
Imposing Rules in Process Discovery: an
Inductive Mining Approach⋆

Ali Norouzifar1[0000−0002−1929−9992], Marcus Dees2[0000−0002−6555−320X], and Wil
van der Aalst1[0000−0002−0955−6940]

1 RWTH University, Aachen, Germany ali.norouzifar,

wvdaalst@pads.rwth-aachen.de
2 UWV Employee Insurance Agency, Amsterdam, Netherlands

Marcus.Dees@uwv.nl

Abstract. Process discovery aims to discover descriptive process mod-
els from event logs. These discovered process models depict the actual
execution of a process and serve as a foundational element for confor-
mance checking, performance analyses, and many other applications.
While most of the current process discovery algorithms primarily rely
on a single event log for model discovery, additional sources of infor-
mation, such as process documentation and domain experts’ knowledge,
remain untapped. This valuable information is often overlooked in tradi-
tional process discovery approaches. In this paper, we propose a discovery
technique incorporating such knowledge in a novel inductive mining ap-
proach. This method takes a set of user-defined or discovered rules as
input and utilizes them to discover enhanced process models. Our pro-
posed framework has been implemented and tested using several publicly
available real-life event logs. Furthermore, to showcase the framework’s
effectiveness in a practical setting, we conducted a case study in collab-
oration with UWV, the Dutch employee insurance agency.

Keywords: process mining · process discovery · domain knowledge.

1 Introduction

Process discovery seeks to identify process models that provide the most accurate
representation of a given process. The quality of discovered process models is
measured using evaluation metrics while ensuring comprehensibility for human
understanding and alignment with domain experts’ knowledge. Many state-of-
the-art discovery approaches rely solely on event logs as their primary source of
information, often neglecting additional valuable resources such as the knowledge
of process experts and documentation detailing the process [1]. These overlooked
resources can significantly enhance the discovery process [14].

⋆
This research was supported by the research training group “Dataninja” (Trustworthy AI for
Seamless Problem Solving: Next Generation Intelligence Joins Robust Data Analysis) funded by
the German federal state of North Rhine-Westphalia.

ar
X

iv
:2

40
8.

17
32

6v
1 

 [
cs

.F
L

] 
 3

0 
A

ug
 2

02
4



2 A. Norouzifar et al.

Process experts often possess a common understanding of how the process
functions and additional resources like process diagrams may be available along-
side event logs. This information can often be expressed in human language, e.g.,
activities a and b cannot occur together, or activity a cannot occur after activ-
ity b. Automated methods can also be used to discover such relations between
activities from an event log [11,4]. We propose a novel framework to impose
such information in process discovery. Our framework leverages Inductive Min-
ing (IM) techniques, with a distinctive feature that allows it to incorporate a
set of rules as an additional input. We assume the rules are given by an oracle,
e.g., user-defined or discovered rules using automated methods. The framework
is designed independently from the source that provides the rules.

IM techniques discover block-structured process models that are both com-
prehensible for humans and offer guarantees, such as soundness [10]. The infor-
mation flow in one recursion of IM approaches is illustrated in Fig. 1a. Over-
looking other information sources, shown as process knowledge, results in some
information loss. In each recursion of the IM techniques, a Directly Follows
Graph (DFG) is derived from the event log that serves as the basis for deter-
mining the process structure. The conversion of an event log to a DFG can lead
to information loss. Some variants include filtering mechanisms to eliminate in-
frequent behaviors (DFG′) which contribute to more information loss. To avoid
potential blocks in IM techniques when no cut is detected, heuristics are used
to prevent the discovery process from becoming impeded, albeit at the cost of
potentially generating over-generalized models.

Process 

knowledge

𝑳

𝑫𝑭𝑮 𝑫𝑭𝑮′𝑳 𝑴

(a) Information flow in traditional IM frame-
works.

Process 

knowledge

𝑳
𝑳

User 

rules

Discovered 

rules

User 

rules

𝑫𝑭𝑮

𝑴

(b) Information flow in our proposed
framework.

Fig. 1: Comparing the information flow in IM frameworks with our framework.

In this paper, we present an inductive mining framework designed to leverage
encoded process knowledge expressed in the Declare language. This additional
information is utilized to enhance the discovery of improved process models, as
depicted in Fig. 1b. The information we can preserve in each step is illustrated
in green color. The process knowledge can be encoded as user-defined rules,
providing an extra source of information alongside the event log. Automated
declarative process discovery methods can be employed to reveal process struc-
tures, compensating for the information loss in the extracted DFG. Importantly,
our approach does not rely on fall-throughs. In cases where no perfect cut exists,
it returns the most promising one based on specific cost functions similar to [12].



Imposing Rules in Process Discovery 3

2 Related Work

The incorporation of process knowledge or additional information sources in pro-
cess discovery has been explored in various formats [14]. This information may
originate from domain experts’ knowledge, business documents, or be derived
through automated algorithms. Utilizing such information before the actual dis-
covery process to preprocess event logs aligns with common steps in data analysis
frameworks. However, the involvement of these information sources in process
discovery remains limited within the literature.

In [8], the authors proposed an automatic approach for discovering artificially
created events, revealing aspects not observed in the event log. This information
guides the discovery algorithm towards generating more robust process models.
Another approach, presented in [13], involves using prior knowledge to learn a
control flow model in the form of information control nets. In [16] a method
is introduced that leverages user knowledge in the form of relations between
activities to construct a directly follows graph. Unlike [13] and [16] our focus is on
Petri net models. Another strategy involves post-discovery process model repair
based on predefined preferences [7]. Additionally, interactive process discovery
and online process discovery are explored as related works [15].

