
Evaluating Large Language Models on Business

Process Modeling: Framework, Benchmark, and

Self-Improvement Analysis

Humam Kourani1,2*, Alessandro Berti2, Daniel Schuster2,3,
Wil M.P. van der Aalst1,2

1*Fraunhofer Institute for Applied Information Technology FIT, Schloss
Birlinghoven, Sankt Augustin, 53757, Germany.

2RWTH Aachen University, Ahornstraße 55, Aachen, 52074, Germany.
3Process Intelligence Solutions, Kurfürstenstraße 5, Aachen, 52066,

Germany.

*Corresponding author(s). E-mail(s): humam.kourani@fit.fraunhofer.de;
Contributing authors: a.berti@pads.rwth-aachen.de;

schuster@pads.rwth-aachen.de; wvdaalst@pads.rwth-aachen.de;

Abstract

Large Language Models (LLMs) are rapidly transforming various fields, and their
potential in Business Process Management (BPM) is substantial. This paper
assesses the capabilities of LLMs on business process modeling using a frame-
work for automating this task, a comprehensive benchmark, and an analysis of
LLM self-improvement strategies. We present a comprehensive evaluation of 16
state-of-the-art LLMs from major AI vendors using a custom-designed benchmark
of 20 diverse business processes. Our analysis highlights significant performance
variations across LLMs and reveals a positive correlation between efficient error
handling and the quality of generated models. It also shows consistent perfor-
mance trends within similar LLM groups. Furthermore, we investigate LLM
self-improvement techniques, encompassing self-evaluation, input optimization,
and output optimization. Our findings indicate that output optimization, in par-
ticular, offers promising potential for enhancing quality, especially in models
with initially lower performance. Our contributions provide insights for leverag-
ing LLMs in BPM, paving the way for more advanced and automated process
modeling techniques.

1

ar
X

iv
:2

41
2.

00
02

3v
1

 [
cs

.D
B

]
 1

7
N

ov
 2

02
4

Keywords: Business Process Modeling, Large Language Models, Generative AI,
Benchmarking, Process Mining

1 Introduction

Process modeling is a crucial component of Business Process Management (BPM),
acting as a comprehensive toolkit for understanding, documenting, analyzing, and
optimizing intricate business operations. It encompasses various forms – from textual
descriptions to visual diagrams and executable models – thereby providing a multi-
dimensional approach to capturing the nuances of organizational processes.

Business process modeling integrates several key perspectives, each focusing on
distinct aspects of processes. These include the control-flow perspective, which maps
out the sequence of activities and their interdependencies; the data perspective, which
deals with the creation, manipulation, and usage of data throughout the process;
the resource perspective, which identifies the human and system resources required
for process execution; and the operational perspective, which outlines the rules and
execution semantics governing the process. Our focus in this paper is primarily on
enhancing the control-flow perspective because it forms the foundational structure
that supports the integration of data, resources, and operational aspects into a process
model.

Traditionally, business process modeling requires considerable manual effort and
a deep understanding of sophisticated process modeling languages such as BPMN
(Business Process Model and Notation) [1] and Petri nets [2]. Moreover, maintaining
these process models to reflect changes in business operations is an ongoing challenge,
presenting significant obstacles for individuals lacking expertise in these languages,
thus highlighting the need for more streamlined methodologies in process modeling.

The emergence of Large Language Models (LLMs) such as GPT-4 [3] and Gemini
[4] offers a promising avenue for enhancing the efficiency and accessibility of process
modeling. Trained on vast and varied datasets, these models are skilled in a range of
tasks from generating coherent and contextually relevant text to solving complex prob-
lems and producing executable code [5–7]. Their capability to process and interpret
complex textual inputs in natural language positions LLMs as particularly suitable for
tasks like process modeling that require the generation and refinement of structured
outputs from textual descriptions.

Our previously introduced framework [8] leverages LLMs to automate the gen-
eration and refinement of process models from textual descriptions. It employs
sophisticated techniques in prompt engineering, error handling, and code generation,
transforming detailed process descriptions into process models. This framework utilizes
the Partially Ordered Workflow Language (POWL) [9] as an intermediate represen-
tation due the quality guarantees it provides, particularly in ensuring soundness [9],
and the possibility to export POWL models in standard notations such as BPMN and
Petri nets. Preliminary results in [8] demonstrated the practicality and effectiveness
of this framework, showcasing its clear advantage over alternative solutions due to the
usage of POWL to ensure soundness.

2

This paper extends the work presented in [8] by introducing two key new con-
tributions: a comprehensive benchmarking analysis and an investigation into LLM
self-improvement strategies. To rigorously evaluate the performance of LLMs within
our framework for automated process modeling, we design a comprehensive bench-
mark consisting of 20 diverse business processes, each paired with a ground-truth
process model and a simulated event log. This setup allows for an automated yet
qualitative assessment of the generated process models using conformance check-
ing techniques [10]. We evaluate 16 state-of-the-art LLMs from various AI vendors,
such as Google (https://ai.google.dev/), OpenAI (https://openai.com/), Anthropic
(https://www.anthropic.com/), Meta (https://ai.meta.com/), and Mistral AI (https:
//mistral.ai/). This benchmark allows us to assess the diverse capabilities of LLMs,
including natural language understanding, code generation, adherence to instructions,
and error correction.

Beyond benchmarking, we explore the potential of LLM self-improvement tech-
niques to further enhance the quality of generated process models. We investigate
three specific strategies: self-evaluation, input optimization, and output optimization.
By leveraging these techniques, we aim to assess whether LLMs can autonomously
refine their performance, leading to more accurate and reliable process models.

The structure of this paper is as follows. First, related work is discussed in Section 2.
Section 3 provides a detailed overview of our LLM-based process modeling framework.
Section 4 introduces the ProMoAI tool, which supports our framework. Section 5
presents the benchmarking analysis, including the experimental setup, evaluation met-
rics, and a discussion of the results. Section 6 investigates the LLM self-improvement
strategies and analyzes their impact on model quality. Finally, Section 7 concludes the
paper.

