 -0.04

The activity Submit Purchase Order for Ap-
proval is not executed

53 -0.04

There are 13 events in the lifecycle of the order 41 -0.05

Table 2: Features’ values correlated with
anomalies (methodology AF3).

8 A. Berti, U. Jessen, et al.

The score (for instance, related to the application of an anomaly detection
algorithm) is used in Definition 9 to introduce a rank between the objects. In
methodology AF2, we propose to explore the lifecycle of the most anomalous
objects with the goal of understanding the anomalous patterns. Listing 1.2 shows
an example detection of patterns on the lifecycle of an object.

4.3 Anomalous Features Identification aggregating Anomaly Scores

Our methodology AF3 aims to use the anomaly scores at the object level to
automatically assign an anomaly score to the values of the feature map.

Definition 10 (Normalization of a Feature Map). Given an object-centric event
log L = (E,O, πotyp, πact, πtime, πomap, πvmap, πovmap, <), an object type ot ∈ UOT , a
feature map Fot : Oot → (Σ → R), and a real number ϵ > 0, we define for σ ∈ Σ:

– minσ = min{Fot(o)(σ) | o ∈ Oot}.
– maxσ = max{Fot(o)(σ) | o ∈ Oot}.
– Fnorm

ot,ϵ : Oot → (Σ → [−1, 1]),

Fnorm
ot,ϵ (o)(σ) = −1 + 2× Fot(o)(σ)−minσ

maxσ −minσ + ϵ

Since features’ values are heterogenous (for instance, the lifecycle of the ob-
jects is measured in seconds, while one-hot encoding features are valued 0 or 1),
we propose in Definition 10 an approach to normalize such values between −1
and 1.

Definition 11 (Features’ Score). Given an object-centric event log L = (E,O,
πotyp, πact, πtime, πomap, πvmap, πovmap, <), an object type ot ∈ UOT , a normalized fea-
ture map Fnorm

ot,ϵ : Oot → (Σ → R) and a score function SCOREot : Oot → R, we define
FEA SCORE : Σ → R such that for σ ∈ Σ

FEA SCORE(σ) =
∑

o∈Oot

SCOREot(o)× Fnorm
ot,ϵ (o)(σ)

|Oot|

Definition 11 implements AF3 by assigning a score to each feature starting
from the scores at the object level. Table 2 shows an example in which the
objects’ anomaly scores are aggregated to provide the most anomalous features’
values.

5 Case Study

In this section, we discuss the application of the proposed techniques on top of
a real-life P2P object-centric event log (ECE group).

Challenges of Anomaly Detection in the Object-Centric Setting 9

5.1 Context

ECE began using the Celonis platform for process mining in 2020, integrating
systems like xFlow for document acquisition and SAP ERP. Traditional process
mining faced issues such as convergence and divergence [1]. Initially, ECE used
the multi-event log approach in Celonis, but later transitioned to tools and li-
braries from the PADS group at RWTH Aachen University. Insights from this
case study were detailed in [6] and shared with stakeholders through seminars.

We are interested in applying anomaly detection to discover deviations from
the expected behavior (non-compliance, such as maverick buying, i.e. inserting
formally the order only after its placement, and post-mortem changes to purchase
requisitions) and identify behavior leading to a monetary loss in the P2P process
(for example, invoice paid double, or discount rates not taken because of invoices
taking long to process, or non-justified payment blocks). The aforementioned
non-compliant and/or non-optimal behavior could in principle be identified with
conformance checking techniques rather than anomaly detection. However, that
requires pinpointing a priori all the causes of deviations. Anomaly detection can
instead be applied without requiring prior knowledge of the possible deviations.

Our analysis primarily utilized the pm4py process mining library [9] and
the OC-PM Javascript-based tool [4], which both support object-centric feature
extraction as outlined in [5]. In previous work, we used these tools in a case study
[6]. pm4py provides a dataframe via pm4py.extract ocel features, compatible
with any Python machine learning library. OC-PM6, after feature extraction,
employs the “Isolation Forests” anomaly detection algorithm.

5.2 Methodologies and Algorithms

By applying the methodologies AF1, AF2, and AF3, we can identify some in-
herent differences. The method in AF1 bypasses anomaly detection algorithms,
reducing computational costs and domain knowledge requirements, but only
evaluates single features, not their combinations. AF2 can identify anomalies
across feature combinations but requires extensive domain knowledge explo-
ration of object lifecycles, demanding more time. AF3 operates without domain
knowledge, potentially resulting in a lengthy list of anomalous features that may
challenge analysts.