Declare language [11,4] and compliance rule graph language [9] exemplify rule
modeling techniques that offer high interpretability. In [6], the use of declarative
rules provided by users or discovered by declarative mining algorithms is con-
sidered to enhance the quality of discovered process models. The rules are not
used directly in the discovery, instead a discovered model is used, several modi-
fications are applied and the best model that adheres to the rules is selected. In
our proposed method, we directly use the rules in process discovery.

Automatic process discovery is a crucial research area, yet fundamental ques-
tions persist despite the plenty of proposed algorithms. Two types of inductive
mining algorithms exist in the literature: those that output a unique cut in each
recursion without quality evaluation [10], and those that select the best cut over
a set of candidates based on quality measures [12], [5], and [2]. We extend the
idea proposed in [12] and make it capable of using rules in discovery recursions.

3 Motivating Examples

To motivate the research question addressed in this paper, we offer examples
highlighting the necessity of our investigation. Figures 2a and 2b showcase a
part of Petri net models discovered from publicly available real-life event logs,
i.e., BPIC 2017 and BPIC 2018, using IMf algorithm with 0.2 as the infre-
quency filtering parameter. Additionally, Figure 2c exemplifies a process model
discovered using the same settings from an event log provided by UWV agency
consisting of cases related to a claim handling process which is investigated in
detail in the evaluation section.

In Fig. 2a, despite the sequential relation between final states identified
by IMf, the event log analysis reveals that only one of the final states can
occur which means either an application is accepted (A Submitted), canceled



4 A. Norouzifar et al.

(A Cancelled), or denied by the client (A Denied). In Fig. 2b, the model over-
generalizes the observed behavior and allows for some ordering of the activities
which does not make sense both based on the event log analysis and a common
sense we have based on the activity names. After begin editing, calculate should
occur, followed by finish editing which makes a case ready to make a decision
(activity decide). Activity revoke decision may then occur after making a deci-
sion. A case can have multiple repetitions of the explained procedure. The shown
model allows for many behaviors that deviate from this procedure, e.g., decide
before calculate and finish editing, or revoke decision before decide.

In the UWV event log, based on the domain knowledge a case must start with
Receive Claim and Start Claim, however, in Fig. 2c, the process model allows for
many activities before receiving a claim that does not make sense. Block Claim
1, Block Claim 2, and Block Claim 3 have specific meanings in this process. The
ordering of these activities does not make sense according to our investigations
with process experts at UWV, e.g., Block Claim 1 can only occur after starting
a claim when some information is missing and should be followed by Correct
Claim and Unblock Claim 1 to make it ready to get accepted (Accept Claim).
Figures 6a, 6b, and 9 show the models discovered by our proposed framework
for BPIC 2017, BPIC 2018, and UWV event logs respectively.

(a) BPIC 2017, discovered model using IMf with
f=0.2.

(b) BPIC 2018, discovered
model using IMf with f=0.2.

(c) UWV, discovered model using IMf with f = 0.2.

Fig. 2: Motivating examples, using IMf to discover process models for BPIC 2017,
BPIC 2018, UWV event log.

4 Preliminaries

Considering A as the universe of activities, s∈A∗ denotes a sequence of activities
where s(i) indicates the i-th element in this sequence. P(Σ) denotes the power
set over set Σ ⊆ A. We introduce an event log formally as a multiset of traces,
i.e., a sequence of activities.



Imposing Rules in Process Discovery 5

Definition 1 (Event log). Let A be the universe of activities. A trace σ =
⟨a1, a2, . . . , an⟩ ∈ A

∗ is a finite sequence of activities. Each occurrence of an
activity in a trace is an event. An event log L ∈ B(A∗) is a multiset of traces. L
is the universe of event logs.

Since we are building our framework based on the inductive mining technique,
process tree notation is used as the representation. Process trees can be converted
to Petri nets or BPMN models as more popular process notations.

Definition 2 (Process tree). Let ⊕ = {→,×,∧,↺} be the set of process tree
operators and let τ /∈ A be the so-called silent transition, then

– activity a ∈ A is a process tree,
– the silent activity τ is a process tree,
– let M1,⋯,Mn with n > 0 be process trees and let ⊕ ∈ ⊕ be a process tree

operator, then ⊕(M1,⋯,Mn) is a process tree.

MΣ is the set of all possible process trees generated over a set of activities Σ⊆A.

Each process tree operator ⊕ ∈ {→,×,∧,↺} has a semantic which generates
a special type of behavior. The function ϕ ∶ MΣ → P(Σ

∗) extracts the set of
traces allowed by a process tree which we refer to as the language of this process
tree. If a process tree consists of an operator as the root node and single activities
as children, the language of it is as follows:

– → denotes the sequential composition of children, e.g., ϕ(→ (a, b))={⟨a, b⟩}.
– × represents the exclusive choice between children, e.g., ϕ(×(a, b))={⟨a⟩, ⟨b⟩}
– ∧ denotes the concurrent composition of children, e.g., ϕ(∧(a, b))={⟨a, b⟩, ⟨b, a⟩}
– ↺ represents the loop execution in which the first child is the body of the

loop and the other children are redo children, e.g., ϕ(↺ (a, b))={⟨a⟩, ⟨a, b, a⟩, ...}.

M = ×(→ (a, b),∧(×(c, τ), d)) is a more complex example such that ϕ(M) =
{⟨a, b⟩, ⟨d⟩, ⟨c, d⟩, ⟨d, c⟩}.

Consider G(L) as a function that extracts the directly follows graph (Σ,E)
from event log L ∈ L such that Σ = {a ∈ σ∣σ ∈ L} is the set of activities and
E = {(a1, a2)∣∃σ∈L ∧ 1≤i<∣σ∣ ∶ σ(i)=a1 ∧ σ(i + 1)=a2} is the set of edges.