2 Related Work

An overview of various methods for extracting process information from textual
content is presented in [11]. The study in [12] utilizes Natural Language Process-
ing (NLP) and text mining techniques to derive process models directly from text,
while [13] combines NLP with computational linguistics to generate BPMN models.
The approach in [14] applies NLP to extract structured relationship representations,
referred to as fact types, from textual data, which are then converted into BPMN
components. The BPMN Sketch Miner, as detailed in [15], uses process mining [16] to
produce BPMN models from text described in a domain-specific language. Commer-
cial solutions are also adopting AI for process modeling; for example, Process Talks
(https://processtalks.com) offers an AI-driven platform for generating process models
from textual descriptions.

Recent studies have explored the integration of LLMs in BPM, investigating their
potential applications and challenges. Several works [17, 18] delve into how LLMs can
be employed for BPM and process mining tasks. The papers [19] and [20] explore
the application of LLMs in process discovery and process querying, respectively. The
research in [21] employs BERT [22] to classify and analyze process execution logs, aim-
ing to enhance process monitoring and anomaly detection. The limitations of using

3

https://ai.google.dev/
https://openai.com/
https://www.anthropic.com/
https://ai.meta.com/
https://mistral.ai/
https://mistral.ai/
https://processtalks.com

GPT-4 for conceptual modeling are discussed in [23]. In [24–26], methods for gener-
ating process models through dialogue-based interactions and chatbots are proposed.
The paper [27] showcases the ability of LLMs to translate textual descriptions into
procedural and declarative process model constraints. Finally, [28] investigates the
broader impacts of LLMs in conceptual modeling, proposing potential applications
that extend beyond traditional BPM tasks.

Several benchmarks for evaluating LLMs on process mining and BPM tasks are
proposed. The benchmark in [29] assesses LLMs across a spectrum of process mining
tasks, utilizing self-evaluation by LLMs to judge the quality of results. This approach
contrasts with the benchmark proposed in this paper, which uses process descriptions
aligned with ground truth models, allowing for a more informed and objective assess-
ment of model quality. Further studies such as [30, 31] propose benchmarks that focus
on causal reasoning and the explanation of decision points within business processes.
Additionally, [32] introduces benchmarks for semantic-aware process mining tasks like
semantic anomaly detection and next activity prediction.

This paper extends our previous work [8] by incorporating the following contri-
butions. The evaluation of the proposed LLM-based process modeling framework has
been significantly broadened to include a larger and more diverse set of processes,
as well as a wider range of state-of-the-art LLMs. Additionally, a robust qualitative
assessment methodology has been implemented, employing conformance checking [10]
against ground truth event logs to enable a more rigorous evaluation of the generated
process models. Furthermore, we explore LLM self-improvement techniques to assess
whether LLMs can autonomously refine their performance within our framework.

3 LLM-Based Process Modeling Framework

In this section, we present a detailed overview of our framework, which harnesses the
capabilities of LLMs to generate and refine process models based on natural language
process descriptions.

3.1 Framework Overview

Figure 1 offers a high-level view of our proposed framework. The framework begins
by having users provide a textual description of a process in natural language. After
receiving the process description, additional information is integrated to create a com-
prehensive prompt (the prompt engineering strategies are discussed in Section 3.3).
This prompt is carefully crafted to instruct the LLM in generating executable code
that can then be used to create process models (the selection of the modeling language
is discussed in Section 3.2). A set of functions designed specifically for process model
creation aids in this code generation. Once the prompt is prepared, it is sent to the
LLM. Our framework is not dependent on any specific LLM and can function with
any advanced LLM that supports a large context window and code generation. After
receiving the LLM’s response, we extract the generated code and attempt to execute
it (details in Section 3.4).

In case errors are encountered during code extraction or execution, an error-
handling mechanism is activated, sending a refined prompt back to the LLM to address

4

Fig. 1: LLM-based process modeling framework.

the issue (discussed in Section 3.5). Upon successful execution and process model cre-
ation, users can view or export the model using established process modeling notations
such as BPMN and Petri nets. Furthermore, the framework allows users to provide
feedback on the generated model, which can then be incorporated to further refine the
model, enabling continuous improvement.

3.2 Process Representation

To explain the various stages of our framework, we implement an instance that uses
the Partially Ordered Workflow Language (POWL) [9] for intermediate process repre-
sentation. The framework’s core principles allow for integration with other modeling
languages depending on process modeling requirements. This section highlights the
reasons behind our choice of POWL.

Our objective is to generate process models using common notations that profes-
sionals in the business process management and process mining fields are familiar with,
such as BPMN and Petri nets. However, these notations can lead to quality issues, as
it is possible to generate models with unreachable parts, for instance. To address this,
the concept of soundness is introduced, and many automated process model discovery
methods rely on languages that ensure soundness (e.g., [33, 34]). POWL is a par-
tially ordered graph extended with control-flow operators to model choices and loops,
representing a subclass of Petri nets that allows for the hierarchical combination of
sub-models to form larger models. POWL models can be automatically transformed
into Petri nets or BPMN models as described in [9].

POWL was selected as the intermediate representation for the following reasons:

5

Listing 1: Knowledge injection on generating POWL models. Lines extending beyond
the displayed text are abbreviated with “...” for compactness.

Use the following knowledge about the POWL modeling language: A POWL model is ...
Provide the Python code that recursively generates a POWL model. Save the final ...
Assume the class ModelGenerator is properly implemented and can be imported ...
ModelGenerator provides the functions described below:
- activity(label) generates an activity. It takes 1 string argument , which is ...
- xor(*args) takes n >= 2 arguments , which are the submodels. Use it to model ...
- loop(do , redo) takes 2 arguments , which are the do and redo parts. Use it to ...
- partial_order(dependencies) takes 1 argument , which is a list of tuples of ...

Note: for any powl model , you can call powl.copy() to create another instance ...

• Soundness Guarantees: Unlike BPMN and Petri nets, POWL inherently guarantees
soundness.

• Simplicity: POWL’s hierarchical structure simplifies model generation by enabling
the recursive creation of sub-models, which are then combined into larger models. It
also assumes tasks are parallel unless otherwise specified, reflecting the concurrent
nature of many real-world processes. This assumption simplifies model generation
since task order does not always need to be explicitly defined.

• Expressive Power: While both POWL and process trees [34] ensure soundness,
POWL supports a wider range of process structures [9]. It allows for the modeling
of more complex dependencies while retaining the quality guarantees of hierarchical
process modeling languages.