The methods used in the analysis of object-centric features, including feature
selection, dimensionality reduction, and anomaly detection, were selected among
the most popular options. For feature selection, variance was used to retain fea-
tures with significant variability, suggesting their importance in distinguishing
between data points. Dimensionality reduction employed Principal Component
Analysis (PCA) and FastMap, both effective in reducing the number of vari-
ables. PCA transforms data into principal components, linear combinations of
the original variables, while FastMap is a distance-preserving projection that
maps data into a lower-dimensional space. Anomaly detection involved Isola-
tion Forests and Local Outlier Factor (LOF), chosen for their ability to identify

6 https://www.ocpm.info/

https://www.ocpm.info/

10 A. Berti, U. Jessen, et al.

Fig. 2: Interaction between maintenance contracts with several positions and
invoices.

outliers. Isolation Forests isolate anomalies by selecting a feature and a split
value randomly, while LOF measures local deviation of data points from their
neighbors to identify similar density regions.

In our P2P object-centric setting, FastMap was the preferred method due
to its ability to maintain non-linear relationships and computational efficiency.
Unlike PCA, which involves intensive eigen-decomposition and can be less suit-
able for large datasets with ambiguous component interpretations, FastMap ef-
ficiently reduces high-dimensional data into lower dimensions without requiring
full distance matrix computations. This is particularly advantageous for manag-
ing graph-based features.

The findings highlight the strengths of Isolation Forests and LOF in anomaly
detection. Isolation Forests are effective for high-dimensional data and large vol-
umes, isolating anomalies using decision tree splittings without needing pairwise
distance calculations. This accelerates anomaly detection in complex datasets.
LOF excels at identifying anomalies in specific subgroups by calculating local
density deviations, useful for clustered data. However, LOF requires more com-
putational resources for large datasets. In our analysis, Isolation Forests suc-
cessfully detect anomalies in object-centric event logs with traditional lifecycle
features, while LOF is preferable for graph-based features, focusing on local
context to identify anomalies in networks of object interactions.

5.3 Refinement of the Analysis

After performing an initial analysis, we performed some postprocessing of the
object-centric event log and applied feature propagation to enhance the results.

We have hundreds of activities in the object-centric event log, mostly related
to changing field values (change tables in SAP). Most of them are not relevant
for object-centric anomaly detection and increase the dimensionality of the data
with little gain. After our first application of anomaly detection, we repeated
it on an object-centric event log that was filtered keeping only the relevant ac-
tivities. The selection of relevant activities proved challenging on its own. Some
infrequent activities, which were the first candidates for removal, identify impor-
tant anomalies. We could distinguish between manual and automatic activities,
with the latter being less important for anomaly detection.

Challenges of Anomaly Detection in the Object-Centric Setting 11

We discovered that a traditional object-centric feature map based on the
lifecycle and interactions of object types gives an incomplete process view. For
instance, we found that invoices were often blocked for orders lacking prelimi-
nary purchase requisition approval, a pattern not visible when considering only
invoices. By extending invoice data with information from related purchase or-
ders (using Definition 6), we identified the root cause of this performance issue.
Another observation, illustrated in Figure 2, showed that orders with multiple
positions (e.g., maintenance contracts) might appear anomalous when viewed
in isolation. However, considering each item’s direct relation to an invoice, such
behavior is not anomalous.

5.4 Main Results

Anomaly detection allowed us to identify several non-compliance issues in the
P2P process. We identified a non-negligible amount of orders with the maverick
buying problem. The order is placed to the supplier skipping all the approval
steps, the supplier sends an invoice to the company, and only then the purchase
order is formally created in the ERP system. Moreover, we recorded several
change activities done to purchase requisitions after their approval in order to
match the amounts/quantities of the purchase order (post-mortem changes to
PRs). This is a deleterious behavior as the purchase requisition was deliberately
proposed to the managers with a lower amount.

Looking at the inefficiencies in the process leading to a monetary loss, we
observed orders invoiced (and paid) several times, which were not maintenance
contracts. Moreover, we identified invoices with an excessive number of change
activities, signaling an inefficiency in the process (as this behavior is correlated
with longer processing times). Considering the interaction between purchase
orders, invoices, and payments, we observed that inefficiencies in the purchase
orders also lead to inefficient processing of payments.

5.5 Limitations of LLMs as Domain Knowledge Providers

We used LLMs to interpret results, following methods in [8]. Specifically,
pm4py.llm.abstract ocel features was used for textual abstraction in method
AF1, and pm4py.llm.abstract ocel for AF3. The gpt-4-turbo LLM model,
available as of 09-04-2024 in Germany, was chosen for its large context window
to generate insights.

Applying LLMs to textual abstractions from our object-centric event log pro-
duced mixed results. For methodology AF1, the insights helped identify anoma-
lous patterns and filter objects for further analysis using the OC-PM tool.

However, several limitations arose. The context window of the LLM, despite
improvements with the gpt-4-turbo model, restricted the inclusion of lifecycles
with many events, limiting the application of methodology AF2 to objects with
fewer events. Inconsistencies across different sessions were noted [7], sometimes

12 A. Berti, U. Jessen, et al.

requiring the merging of insights from different sessions as an ”ensemble”. Hallu-
cinations and irrelevant outputs compared to the original prompt also occurred
[7].