5 Inductive Miner with Rules (IMr)

In this paper, we adapt and extend the IMbi framework proposed in [12] to allow
for rules being used in process discovery. The new framework is referred to as
IMr in this paper. In Fig. 3, the main idea of this paper is illustrated. The IMbi
framework, designed for two event logs, a desirable event log and an undesirable
event log, is adapted in our approach. For the sake of simplicity, the undesirable
event log is excluded1, however, the approach is adaptable to scenarios where
the undesirable event log is included. The algorithm finds binary cuts in each
recursion like IMbi.
1 The parameter ratio controls the relevance of the undesirable event log; setting the
parameter ratio = 0 disregards L−, focusing solely on the desirable event log L+.



6 A. Norouzifar et al.

Definition 3 (Binary Cut). Let L∈L be an event log. G(L)=(Σ,E) is the
corresponding DFG. A binary cut (⊕,Σ1,Σ2) divides Σ into two partitions,
such that Σ1∪Σ2=Σ, Σ1∩Σ2=∅, and ⊕∈{→,×,∧,↺} is a cut type operator.

Algorithm 1 shows how IMr works. In each recursion, explore(G(L),R) ex-
plores the DFG extracted from event log L and returns a set of candidate cuts.
We explain in this paper how the set of rules R can be used to prune the set
of candidate cuts. We use the ov cost function as defined in [12] to compare
the cuts. The cost value for each candidate cut is determined by counting the
number of deviating edges and estimating the number of missing edges required
to modify G(L) to align with the candidate cut. Parameter sup ∈ [0,1] specifies
to what extent missing behaviors should be penalized. Among the set of candi-
date cuts, the cut with the minimum cost is selected. The algorithm continues
with splitting the event log based on the selected cut (function SPLIT ) and
proceeding to the next recursion.

𝑳 𝓖(𝑳)
Cost 

calculation

𝑠𝑢𝑝

Set of 

rules 𝑅

Candidate cut 

generator 

𝑒𝑥𝑝𝑙𝑜𝑟𝑒(𝒢 𝐿 , 𝑅)

Fig. 3: One iteration of IMr, the frame-
work proposed in this paper, identifies
candidate cuts adhering to specified rules
and selects the cut with minimum cost,
incorporating cost functions from [12].

Algorithm 1 IMr algorithm

function IMr(L,sup,R)
▷ L∈L is an event log, sup ∈ [0,1] is a

process discovery parameter and R is
the set of rules. ◁

base = checkBaseCase(L,sup)
if checkBaseCase successful then

return base
C = explore(G(L),R)
(⊕,Σ1,Σ2) = argmin

c∈C
{ov costG(L)(c, sup)}

L1,L2 = SPLIT (L, (⊕,Σ1,Σ2))
return ⊕(IMr(L1, sup,R), IMr(L2, sup,R))

5.1 The Set of Rules

The main difference between IMbi and IMr is the use of the set of rules R in
finding the set of candidate cuts. Each rule r∈R is a constraint that limits the
behavior. Process models may allow for traces that violate or satisfy a rule.
We need a formal language to implement the idea, therefore, without loss of
generality, we use declarative constraints in this paper. However, the concept is
general, and any rule with clear semantics can be employed, provided that there
exists a clear mapping between rule satisfaction and the allowance of certain cut
types.

A declarative constraint is an instantiation of a template that involves one
or more activities [11,4]. Templates are abstract parameterized patterns. In this
paper, a subset of declarative templates is used including:

– at-most(a): a occurs at most once.
– existence(a): a occurs at least once.
– response(a, b): If a occurs, then b occurs after a.
– precedence(a, b): b occurs only if preceded by a.



Imposing Rules in Process Discovery 7

– co-existence(a, b): a and b occur together.
– not-co-existence(a, b): a and b never occur together.
– not-succession(a, b): b cannot occur after a.
– responded-existence(a, b): If a occurs in the trace, then b occurs as well.

Including other declarative templates requires more sophisticated design choices
and considerations, therefore, we only focus on a subset of them. Process experts
can encode their knowledge and understanding in the form of declarative rules
and use them in process discovery as we explain in this paper. In addition to user-
defined rules, automated declarative process discovery algorithms such as Declare
Miner [11] and MINERful [4] can be used to discover declarative constraints from
event logs. If trace σ violates constraint r, we show it as σ ⊭ r. For example,
consider σ = ⟨a, b, a, c⟩, and r = response(a, b). σ ⊭ r because the second a in
trace σ is not followed by a b.

Definition 4 (Constraint violation). Let L∈L be an event log and G(L) =
(Σ,E) be the extracted DFG, and R be the set of rules. c ⊭ r denotes that cut
c = (⊕,Σ1,Σ2) ∈ explore(G(L),R) violates the constraint r ∈ R, meaning that
for all process trees M∈Mc where Mc = {⊕(M1,M2)∣M1 ∈ MΣ1

∧M2 ∈ MΣ2},
there is a trace σ∈ϕ(M) such that σ ⊭ r.

For example, c=(→,{b},{a}) violates rule response(a, b), since all the models
M ∈ Mc allow for trace ⟨b, a⟩ which violates response(a, b).