3.3 Prompt Engineering

This section outlines the prompt engineering strategies we use to guide the LLM in
generating process models from natural language descriptions.

The key strategies we implemented within our framework are:

• Role Prompting: This approach involves assigning a specific role to the LLM to
shape its behavior [35]. We instruct the LLM to act as a process modeling expert,
who is familiar with common process constructs. Additionally, we ask the LLM to
act as a process owner, capable of filling in gaps in the process descriptions based
on its expertise.

• Knowledge Injection: This strategy refers to injecting specific knowledge that the
LLM may not have encountered during its training [36]. We provide comprehensive
knowledge about POWL, offering detailed insights into its hierarchical structure
and the semantics of the different POWL components. Moreover, our framework
leverages LLM capabilities in generating executable code [6] by instructing the LLM
to generate Python code that utilizes a predefined set of functions we designed for
the safe generation of POWL models. We provide a detailed explanation of these
predefined methods and how they can be used to generate POWL models. Listing 1
illustrates the knowledge injected about POWL.

• Few-Shots Learning: This technique involves providing the LLM with multiple exam-
ple input-output pairs to train it on the task [37]. For instance, Listing 2 shows one

6

Listing 2: One of the examples used for few-shots learning and negative prompting.
Lines extending beyond the displayed text are abbreviated with “...” for compactness.

Process description for example 1:
A small company manufactures customized bicycles. Whenever the sales department ...

Process model for example 1:
‘‘‘python
from utils.model_generation import ModelGenerator
gen = ModelGenerator ()
create_process = gen.activity(’Create process instance ’)
reject_order = gen.activity(’Reject order ’)
accept_order = gen.activity(’Accept order ’)
inform = gen.activity(’Inform storehouse and engineering department ’)
process_part_list = gen.activity(’Process part list ’)
check_part = gen.activity(’Check required quantity of the part ’)
reserve = gen.activity(’Reserve part ’)
back_order = gen.activity(’Back -order part ’)
prepare_assembly = gen.activity(’Prepare bicycle assembly ’)
assemble_bicycle = gen.activity(’Assemble bicycle ’)
ship_bicycle = gen.activity(’Ship bicycle ’)
finish_process = gen.activity(’Finish process instance ’)

check_reserve = gen.xor(reserve , back_order)

single_part = gen.partial_order(dependencies =[(check_part , check_reserve)])
part_loop = gen.loop(do=single_part , redo=None)

accept_poset = gen.partial_order(
dependencies =[(accept_order , inform),

(inform , process_part_list),
(inform , prepare_assembly),
(process_part_list , part_loop),
(part_loop , assemble_bicycle),
(prepare_assembly , assemble_bicycle),
(assemble_bicycle , ship_bicycle)])

choice_accept_reject = gen.xor(accept_poset , reject_order)

final_model = gen.partial_order(
dependencies =[(create_process , choice_accept_reject),

(choice_accept_reject , finish_process)])
‘‘‘

Common errors to avoid for example 1:
creating a local choice between ’reject_order ’ and ’accept_order ’ instead of ...

of the few-shots examples we use for training the LLM to generate POWL mod-
els starting from process descriptions. Some of the process descriptions we use for
implementing few-shots learning are adapted from [38].

• Negative Prompting: Negative prompting involves specifying what the LLM should
avoid in its response [39]. We apply this strategy by instructing the LLM to avoid
common mistakes that can occur during the generation of POWL models, such as
generating partial orders that violate irreflexivity. Moreover, we extend our few-
shots demonstrations with common mistakes that should be avoided during the
construction of each process. For example, a common mistake for the bicycle man-
ufacturing process (cf. Listing 2) is to create a local choice between two activities
“reject order” and “accept order” instead of modeling a choice between the complete
paths that are taken in each case.

7

3.4 Model Generation and Refinement

After receiving the LLM’s response, the Python code snippet is extracted from the
response, which might also include additional text (e.g., intermediate reasoning steps).
If the code extraction is successful, then the extracted code is executed to generate
the model. Executing code generated by an LLM involves multiple considerations to
handle security risks and invalid results. The following strategies are implemented to
ensure a safe environment for producing valid process models:

• In order to eliminate the risk of executing unsafe code, we restrict the LLM to
use the predefined functions we designed for the generation of POWL models. We
employ a strict process to verify that the code strictly complies with the prompted
coding guidelines, explicitly excluding the use of external libraries or constructs that
may pose security threats.

• Validation rules are in place to verify that the generated model conforms to
the POWL specifications, such as the requirement that all partial orders respect
transitivity and irreflexivity.

The framework supports displaying and exporting the generated POWL models as
Petri nets or BPMN models for broader use within the business process management
and process mining communities.

Refinement Loop

The framework also includes a refinement loop, allowing users to provide textual feed-
back on the generated models. Based on this feedback, the LLM is prompted to revise
the model, ensuring continual improvement.

3.5 Error Handling

Despite their advanced coding capabilities, LLMs are not immune to generating faulty
code. We employ a robust error-handling mechanism tailored to mitigate potential
inaccuracies and ensure the reliability of the generated process models.

Recognizing the variability in the severity and implications of errors, we categorize
them into two distinct groups:

• Critical Errors: These are severe issues that affect functionality or pose security
risks, such as execution failures or major model validation violations. These errors
must be resolved before the process can continue.

• Adjustable Errors: These are less severe errors that affect the quality of the generated
model, such as reusing sub-models within the same POWL model. These errors can
be adjusted automatically, allowing for a degree of flexibility in their resolution.
For example, the error of reusing submodels within the same POWL model can
be automatically resolved by creating copies of the reused models. However, such
intervention is approached with caution to prevent significant deviations from the
behavior of the intended process.

Our framework uses an iterative error-handling loop, engaging the LLM to address
the identified issues. A new prompt that details the error and requests the LLM to

8

address it, along with the conversation history, are submitted to the LLM. This iter-
ative cycle facilitates dynamic correction, leveraging the LLM’s capabilities to refine
and improve the generated code.

Critical errors are handled by prompting the LLM repeatedly until a solution is
found or the maximum allowed attempts are reached. If the LLM fails to fix the error
after the allowed number of attempts, the system terminates the process and marks
the model generation as unsuccessful. Adjustable errors are resolved automatically if
the LLM fails to address them within a few iterations.