6 Conclusion

In this paper, we explored methodologies for object-centric anomaly detection
and their implementation challenges in a real-life P2P process. We discovered
that selecting appropriate algorithms is crucial, as they vary in effectiveness
depending on the type of object-centric features. Identifying anomalous feature
values is only part of the process; interpreting these results typically requires
domain knowledge. Large Language Models (LLMs) can supplement domain
knowledge, enabling analysts with limited process expertise to gain insights.
However, challenges such as hallucinations and output inconsistency in LLMs
must be noted.

References

1. van der Aalst, W.M.P.: Object-centric process mining: Dealing with divergence and
convergence in event data. In: SEFM 2019. vol. 11724, pp. 3–25. Springer (2019)

2. van der Aalst, W.M.P., Berti, A.: Discovering object-centric petri nets. Fundam.
Informaticae 175(1-4), 1–40 (2020)

3. Adams, J.N., van der Aalst, W.M.P.: Precision and fitness in object-centric process
mining. In: ICPM 2021. pp. 128–135. IEEE (2021)

4. Berti, A., van der Aalst, W.M.P.: OC-PM: analyzing object-centric event logs and
process models. Int. J. Softw. Tools Technol. Transf. 25(1), 1–17 (2023)

5. Berti, A., Herforth, J., Qafari, M.S., van der Aalst, W.M.P.: Graph-based feature
extraction on object-centric event logs. International Journal of Data Science and
Analytics (2023)

6. Berti, A., Jessen, U., Park, G., Rafiei, M., van der Aalst, W.M.P.: Analyzing inter-
connected processes: using object-centric process mining to analyze procurement
processes. International Journal of Data Science and Analytics (2023)

7. Berti, A., Kourani, H., Hafke, H., Yun-Li, C., Schuster, D.: Evaluating Large Lan-
guage Models in Process Mining: Capabilities, Benchmarks, Evaluation Strategies,
and Future Challenges. In: Proceedings of the BPM-DS 2024 Working Conference
(TBP). Springer (2024), https://doi.org/10.48550/arXiv.2403.06749

8. Berti, A., Schuster, D., van der Aalst, W.M.P.: Abstractions, scenarios, and prompt
definitions for process mining with llms: A case study. In: BPM 2023 Workshops.
vol. 492, pp. 427–439. Springer (2023)

9. Berti, A., van Zelst, S.J., Schuster, D.: Pm4py: A process mining library for python.
Softw. Impacts 17, 100556 (2023)

10. Böhmer, K., Rinderle-Ma, S.: Mining association rules for anomaly detection in
dynamic process runtime behavior and explaining the root cause to users. Inf.
Syst. 90, 101438 (2020)

11. Caspary, J., Rebmann, A., van der Aa, H.: Does this make sense? machine learning-
based detection of semantic anomalies in business processes. In: BPM 2023. vol.
14159, pp. 163–179. Springer (2023)

https://doi.org/10.48550/arXiv.2403.06749

Challenges of Anomaly Detection in the Object-Centric Setting 13

12. Dunzer, S., Stierle, M., Matzner, M., Baier, S.: Conformance checking: a state-of-
the-art literature review. In: S-BPM ONE 2019. pp. 4:1–4:10. ACM (2019)

13. Fahland, D., de Leoni, M., van Dongen, B.F., van der Aalst, W.M.P.: Behavioral
conformance of artifact-centric process models. In: BIS 2011. vol. 87, pp. 37–49.
Springer (2011)

14. Ko, J., Comuzzi, M.: A systematic review of anomaly detection for business process
event logs. Bus. Inf. Syst. Eng. 65(4), 441–462 (2023)

15. de Leoni, M., van der Aalst, W.M.P., Dees, M.: A general process mining framework
for correlating, predicting and clustering dynamic behavior based on event logs.
Inf. Syst. 56, 235–257 (2016)

16. Li, G., de Carvalho, R.M., van der Aalst, W.M.P.: Automatic discovery of object-
centric behavioral constraint models. In: BIS 2017. vol. 288, pp. 43–58. Springer
(2017)

17. Liss, L., Adams, J.N., van der Aalst, W.M.P.: Object-centric alignments. In: ER
2023. vol. 14320, pp. 201–219. Springer (2023)

18. Park, G., van der Aalst, W.M.P.: Monitoring constraints in business processes
using object-centric constraint graphs. In: ICPM 2022 Workshops. vol. 468, pp.
479–492. Springer (2022)

19. Thudumu, S., Branch, P., Jin, J., Singh, J.J.: A comprehensive survey of anomaly
detection techniques for high dimensional big data. J. Big Data 7(1), 42 (2020)

	Challenges of Anomaly Detection in the Object-Centric Setting: Dimensions and the Role of Domain Knowledge