5.2 Candidate Cuts Pruning

Consider R as the set of all rules that are given by the user or are discovered
using declarative process discovery algorithms. We remove a cut c from the set
of candidate cuts explore(G(L),R) if there is a rule r ∈ R such that c ⊭ r.
In Table 1, it is shown with red color for each single activity constraint which
rules should be rejected. Similarly, in Table 2, for each two activities constraint,
it is shown which rules should be rejected. Next, we explain in more detail
how the cut-pruning algorithm works. Please note that although declarative
rules may capture certain long-term dependencies, our discovery algorithm’s
representational bias might fail to adequately represent them. Consequently, the
pruned candidate set may not contain any rules. In such cases, the algorithm
identifies the set of candidate cuts without considering the provided rule set.
Further elaboration on this phenomenon can be found in Section 7.

at-most(a) a occurs at most once.

– c=(↺,Σ1,Σ2)⊭at-most(a) if a∈Σ1 (a∈Σ2), because for any process treeM∈Mc,
there is a trace σ∈ϕ(M) which has multiple occurrences of activity a because
the body (the redo part) of loop process trees can occur several times.

existence(a) a occurs at least once.

– c=(×,Σ1,Σ2)⊭existence(a) if a∈Σ1 (a∈Σ2), because for any process treeM∈Mc,
there is a trace σ∈ϕ(M) which only has activities in Σ2 (Σ1).

– c=(↺,Σ1,Σ2)⊭existence(a) if a∈Σ2, because for any process tree M∈Mc,
there is a trace σ∈ϕ(M) which does not trigger the redo part of the pro-
cess tree and consists of only activities in Σ1.



8 A. Norouzifar et al.

Table 1: The cuts that should be rejected are shown with red color for constraints
with one activity.

(→,Σ1,Σ2) (×,Σ1,Σ2) (∧,Σ1,Σ2) (↺,Σ1,Σ2)
a ∈ Σ1 a ∈ Σ2 a ∈ Σ1 a ∈ Σ2 a ∈ Σ1 a ∈ Σ2 a ∈ Σ1 a ∈ Σ2

at-most(a)

existence(a)

Table 2: The cuts that should be rejected are shown with red color for constraints
with two activities.

(→,Σ1,Σ2) (×,Σ1,Σ2)
a ∈ Σ1

b ∈ Σ1

a ∈ Σ2

b ∈ Σ2

a ∈ Σ1

b ∈ Σ2

a ∈ Σ2

b ∈ Σ1

a ∈ Σ1

b ∈ Σ1

a ∈ Σ2

b ∈ Σ2

a ∈ Σ1

b ∈ Σ2

a ∈ Σ2

b ∈ Σ1

response(a,b)

precedence(a,b)

co-existence(a,b)

not-co-existence(a,b)

not-succession(a,b)

responded-existence(a,b)

(∧,Σ1,Σ2) (↺,Σ1,Σ2)
a ∈ Σ1

b ∈ Σ1

a ∈ Σ2

b ∈ Σ2

a ∈ Σ1

b ∈ Σ2

a ∈ Σ2

b ∈ Σ1

a ∈ Σ1

b ∈ Σ1

a ∈ Σ2

b ∈ Σ2

a ∈ Σ1

b ∈ Σ2

a ∈ Σ2

b ∈ Σ1

response(a,b)

precedence(a,b)

co-existence(a,b)

not-co-existence(a,b)

not-succession(a,b)

responded-existence(a,b)

response(a,b) If a occurs in the trace, then b occurs as well.

– c=(×,Σ1,Σ2)⊭response(a, b) if a ∈ Σ1 and b ∈ Σ2 (or a ∈ Σ2 and b ∈ Σ1),
because for any process tree M∈Mc, there is a trace σ∈ϕ(M) which has an
occurrence of activity a but b cannot occur in this trace.

– c=(∧,Σ1,Σ2)⊭response(a, b) if a ∈ Σ1 and b ∈ Σ2 (or a ∈ Σ2 and b ∈ Σ1), be-
cause for any process tree M∈Mc, there is a trace σ∈ϕ(M) in which activity
b occurs before a and b does not occur again.

– c=(↺,Σ1,Σ2)⊭response(a, b) if a ∈ Σ1 and b ∈ Σ2, because for any process
tree M∈Mc, there is a trace σ∈ϕ(M) in which a occurs but b does not occur
because the redo part is optional.

– c=(→,Σ1,Σ2)⊭response(a, b) if b ∈ Σ1 and a ∈ Σ2, because for any process tree
M∈Mc, there is a trace σ∈ϕ(M) in which activity b occurs first and then a
occurs and b does not occur again.

precedence(a,b) b occurs only if preceded by a.

– c=(×,Σ1,Σ2)⊭precedence(a, b) if a ∈ Σ1 and b ∈ Σ2 (or a ∈ Σ2 and b ∈ Σ1),
because for any process tree M∈Mc, there is a trace σ∈ϕ(M) which has an
occurrence of activity b but a cannot occur in this trace.



Imposing Rules in Process Discovery 9

– c=(∧,Σ1,Σ2)⊭precedence(a, b) if a ∈ Σ1 and b ∈ Σ2 (or a ∈ Σ2 and b ∈ Σ1), be-
cause for any process tree M∈Mc, there is a trace σ∈ϕ(M) in which activity
b occurs before a.

– c=(↺,Σ1,Σ2)⊭precedence(a, b) if b ∈ Σ1 and a ∈ Σ2, because for any process
tree M∈Mc, there is a trace σ∈ϕ(M) in which b occurs but a does not occur
because the redo part is optional.

– c=(→,Σ1,Σ2)⊭precedence(a, b) if b ∈ Σ1 and a ∈ Σ2, because for any process
tree M∈Mc, there is a trace σ∈ϕ(M) in which activity b occurs first and
then a occurs.

co-existence(a,b) a and b occur together.