3.6 Limitations

Our framework, while pioneering in leveraging LLMs for process modeling, has lim-
itations. In this section, we outline areas for improvement and propose ideas for
addressing them in future work.

Expanding Process Perspectives: Our framework addresses the control-flow perspec-
tive of process modeling, omitting the data, resource, and operational perspectives,
which are crucial for a comprehensive understanding of business processes. The inher-
ent flexibility and understanding capabilities of LLMs present a significant potential
for extending our framework to incorporate additional process perspectives.

Direct BPMN Generation: The current implementation of our framework utilizes
POWL for intermediate process representation. A possible direction for future research
is the exploration of the direct generation of BPMN models without an intermediate
process representation. This approach promises to offer greater flexibility in repre-
senting intricate process structures and dynamics and allows for the enrichment of
process models with context-rich annotations. However, moving away from the struc-
tured guarantees provided by POWL necessitates the development of more advanced
process model generation and validation techniques.

Enhanced Interactivity: We intend to enhance the model refinement loop to support
more nuanced and interactive feedback mechanisms. For example, we aim to empower
users to not only provide textual feedback on generated process models but also to
manually edit the generated models.

4 Tool Support

In this section, we present the ProMoAI tool [40] to support our process modeling
framework. ProMoAI is available as a web application at https://promoai.streamlit.
app/.

Currently ProMoAI in integrated with three LLM providers: Google (https:
//ai.google.dev/), OpenAI (https://openai.com/), and DeepInfra (https://deepinfra.
com/). Google offers the Gemini models, while OpenAI provides GPT and O1 models.
DeepInfra supports popular open-source LLMs like Meta’s LLaMa and Mistral, and
it also enables custom model deployment.

A screenshot of ProMoAI is shown in Figure 2. Initially, the application needs
the specification of the LLM provider, the name of an LLM supported by the chosen
provider, and an API key. The user needs to submit a textual description of the
process to generate the initial process model. Once the process model is generated,

9

https://promoai.streamlit.app/
https://promoai.streamlit.app/
https://ai.google.dev/
https://ai.google.dev/
https://openai.com/
https://deepinfra.com/
https://deepinfra.com/

Fig. 2: A screenshot of ProMoAI.

it is presented to the user and can be viewed and downloaded as BPMN or Petri
net. Following the initial process model generation, the user can provide feedback to
iteratively improve the generated process model.

10

5 Benchmarking State-of-the-Art Large Language
Models

In this section, we present a comprehensive evaluation of our framework for process
modeling using a diverse set of state-of-the-art LLMs. The objective is to assess the
framework’s capability to effectively generate high-quality business process models
from natural language descriptions. Additionally, our evaluation serves as a bench-
mark for assessing the capabilities of state-of-the-art LLMs in a task that involves (1)
modeling business processes starting from natural language descriptions, (2) generat-
ing executable code, (3) following instructions embedded in the input prompts, and
(4) incorporating feedback to iteratively resolve errors and improve the quality of the
outputs.

We begin by detailing the experimental setup and design in Section 5.1, followed
by an analysis of the results obtained in Section 5.2. Note that all data and results are
available at https://github.com/humam-kourani/EvaluatingLLMsProcessModeling.

5.1 Experimental Setup and Design

In this section, we detail the experimental setup and design. In Section 5.1.1, we discuss
the selection of LLMs, while in Section 5.1.2, we outline the design of the processes
we use in the evaluation. In Section 5.1.3, we present our approach for assessing the
quality of the generated process models. Finally, the configuration of framework’s
settings for error handling is described in Section 5.1.4.

5.1.1 Selection of Large Language Models

In order to achieve a comprehensive assessment of how different LLMs perform within
our framework, we selected 16 LLMs that capture a wide spectrum of characteristics.

Our selection of LLMs includes models with different architectures (e.g.,
transformer-based, mixture-of-experts) and training methodologies (proprietary vs.
open-source). We also considered size variation, ranging from smaller, faster mod-
els to very large models. Additionally, some models are optimized for specific tasks,
such as code generation, deep reasoning, and following explicit prompt instructions.
Finally, we ensure including models from different major AI vendors to ensure that
our evaluation is comprehensive.

To thoroughly evaluate our framework, we selected the following 16 cutting-edge
LLMs:

• GPT-4, GPT-4o, and GPT-4o-Mini: Developed by OpenAI (https://openai.
com/), GPT-4 is renowned for its advanced reasoning abilities, extensive knowledge
base, and large context window. It excels in tasks requiring deep understanding and
generation of coherent, contextually relevant text. GPT-4o, and GPT-4o-Mini are
optimized versions of GPT-4, offering faster performance and reduced computational
requirements while maintaining high-quality outputs.

• O1-Preview and O1-Mini: The O1 series contains the latest advancements from
OpenAI, outperforming previous models like GPT-4o across competitive bench-
marks. O1-Preview is designed for deep reasoning, excelling in complex tasks like

11

https://github.com/humam-kourani/EvaluatingLLMsProcessModeling
https://openai.com/
https://openai.com/

math, coding, and science. O1-Mini is a smaller, faster, and more cost-effective
version.

• Gemini-1.5-Pro-002 and Gemini-1.5-Flash-002: Developed by Google (https:
//ai.google/), the Gemini models are trained on diverse datasets. The Pro version
is designed for enhanced reasoning capabilities, while the Flash variant emphasizes
speed and efficiency.

• Claude-3.5-Sonnet: From Anthropic (https://www.anthropic.com/), Claude-3.5-
Sonnet is designed for high performance with a focus on safety and reliability. It
operates with a 200k token context window and is optimized for code generation
and complex reasoning tasks.

• Mistral-Large-2, Codestral, and Mixtral-8x22B: These models from Mistral
AI (https://mistral.ai/) are designed for efficient training and inference with sup-
port for multilingual tasks. Mistral-Large-2 is top-tier reasoning model provided by
Mistral AI for high-complexity tasks. Mixtral-8x22B is particularly noteworthy due
to its mixture-of-experts architecture, which allows it to activate only a subset of its
parameters during each inference, making it highly efficient. Codestral is optimized
for generating and understanding code in a wide array of programming languages.

• Llama-3.1-405B-Instruct and Llama-3.2-90B-Vision-Instruct: These open-
source models from Meta (https://ai.meta.com/) are trained on extensive corpora
and designed for instruction following and complex reasoning tasks. Llama-3.1-405B-
Instruct is notable for its large parameter size, enhancing its capability to handle
intricate tasks.

• Llama-3.1-Nemotron-70B-Instruct: Developed by Nvidia (https://www.nvidia.
com/) as an advanced version of Meta’s Llama-3.1-70B, Nemotron leverages
Nvidia’s cutting-edge hardware and fine-tuning techniques to offer high-performance
capabilities.

• Qwen2.5-72B-Instruct: Developed by Alibaba Cloud (https://www.
alibabacloud.com/), Qwen2.5-72B-Instruct is a powerful open-source model known
for its multilingual support and proficiency in handling complex instructions.

• WizardLM-2-8x22B: This is an advanced open-source model designed by
Microsoft (https://www.microsoft.com/).

Note that for the open-source models Llama-3.1-405B-Instruct, Llama-3.2-
90B-Vision-Instruct, Llama-3.1-Nemotron-70B-Instruct, Qwen2.5-72B-Instruct, and
WizardLM-2-8x22B, we used the instances hosted by Deep Infra (https://deepinfra.
com/).

5.1.2 Design of Processes

To evaluate the LLMs within our framework, we designed a set of 20 distinct pairs
of process descriptions and their corresponding ground truth POWL model. We refer
to these processes as p1, ..., p20 throughout this paper. Two processes were adapted
from our previous work [8]: an order handling process [9] and a hotel service process
[38]. The remaining 18 processes were created to represent diverse business domains,
including manufacturing, healthcare, finance, logistics, customer service, and more.

12

https://ai.google/
https://ai.google/
https://www.anthropic.com/
https://mistral.ai/
https://ai.meta.com/
https://www.nvidia.com/
https://www.nvidia.com/
https://www.alibabacloud.com/
https://www.alibabacloud.com/
https://www.microsoft.com/
https://deepinfra.com/
https://deepinfra.com/

Listing 3: Textual description for process p9 (644 characters, 97 words).

The process starts with identifying an idea for a new product or improvement to an
existing one. The R&D team conducts initial research and feasibility studies ,
followed by drafting design concepts. After selecting a promising design , a
prototype is built using available materials and resources. The prototype
undergoes various tests to assess its functionality , safety , and market potential.
Feedback from the testing phase is collected , and the prototype may be refined
accordingly. If a refinement is needed , then the testing phase is reinitiated. The
process ends when the prototype is either approved for further development or
discarded.

This diversity ensures that the evaluation is not biased toward a specific industry or
process type.

The processes were intentionally varied along several dimensions:

• Process Description Length: Ranged from 79 to 230 words and from 525 to
1,567 characters.

• Level of Detail: Process descriptions varied in how explicitly they specified struc-
tural elements. While no descriptions were truly vague, certain structural details
were deliberately left ambiguous to challenge the LLMs to reason about process
structure. For example, some descriptions did not clarify whether tasks should be
executed concurrently or sequentially, requiring the LLMs to infer the appropriate
behavior based on the process context.

• Process Size: The number of activities in the ground truth models ranged from 8
to 26, providing a mix of simple and complex processes.

• Structural Complexity: The processes were designed to cover different levels of
structural complexity for the three process constructs supported by POWL:

– Choices: Included processes with skippable activities, simple choices between
single activities, and choices involving complex sub-processes.

– Loops: Incorporated processes with repeatable activities, simple loops over single
activities, and loops involving complex sub-processes.

– Partial Orders: Varied from highly sequential processes to those with high
concurrency, as well as complex partial orders that contain non-hierarchical
dependencies.

Listing 3 and Listing 4 show two example textual descriptions, illustrating varia-
tions in length and complexity. The corresponding ground truth models are shown in
BPMN in Figure 3a and Figure 5a, respectively.

5.1.3 Assessment of Generated Models

To facilitate quantitative evaluation through conformance checking [10], we simulated
event logs from the ground truth POWL models. These logs serve as the basis for
assessing the quality of the models generated by the LLMs using our framework.

13

Listing 4: Textual description for process p18 (1567 characters, 230 words).

A university enrollment system involves the following steps:
Prospective students submit an application online.
The admissions office reviews the application and supporting documents.
If documents are missing , the applicant is notified to provide the missing items.
Upon receiving all documents , the application is evaluated by the admissions
committee.
Concurrently , the finance department processes any application fees or waivers.
If the application is accepted , an acceptance letter is sent. Otherwise , a
rejection letter is sent and the process ends.
After being accepted , the student must then confirm enrollment by a specified
deadline; otherwise the application will be canceled.
If the student confirms , they receive orientation materials and the IT department
sets up student accounts for email , online portals , and library access.
If the student is international , the international student office assists with visa
processing.
The student obtains a student ID card and starts creating their study plan , which
includes:
Meeting with an academic advisor.
Selecting courses.
Resolving any schedule conflicts.
The student begins attending classes.
Throughout each semester , the student may add or drop courses within the add/drop
period.
At the end of the semester , grades are posted , and the student can review them
online.
If the student has any grievances , they can file an appeal , which includes:
Submitting an appeal form.
Meeting with the appeals committee.
Awaiting a decision.
The process repeats each semester until the student graduates or withdraws.

Simulation of Event Logs

The simulation was meticulously conducted to produce comprehensive and repre-
sentative event logs from the ground truth models. This process was based on two
key assumptions to ensure both feasibility and thorough coverage of possible process
behaviors. First, we assume that all decision points within the process follow an equal
distribution, meaning each possible choice at a decision point has an equal probabil-
ity of being selected. This assumption simplifies the simulation by treating all paths
through decision points as equally likely, thereby ensuring unbiased exploration of all
possible trace variants (i.e., distinct activity sequences). Second, we limit loops to a
maximum length of two iterations, allowing only up to two executions of the loop’s
do-part. This constraint is necessary to prevent the generation of infinitely long event
logs. By capping the loop iterations, we maintain a manageable size for the event logs
while still capturing the essential repetitive behavior of the process. Under these two
assumptions, each simulated event log includes one instance of every unique trace vari-
ant possible within the ground truth model, thereby ensuring comprehensive coverage
of the process behavior.