– c=(×,Σ1,Σ2)⊭co-existence(a, b) if a ∈ Σ1 and b ∈ Σ2 (or a ∈ Σ2 and b ∈ Σ1),
because for any process tree M∈Mc, there is a trace σ∈ϕ(M) which has an
occurrence of only activity a or only activity b.

– c=(↺,Σ1,Σ2)⊭co-existence(a, b) if a ∈ Σ1 and b ∈ Σ2 (a ∈ Σ2 and b ∈ Σ1),
because for any process tree M∈Mc, there is a trace σ∈ϕ(M) in which only
activity a (b) occurs because the redo part is optional.

not-co-existence(a,b) a and b cannot occur together.

– c=(∧,Σ1,Σ2)⊭not-co-existence(a, b) if a ∈ Σ1 and b ∈ Σ2 (or a ∈ Σ2 and b ∈ Σ1),
because for any process tree M∈Mc, there is a trace σ∈ϕ(M) in which both
activities a and b occur.

– c=(↺,Σ1,Σ2)⊭not-co-existence(a, b) if a ∈ Σ1 and b ∈ Σ2 (or a ∈ Σ2 and
b ∈ Σ1), because for any process tree M∈Mc, there is a trace σ∈ϕ(M) in
which a and b both occur because the redo part is optional and may occur.
Also, if a ∈ Σ1 and b ∈ Σ1 (or a ∈ Σ2 and b ∈ Σ2), since the do part or
redo part of the loop tree can occur multiple times and the repetitions are
independent, then activities a and b may occur in different repeats of the
loop process trees.

– c=(→,Σ1,Σ2)⊭not-co-existence(a, b) if a ∈ Σ1 and b ∈ Σ2 (or a ∈ Σ2 and b ∈ Σ1),
because for any process tree M∈Mc, there is a trace σ∈ϕ(M) in which both
activities a and b occur.

not-succession(a,b) b cannot occur after a.

– c=(∧,Σ1,Σ2)⊭not-succession(a, b) if a ∈ Σ1 and b ∈ Σ2 (or a ∈ Σ2 and b ∈
Σ1), because for any process tree M∈Mc, there is a trace σ∈ϕ(M) in which
activity a occurs first and then b occurs after it.

– c=(↺,Σ1,Σ2)⊭not-succession(a, b) if {a, b} ⊆ Σ1∪Σ2, because for any process
tree M∈Mc, there is a trace σ∈ϕ(M) in which activity b occurs after activity
a. Since the do part and redo part of the loop tree can occur multiple times
and the repetitions are independent, then after the occurrence of activity a,
activity b can eventually occur.

– c=(→,Σ1,Σ2)⊭not-succession(a, b) if a ∈ Σ1 and b ∈ Σ2, because for any pro-
cess tree M∈Mc, there is a trace σ∈ϕ(M) in which activity a occurs first
and then b occurs.



10 A. Norouzifar et al.

Table 3: Event logs used in experiments.
#activities #events #traces #trace variants

BPIC 12 17 92,093 13,087 576
BPIC 17 18 433,444 31,509 2,630
BPIC 18 15 928,091 43,809 1,435
Hospital 18 451,359 100,000 1,020
Sepsis 16 15,214 1,050 846
UWV 16 1,309,719 144,046 484

responded-existence(a,b) If a occurs in the trace, then b occurs as well.

– c=(×,Σ1,Σ2)⊭responded-existence(a, b) if a ∈ Σ1 and b ∈ Σ2 (or a ∈ Σ2 and
b ∈ Σ1), because for any process tree M∈Mc, there is a trace σ∈ϕ(M) which
has an occurrence of only activity a and b cannot occur in this trace.

– c=(↺,Σ1,Σ2)⊭responded-existence(a, b) if a ∈ Σ1 and b ∈ Σ2, because for any
process tree M∈Mc, there is a trace σ∈ϕ(M) in which only activity a occurs
but b does not occur since the redo part is optional.

6 Evaluation

The proposed framework is implemented and is publicly available2. We used sev-
eral real-life event logs to evaluate the framework including BPIC 2012 (applica-
tion and offer sub-processes), BPIC 2017 (application and offer sub-processes),
BPIC 2018 (application sub-process), Hospital Billing, Sepsis, and UWV event
logs. All the event logs except UWV are publicly available3. Key statistics for
these event logs are summarized in Table 3. The evaluation section is structured
into two parts. Initially, we present results derived from publicly available event
logs. Subsequently, we offer insights from a real-life case study conducted in col-
laboration with UWV, the Dutch employee insurance agency. Domain experts at
UWV actively contributed to extracting a normative model for a claim-handling
process and validating the obtained results.

6.1 Real-life Event Logs

Our framework is designed independently from the source which provides the
rules. We use Declare Miner [11] with the subset of declarative templates intro-
duced in this paper and select the rules with confidence = 1, i.e., the constraints
for which there is no trace in the event log that deviates. However, one could
employ various heuristics to account for noisy behavior or other considerations.
Our initial comparison involves assessing models discovered by IMf [10], a state-
of-the-art algorithm, against those produced by the IMr algorithm utilizing dis-
covered declarative constraints. Experiments are conducted with the infrequency
parameter f ranging from 0 to 1 in intervals of 0.1. In the IMr algorithm, we
vary the sup parameter within the range of 0 to 1 at intervals of 0.1.