Standardizing Activity Labels

To ensure accurate conformance checking between LLM-generated process models and
the ground truth event logs, it is essential to standardize activity labels. Without this
standardization, inconsistencies in activity naming can result in misleading quality

14

Identify idea for new product or improvement

+

Conduct feasibility studies Conduct initial research

+

Draft design concepts

Select promising design

Build prototype

X

+

Test safety Test functionality Test market potential

+

Collect feedback from testing phase

X

X Refine prototype

Approve prototype for further development Discard prototype

X

(a) Ground truth (Score 0.98).

Identify idea for new product or improvement

Conduct initial research

Conduct feasibility studies

Draft design concepts

Select promising design

Build prototype

X

+

Test market potential Test functionality Test safety

+

Collect feedback from testing phase

X

X Refine prototype

Discard prototype Approve prototype for further development

X

(b) Generated with O1-Mini (Score 0.97).

Fig. 3: Ground truth and LLM-generated process models for process p9.

scores, as LLM-generated models may assign different labels to equivalent activities,
introduce new activities, or combine multiple activities into a single one. To address
this, we extend the initial prompt with the list of activity labels of the ground truth
log, presented in a random order to prevent the LLM from inferring sequential depen-
dencies based on label ordering. We instruct the LLM to generate a process models
using the same activity labels. While this may limit the LLM’s flexibility in naturally
expressing process steps, it mirrors real-world scenarios where key process steps are
known, even if the overall process model is not formally defined. Moreover, this stan-
dardizing is crucial for enabling conformance checking and automated quantitative
assessment.

Quality Score Computation

We assess the quality of the LLM-generated models in relation to the ground truth
event logs by calculating fitness [41] and precision [42] metrics using the PM4Py library

15

Identify idea for new product or improvement

Conduct initial research

Conduct feasibility studies

Draft design concepts

Select promising design

Build prototype

+

Test safety Test market potential Test functionality

+

X

X

X

Collect feedback from testing phase

+

Discard prototype Approve prototype for further development

X

Refine prototype

+

(a) Generated with Llama-3.2-
90B-Vision-Instruct (Score 0.83).

+

X Identify idea for new product or improvement

Refine prototype Conduct initial research

Draft design concepts+

Test functionality Test market potential Test safety Conduct feasibility studies

+ Select promising design

Build prototypeCollect feedback from testing phase

+X

X Collect feedback from testing phase Test safety Test market potential Test functionality

Discard prototype Approve prototype for further development +

X Collect feedback from testing phase

+

(b) Generated with Codestral (Score 0.56).

Fig. 4: LLM-generated process models for process p9.

[43]. The overall quality score for each generated model is determined as the harmonic
mean of the fitness and precision values. High scores (approaching 1.0) indicate a high
level of conformance with the ground truth event logs, whereas lower scores (closer to
0.0) reflect poor model quality.

5.1.4 Error Handling Settings

Our framework incorporates an error-handling loop as described in Section 3.5. We use
a threshold of ten iterations for addressing adjustable errors. If errors persist beyond
these ten iterations, the framework automatically attempts to fix them, which may
impact the overall quality of the generated models. Afterwards, if errors remain, an
additional five iterations are permitted. By setting high iteration thresholds, we aim
to assess the LLMs’ proficiency in understanding and correcting their outputs based
on feedback and to ensure fairness by providing ample opportunity for each model to
succeed.

16

Submit application online

Review application and documents

X

X

Notify applicant of missing documents

+

Provide missing documents

Process fees or waivers Evaluate application by admissions committee

+

X

Send acceptance letter

Send rejection letterX

X

Cancel application

Confirm enrollment

X

+

Send orientation materials Set up IT accounts

+

X

X

Assist with visa processing

+

Meet with academic advisor

Obtain student ID cardSelect courses

+

X

Resolve schedule conflicts

Begin attending classes

X

X

Add/drop courses

Post grades

Review grades online

X

X

Submit appeal form

X

Meet with appeals committee

X

Await decision

Withdraw Graduate

X

(a) Ground truth (Score 0.99).

Submit application online

Review application and documents

X

X

X

Notify applicant of missing documents

+

Evaluate application by admissions committee Process fees or waivers

X

Provide missing documents

+

X

Send acceptance letter Send rejection letter

X

X

Cancel application Confirm enrollment

X

+

X

Send orientation materials

Set up IT accounts

X

Assist with visa processing

+

Meet with academic advisor

Obtain student ID cardSelect courses

+

X

Resolve schedule conflicts

Begin attending classes

X

X

Add/drop courses

Post grades

Review grades online

X

X

Submit appeal form

X

Meet with appeals committee

X

Await decision

Graduate Withdraw

X

(b) Generated with Claude-3.5-
Sonnet (Score 0.93).

Fig. 5: Ground truth and LLM-generated process models for process p18.

17

Submit application online

Review application and documents

X

X

X

Evaluate application by admissions committee

Notify applicant of missing documents

X

X

Process fees or waivers

Provide missing documents

X

X

Send acceptance letter Send rejection letter

X

X

Send rejection letter Send acceptance letter

X

Confirm enrollment

+

Send orientation materials

Set up IT accounts+

+

X

X Obtain student ID card

+

X

Assist with visa processing Meet with academic advisor

Begin attending classes Submit appeal form

Select courses

Add/drop courses

Resolve schedule conflicts

Meet with appeals committee

Await decision

Begin attending classes

Post grades

Review grades online

+

X

X

X

X

Submit appeal form

Withdraw Graduate

X

(a) Generated with Qwen2.5-72B-
Instruct (Score 0.78).

+

X Submit application online

Send rejection letter Send acceptance letter X

Evaluate application by admissions committee Notify applicant of missing documentsX

Confirm enrollment X

Process fees or waivers+

Cancel application Send orientation materials X

Send acceptance letter Send rejection letter+

XX

X

Assist with visa processing X

+

Send acceptance letter Send rejection letter

X

Confirm enrollment

+

Send orientation materials Cancel application

+

Send orientation materials

Set up IT accounts

Obtain student ID card

Meet with academic advisor

Select courses

Resolve schedule conflicts

X

Begin attending classes

X

X Add/drop courses

Begin attending classes

X

Post grades Add/drop courses

Review grades online

X

X

Review grades online

(b) Generated with WizardLM-2-8x22B (Score
0.39).

Fig. 6: LLM-generated process models for process p18.