The visual representation of the discovered models’ quality is depicted in
Fig. 4a, employing well-known evaluation metrics. Specifically, the x-axis repre-
sents alignment fitness [3], the y-axis represents precision [3], and the contours

2 https://github.com/aliNorouzifar/IMr
3 https://data.4tu.nl/

https://github.com/aliNorouzifar/IMr
https://data.4tu.nl/


Imposing Rules in Process Discovery 11

0.3 0.4 0.5 0.6 0.7 0.8 0.9 1.0
Fitness

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1.0
Pr

ec
isi

on

comparison between IMr and IMf discovered models

0.15

0.20

0.25

0.30
0.35

0.40
0.45

0.50

0.55

0.60

0.65

0.70

0.75

0.80

0.85

0.90
0.95

BPIC17 IMr
BPIC17 IMf
BPIC18 IMr
BPIC18 IMf
BPIC12 IMr
BPIC12 IMf
Hospital IMr
Hospital IMf
Sepsis IMr
Sepsis IMf

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1.0

su
p 

in
 IM

r

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1.0

f i
n 

IM
f

(a) Comparison between process models
discovered using IMr and IMf.

0.3 0.4 0.5 0.6 0.7 0.8 0.9 1.0
Fitness

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1.0

Pr
ec

isi
on

comparison between IMr and IMbi discovered models

0.15

0.20

0.25

0.30
0.35

0.40
0.45

0.50

0.55

0.60

0.65

0.70

0.75

0.80

0.85

0.90
0.95

BPIC17 IMr
BPIC17 IMbi
BPIC18 IMr
BPIC18 IMbi
BPIC12 IMr
BPIC12 IMbi

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1.0

su
p 

in
 IM

r

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1.0

su
p 

in
 IM

bi

(b) Comparison between process models
discovered using IMr and IMbi.

Fig. 4: Comparison between process models discovered using IMr, IMf, and IMbi.As
can be seen, IMr (red shapes) models perform better than IMbi (green shapes) and
IMf (blue shapes) models.

on the plot illustrate the F1-score derived from these two values. Various shapes
differentiate between event logs, i.e., ◯: BPIC17, ◇: BPIC18, ◻: BPIC12, △:
Hospital, and☆: Sepsis, shapes with blue color represent IMf models and shapes
with red color represent IMr models while color intensity corresponds to the pa-
rameters of the discovery algorithms, i.e., f in IMf and sup in IMr. Notably, the
figures indicate that, in general, IMr models outperform IMf models across the
three evaluation metrics illustrated in the plot.

In Fig. 4b, the models discovered with IMr are shown with red color and the
models discovered with IMbi are shown with green color. For the Hospital Billing
and Sepsis event logs, it was infeasible to discover process models using the IMbi
algorithm considering a maximum run time of one hour. The discovered model
using BPIC 12 and BPIC 17 shows that IMr models score better. For BPIC
2018, although the discovered models are very similar, the run time of the IMr
algorithm is about four times shorter.

Experiments exceeding the one-hour maximum run-time were terminated.
While the IMf algorithm is notably fast, delivering a model within seconds, the
computational costs for IMbi and IMr are considerably higher. In Table 4, some
statistics are presented to compare the run time of IMbi with IMr4. Notably,
a comparison between the number of candidate cuts in the initial recursion of
both IMbi and IMr demonstrates the effect of utilizing rules in efficiently pruning
the search space while preserving model quality, as indicated in Fig. 4b. The
candidate cut search is independent of the sup parameter. The table additionally
includes information on the average run-time duration for each event log that
shows IMr is considerably faster because of the reduced number of candidate
cuts.

4 The time required for rule extraction is not included.



12 A. Norouzifar et al.

Table 4: Run time statistics IMr and IMbi
BPIC 12 BPIC 17 BPIC 18 Hospital Sepsis

∣C∣ in the first iteration of IMbi 3601 4659 8103 106771 153502
∣C∣ in the first iteration of IMr 12 47 19 8 329
average run time of IMbi 20 sec. 176 sec. 801 sec. > 1 hour > 1 hour
average run time of IMr 11 sec. 55 sec. 201 sec. 152 sec. 9 sec.

BPIC 2017 BPIC 2018 BPIC 2012 Sepsis Hospital
0.0

0.2

0.4

0.6

0.8

1.0
F1

-s
co

re
Comparison of the best models using IMr, IMf, and IMbi

IMr F1-score
IMf F1-score
IMbi F1-score

Fig. 5: Comparison between best models discovered by IMr, IMf, and IMbi (for Sepsis
and Hospital event logs it was not feasible to discover a model in an hour using IMbi).

In Fig. 5, we chose the best models for each event log using different param-
eters in IMf, IMr, and IMbi experiments. The criterion for selecting the best
model involves choosing the one with the highest F1-score among those with a
minimum alignment fitness of 0.9. The bar chart in this figure compares align-
ment fitness, precision, and F1-score for the selected models.

In Fig.2, we provided examples to motivate our goal. To emphasize the im-
pact of our proposed IMr framework, a part of the discovered models is presented
in Fig.6. In Fig.6a, it is evident that only one of the activities A Cancelled,
A Denied, or A Pending can occur. In Fig.6b, the sequential order of transi-
tions begin editing, calculate, finish editing, and decide is more coherent, aligning
seamlessly with our understanding of the process.

(a) A part of the discovered model for BPIC 2017 event log using IMr with sup = 0.2.

(b) A part of the discovered model for BPIC 2018 event log using IMr with sup = 0.1.

Fig. 6: Discovered models using IMr for BPIC 2017 and BPIC 2018

6.2 Case Study UWV

This case study is a collaborative effort with the UWV agency, involving the
analysis of an event log pertaining to one of their claim-handling processes,
encompassing data for 144,046 clients. Fig. 7 illustrates the normative model
derived from a comprehensive examination of the event log, supplemented by



Imposing Rules in Process Discovery 13

insights from process experts who actively contributed their domain knowledge
throughout this case study. After a claim is received the process is started,
some cases are blocked (Block type 1 ) and consequently, some corrections are
performed and the case is unblocked afterward. Some other cases after starting a
claim have another type of blocking (Block type 2 ) which is followed by rejecting
the claim and possibly an objection from the client. If the case is accepted, then
the client is entitled to receive some payments (between one to three payments).
Some clients file an objection after receiving the payments which continues with
withdrawing the claim and repaying the received money to UWV. Optionally a
third type of blocking might also occur (Block type 3 ) to prevent any pending
payments to the client from being made.