5.2 Results and Analysis

In this section, we present the results of our evaluation, focusing on the error-handling
performance (Section 5.2.1), quality of the generated models (Section 5.2.2), time
efficiency (Section 5.2.3), and overall observations (Section 5.2.4).

18

Table 1: Error handling performance metrics.

Model
Avg. Num. Num. Cases Num. Cases with Num. Cases
Iterations without Errors Auto-Adjustment with Failures

Claude-3.5-Sonnet 1.35 16 0 0
O1-Mini 1.4 14 0 0
O1-Preview 1.5 14 0 0
Gemini-1.5-Pro-002 1.95 13 0 0
GPT-4o 2.25 9 0 0
Llama-3.1-405B-Instruct 2.55 9 0 0
Mistral-Large-2 2.6 10 0 0
Llama-3.2-90B-Vision-Instruct 2.95 8 0 0
Gemini-1.5-Flash-002 3.3 4 0 0
Mixtral-8x22B 3.6 10 3 1
GPT-4 3.9 2 0 0
Codestral 3.9 7 2 1
GPT-4o-Mini 4.05 6 3 0
Llama-3.1-Nemotron-70B-Instruct 4.05 3 1 0
Qwen2.5-72B-Instruct 4.65 4 2 0
WizardLM-2-8x22B 5.2 8 5 0

Example models generated for the processes p9 and p18 are shown in Figure 3,
Figure 4, and Figure 5, Figure 6.

5.2.1 Error Handling Performance

We analyzed how each LLM performed in terms of the number of iterations required
to generate a valid process model without errors. In Table 1, we report the average
number of iterations required to produce a valid model by each LLM, the number
of cases where only one iteration was needed (indicating no errors), the number of
instances where more than ten iterations were necessary (indicating failure to resolve
adjustable errors), and the number of cases where no valid model was generated after
15 iterations (indicating failure to resolve critical errors).

Claude-3.5-Sonnet demonstrated exceptional performance, with an average of 1.35
iterations and 16 out of 20 instances where only one iteration was sufficient to produce
a valid model. This performance was closely mirrored by the O1 models and Gemini-
1.5-Pro-002, which averaged less than two iterations and managed to produce models
without any errors in 14 and 13 instances, respectively. These results suggest that these
models possess robust reasoning capabilities and an ability to generate high-quality
results on the first attempt.

Among the models evaluated, WizardLM-2-8x22B stood out with the highest
average number of iterations (5.2) and five instances where more than 10 itera-
tions were needed. However, it is notable that despite these higher iteration counts,
WizardLM-2-8x22B did not experience any failures. Models such as GPT-4 and
Gemini-1.5-Flash-002 demonstrated low single-iteration success rates (2 and 4 cases,
respectively); however, these models were able to achieve a moderate average num-
ber of iterations and managed to resolve both adjustable and critical errors. This
underscores their effectiveness in incorporating feedback to iteratively improve the
quality of their outputs. In contrast, other models showed a higher tendency for requir-
ing additional iterations and occasional failures. Mixtral-8x22B necessitated manual

19

Table 2: Average quality scores.

Model Avg. Score

Ground Truth 0.98

Claude-3.5-Sonnet 0.93
O1-Preview 0.92
O1-Mini 0.91
Gemini-1.5-Pro-002 0.87
Llama-3.1-405B-Instruct 0.86
Llama-3.1-Nemotron-70B-Instruct 0.83
Llama-3.2-90B-Vision-Instruct 0.80
Qwen2.5-72B-Instruct 0.80
Mistral-Large-2 0.78
GPT-4 0.76
GPT-4o 0.76
GPT-4o-Mini 0.74
WizardLM-2-8x22B 0.73
Codestral 0.73
Gemini-1.5-Flash-002 0.73
Mixtral-8x22B 0.72

adjustments in three instances and failed to generate a valid model once after 15 itera-
tions. Similarly, Codestral encountered two such instances of manual adjustments and
one failure. The results for Codestral, which is optimized for code generation, were
particularly surprising. Despite its specialization, this model performed worse than
the other two Mistral models we considered. This suggests that task-optimized models
face challenges on their primary task when applied to new domains.

5.2.2 Quality of the Generated Models

As described in Section 5.1.3, we assess the quality of the generated process models
using the harmonic mean of fitness and precision scores obtained from conformance
checking the models against the ground truth event logs. The average obtained quality
scores for each LLM are reported in Table 2.

The results demonstrate significant variation in the quality of generated models
across different LLMs. Claude-3.5-Sonnet leads the pack with an impressive average
score of 0.93, closely approaching the average score of the ground truth models (0.98)1.
Following Claude-3.5-Sonnet, the O1-Preview and O1-Mini models also exhibit strong
performance, achieving average scores of 0.92 and 0.91, respectively. These high scores
underscore the effectiveness of the O1 series in generating accurate and reliable results,
attributable to their advanced reasoning capabilities.

A closer examination of the results reveals the following observations and patterns:
(1) Positive Correlation Between Iteration Performance and Quality:

There is a notable correlation between error-handling performance and model quality.
Models like Claude-3.5-Sonnet, O1-Mini, O1-Preview, and Gemini-1.5-Pro-002, which
produced less errors and required fewer iterations to generate valid process models,

1A perfect score (1.0) is unattainable in many cases due to the presence of loops within the process
models, which inherently allow for infinite behavior.

20

also achieved higher quality scores. Conversely, models that required more iterations
or experienced failures, such as Mixtral-8x22B, Codestral, and WizardLM-2-8x22B,
tended to have lower scores, reflecting potential compromises in model accuracy due
to extended correction processes. This indicates that the ability to generate error-free
outputs promptly contributes to the overall quality of the process models.

(2) Quality Consistency on Average: Despite the inherent non-determinism
in LLM outputs, we observe consistent quality trends within similar groups of mod-
els. Specifically, the O1 models achieved average scores of 0.92 and 0.91, while the two
instances of the Llama 3.1 family scored on average 0.86 and 0.83. The three models
within the GPT-4 family recorded average scores ranging from 0.74 to 0.76. Addition-
ally, across four independent runs of Gemini-1.5-Pro-002 (cf. Section 6.1), the model
consistently exhibited similar performance with average scores ranging between 0.86
and 0.88. The observed patterns suggest that, although re-executing the same or sim-
ilar LLMs on identical tasks can yield varying results, the average quality remains
stable within each model group.