Fig. 7: UWV normative model.

IMf and IMr with different parameter settings are utilized to discover process
models from the UWV event log. The set of rules R extracted from the event log
using Declare Miner [11] with confidence=1 is used in IMr. Some examples of
discovered declarative constraints are precedence(Block type 1, Unblock Claim 1),
response(Block type 2,Reject Claim), not-succession(Execute Payment,Accept Pa-

yment), and not-co-existence(Block type 1, Block type 2). These rules align with
the normative model and can be used to guide IMr to discover better models.

A comparative analysis of these models is presented in Fig. 8. The circle
shape ◯ in the figure represents the original event log without any filtering
applied. Although IMr models exhibit superior scores, the difference does not
seem significant. This is primarily attributed to the most frequent trace variant,
constituting 86% of the data, significantly influencing the alignment fitness value.
Both IMr and IMf discovered models replay this trace variant. However, upon
filtering out this prevalent trace variant, the contrast becomes clearer, evident
in the figure with cross-shaped points X. The IMf models have lower fitness
values which shows their difficulties in modeling these trace variants. In contrast,
IMr models show a robust representation of the process, as the removal of this
frequent trace variant has a marginal impact on the overall model quality.

It was infeasible to discover process models in one hour using IMbi, therefore
the comparison between IMbi models and IMr models is excluded from the
experiments. The average run-time of the IMr algorithm in different experiments
is 348 seconds. The best model discovered from the complete event log with IMf
using f = 0.5 has an alignment fitness of 96.7, a precision of 93.9, and an F1-score
of 95.3. The best model discovered with IMr using sup = 0.5 has an alignment
fitness of 99.6, a precision of 93.8, and an F1-score of 96.6. This is illustrated in



14 A. Norouzifar et al.

0.70 0.75 0.80 0.85 0.90 0.95 1.00
Fitness

0.70

0.75

0.80

0.85

0.90

0.95

1.00

Pr
ec

isi
on

comparison between IMr and IMf discovered models

0.15

0.20

0.25

0.30

0.35

0.40

0.45

0.50

0.55

0.60

0.65

0.70

0.75

0.80

0.85

0.90
0.95

UWV IMr
UWV IMf
UWV filtered IMr
UWV filtered IMf

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

su
p 

in
 IM

r

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

f i
n 

IM
f

Fig. 8: Comparison between process models discovered for UWV event log using IMr
and IMf.

Fig. 9. This model represents the process much better than Fig. 2c, especially if
we compare it with the normative model illustrated in Fig. 7.

Fig. 9: Discovered model for UWV event log using IMr with sup = 0.5.

7 Open Challenges

Due to the representational bias of inductive mining algorithms, the IMr algo-
rithm does not take into account long-term dependencies in the discovery proce-
dure. However, declarative rules may represent long-term dependencies. Consider
the event log L1 = [⟨a, c, d⟩, ⟨b, c, e⟩] and set of rules R1={not-co-existence(a, e),

not-co-existence(b, d)}. All traces in L1 satisfy all the rules in R1. In the first
recursion of the IMbi algorithm, the set of possible cuts without considering
the rules in R1 is C = {→ ({a},{b, c, d, e}),→ ({b},{a, c, d, e}),→ ({a, b},{c, d, e}),→

({a, b, c},{d, e}),→ ({a, b, c , d},{e}),→ ({a, b, c, e},{d})}. If we use IMr with the set
of rules R1, because of the long-term dependencies between a and e, and between
b and d, all the cuts are rejected. Applying any of these cuts results in traces
that do not satisfy at least one rule. In such cases, IMr continues with ignoring
the set of rules in that specific recursion.

Consider the event log L2 = [⟨c, a, c, b, c⟩], and set of rules R2={response(a, b)}.
The dependency between a and b is long-term and observed in different runs of
a loop. Considering sup = 0.2, the first recursion of IMr finds ↺ ({c},{a, b})
which splits the event log as L3 = [⟨c⟩

3] and L4 = [⟨a⟩, ⟨b⟩]. The only possi-
ble candidate cut in IMr(L4,0.2,R2) is ×({a},{b}) which is rejected based on



Imposing Rules in Process Discovery 15

R2. The dependency is between different runs of the process. The discovered
model using IMbi without considering the rules is↺ ({c},×({a},{b})) that can
generate traces ⟨c, a, c⟩, and ⟨c, b, c, a, c⟩ which deviates response(a, b).

Our framework always guarantees a sound model. The declarative rules in
IMr are used to guide the algorithm to understand the order of activities. There-
fore, it cannot guarantee that the final model satisfies all the input rules. For ex-
ample, consider the event log L5=[⟨a, c, b⟩

50, ⟨d, c⟩50] and R3={precedence(a, b)}.
IMr with sup = 0.2 and R3 discovers → (×(a, d),→ (c,×(b, τ))). This model al-
lows for trace ⟨d, c, b⟩ which violates precedence(a, b). In case the strict version
of the algorithm is used which outputs no model if all cuts are rejected in a
recursion, we provide the following guarantees: at-most(a): in all traces, a can
occur at most one time, existence(a): in all traces, a can occur, response(a, b):
each time a occurs, b can occur after it, precedence(a, b): each time b occurs, it is
possible that a occurred before it, co-existence(a, b): a and b can occur together,
not-co-existence(a, b): a and b never occur together, not-succession(a, b): b can-
not occur after a, responded-existence(a, b): if a occurs in the trace, then b can
occur as well.

8 Conclusion

The proposed framework is based on the inductive mining methodology and
makes a contribution to the field by introducing a novel variant of inductive
mining. This variant incorporates the use of user-defined or discovered rules dur-
ing the process discovery recursions. Through extensive evaluation, our results
demonstrate that the discovered models surpass current approaches, yielding
more accurate process models that align closely with process knowledge avail-
able prior to process discovery. This framework holds the potential for extension
into an interactive process discovery framework. In such a setting, domain ex-
perts can interactively examine discovered models, utilizing a set of rules to
guide the discovery algorithm toward refining the process model. This iterative
process enhances the adaptability of the framework and ensures alignment with
evolving domain expertise. Moreover, the discussed approach offers the possibil-
ity of handling scenarios involving multiple event logs. The framework can be
extended to discover a process model that supports a desirable event log while
simultaneously avoiding an undesirable event log.

References

1. Beerepoot, I., Ciccio, C.D., Reijers, H.A., Rinderle-Ma, S., Bandara, W., Burattin,
A., Calvanese, D., Chen, T., Cohen, I., Depaire, B., Federico, G.D., Dumas, M.,
et al.: The biggest business process management problems to solve before we die.
Comput. Ind. 146, 103837 (2023)

2. Brons, D., Scheepens, R., Fahland, D.: Striking a new balance in accuracy and
simplicity with the probabilistic inductive miner. In: 3rd International Conference
on Process Mining, ICPM 2021. pp. 32–39. IEEE (2021)



16 A. Norouzifar et al.

3. Carmona, J., van Dongen, B.F., Solti, A., Weidlich, M.: Conformance Checking -
Relating Processes and Models. Springer (2018)

4. Ciccio, C.D., Mecella, M.: On the discovery of declarative control flows for artful
processes. ACM Trans. Manag. Inf. Syst. 5(4), 24:1–24:37 (2015)

5. van Detten, J.N., Schumacher, P., Leemans, S.J.J.: An approximate inductive
miner. In: 5th International Conference on Process Mining, ICPM 2023. pp. 129–
136. IEEE (2023)

6. Dixit, P.M., Buijs, J.C.A.M., van der Aalst, W.M.P., Hompes, B., Buurman, H.:
Enhancing process mining results using domain knowledge. In: Proceedings of
the 5th International Symposium on Data-driven Process Discovery and Analy-
sis (SIMPDA 2015). CEUR Workshop Proceedings, vol. 1527, pp. 79–94. CEUR-
WS.org (2015)

7. Fahland, D., van der Aalst, W.M.P.: Repairing process models to reflect reality.
In: Business Process Management - 10th International Conference, BPM 2012,
Proceedings. Lecture Notes in Computer Science, vol. 7481, pp. 229–245. Springer
(2012)

8. Goedertier, S., Martens, D., Vanthienen, J., Baesens, B.: Robust process discovery
with artificial negative events. J. Mach. Learn. Res. 10, 1305–1340 (2009)

9. Knuplesch, D., Reichert, M., Ly, L.T., Kumar, A., Rinderle-Ma, S.: Visual modeling
of business process compliance rules with the support of multiple perspectives.
In: Conceptual Modeling - 32th International Conference, ER 2013. Proceedings.
Lecture Notes in Computer Science, vol. 8217, pp. 106–120. Springer (2013)

10. Leemans, S.J.J., Fahland, D., van der Aalst, W.M.P.: Discovering block-structured
process models from event logs containing infrequent behaviour. In: Business
Process Management Workshops - BPM 2013 International Workshops, Revised
Papers. Lecture Notes in Business Information Processing, vol. 171, pp. 66–78.
Springer (2013)

11. Maggi, F.M., Bose, R.P.J.C., van der Aalst, W.M.P.: Efficient discovery of under-
standable declarative process models from event logs. In: Advanced Information
Systems Engineering - 24th International Conference, CAiSE 2012, Proceedings.
Lecture Notes in Computer Science, vol. 7328, pp. 270–285. Springer (2012)

12. Norouzifar, A., van der Aalst, W.M.P.: Discovering process models that sup-
port desired behavior and avoid undesired behavior. In: Proceedings of the 38th
ACM/SIGAPP Symposium on Applied Computing, SAC 2023. pp. 365–368. ACM
(2023)

13. Rembert, A.J., Omokpo, A., Mazzoleni, P., Goodwin, R.: Process discovery using
prior knowledge. In: Service-Oriented Computing - 11th International Conference,
ICSOC 2013, Proceedings. Lecture Notes in Computer Science, vol. 8274, pp. 328–
342. Springer (2013)

14. Schuster, D., van Zelst, S.J., van der Aalst, W.M.P.: Utilizing domain knowledge
in data-driven process discovery: A literature review. Comput. Ind. 137, 103612
(2022)

15. Schuster, D., van Zelst, S.J., van der Aalst, W.M.P.: Cortado: A dedicated process
mining tool for interactive process discovery. SoftwareX 22, 101373 (2023)

16. Yahya, B.N., Bae, H., Sul, S.o., Wu, J.Z.: Process discovery by synthesizing ac-
tivity proximity and user’s domain knowledge. In: Song, M., Wynn, M.T., Liu, J.
(eds.) Asia Pacific Business Process Management. pp. 92–105. Springer Interna-
tional Publishing, Cham (2013)


	Imposing Rules in Process Discovery: an Inductive Mining Approach