(3) Impact of Speed Optimization: Models optimized for speed exhibited var-
ied behaviors in terms of quality scores. Notably, the OpenAI models O1-Mini and
GPT-4o-Mini maintained quality scores comparable to their base counterparts, O1-
Preview and GPT-4o, respectively. This consistency suggests that optimization for
speed in these models does not significantly compromise the quality of their outputs.
In contrast, Gemini-1.5-Flash-002 demonstrated lower quality scores compared to the
Gemini-1.5-Pro-002 variant. However, Google promotes Gemini-1.5-Flash-002 as a
small, lightweight model designed for tasks where speed and cost-effectiveness matter
the most; therefore, it is unfair to compare its performance with the Pro model. These
examples illustrate that speed optimization strategies can significantly differ based on
the desired balance between speed enhancement and quality preservation, either aim-
ing for moderate speed improvements with minimal quality loss or prioritizing speed
as the primary optimization goal.

5.2.3 Time Efficiency

Time efficiency is a critical factor in evaluating the practicality and scalability of differ-
ent LLMs in our framework. We assessed the performance of each LLM by measuring
both the average cumulative time taken across all iterations to generate the process
model and the average time per a single iteration. Table 3 reports these metrics,
ordered by the average total time in ascending order.

Gemini-1.5-Flash-002 and Codestral emerge as the fastest models in terms of
per-iteration processing speed, with average times of 4.03 seconds and 7.98 seconds
respectively. However, their rapid response times come at the cost of requiring more
iterations and a compromise in quality, diminishing their overall effectiveness. In
contrast, Claude-3.5-Sonnet and Gemini-1.5-Pro-002 exemplify models that strike an
excellent balance between speed and quality. Claude-3.5-Sonnet is particularly note-
worthy, ranking second in total average time at 23.63 seconds while ranking first in
average quality at a score of 0.93. Similarly, Gemini-1.5-Pro-002 demonstrate robust

21

Table 3: Time efficiency metrics.

Model Avg. Total Time (sec) Avg. Time per Iteration (sec)

Gemini-1.5-Flash-002 14.51 4.03
Claude-3.5-Sonnet 23.63 16.88
Gemini-1.5-Pro-002 24.86 12.06
Codestral 38.27 7.98
Mixtral-8x22B 52.88 12.20
O1-Mini 55.29 39.16
GPT-4o-Mini 56.20 12.11
Llama-3.1-405B-Instruct 67.86 24.69
Llama-3.2-90B-Vision-Instruct 72.97 21.56
GPT-4o 78.98 33.72
GPT-4 108.55 26.56
Qwen2.5-72B-Instruct 126.98 20.59
O1-Preview 145.48 90.84
Llama-3.1-Nemotron-70B-Instruct 167.98 38.20
Mistral-Large-2 169.66 59.46
WizardLM-2-8x22B 181.47 29.57

performance with average total times around 24.86 seconds and a strong average qual-
ity score of 0.87. These models achieve their efficiency not only through relatively fast
per-iteration times but also by requiring less iterations and effectively handling errors.

The reasoning models of the O1 series (O1-Mini and O1-Preview) exhibit longer
per-iteration processing times (39.16 seconds and 90.84 seconds respectively). Despite
their slower speeds per iteration, they maintain moderate total processing times due
to their high efficiency in producing valid models quickly, minimizing the need for
error handling iterations. O1-Mini, in particular, achieves a similar quality score to
O1-Preview but at a substantially lower total time, making it a highly efficient option
within the O1 series. This pattern extends to other OpenAI models, where GPT-
4o-Mini outperforms GPT-4 and GPT-4o in speed while maintaining similar quality
levels.

At the lower end of the efficiency spectrum, WizardLM-2-8x22B, Mistral-Large-
2, and Llama-3.1-Nemotron-70B-Instruct stand out as the least time-efficient models,
with average total times between 181.47 seconds and 167.98 seconds.

5.2.4 Summary of Results

In summary, our evaluation demonstrates that Claude-3.5-Sonnet stands out as the
best-performing LLM in our framework, delivering the highest quality process mod-
els with minimal iterations and efficient error handling. Gemini-1.5-Pro-002 follows
closely behind, with lower quality scores but also offering a good balance between
quality and efficiency. The O1 series models (O1-Mini and O1-Preview) exhibit excel-
lent performance but fall behind in the overall time performance. Speed-optimized
models like Gemini-1.5-Flash-002 provide faster per-iteration times but often require
more iterations and may compromise on quality.

These findings highlight the trade-offs between speed, iteration count, quality, and
cost across different LLMs, emphasizing the importance of selecting the right LLM
to achieve the best balance. Note that we did not include cost information in our

22

evaluation due to the rapidly changing landscape of LLM pricing. However, when
taking cost into account, Gemini-1.5-Pro-002 offered the best trade-off as it was freely
available through APIs for limited, small-scale testing.

6 Evaluating LLM Self-Improvement Strategies

In this section, we investigate the ability of LLMs to improve the quality of their
outputs through self-improvement strategies. We aim to examine how LLMs can
autonomously evaluate, refine, and optimize their performance within our framework
for process modeling. Specifically, we explore three techniques: self-evaluation (cf.
Section 6.1), self-optimization of input (cf. Section 6.2), and self-optimization of output
(cf. Section 6.3).

We primarily use Gemini-1.5-Pro-002 in this section due to its optimal trade-
off between performance, time, and cost, as discussed in Section 5. We utilize the
same set of 20 processes previously described in Section 5. All results are available at
https://github.com/humam-kourani/EvaluatingLLMsProcessModeling.

6.1 LLM Self-Evaluation

In this section, we explore the potential of self-evaluation by LLMs to enhance the
quality of their outputs within our process modeling framework.

Self-evaluation capitalizes on the reasoning capabilities of LLMs, enabling them
to assess and potentially refine their own outputs. The aim is to reduce errors and
hallucinations, thereby increasing the reliability and accuracy of LLM outputs [44].
Given the inherent non-determinism of LLM outputs, where responses can vary signif-
icantly across different sessions [45], self-evaluation might help in stabilizing outputs
and mitigating variability.

Self-evaluation can be utilized in several ways: providing a quality score to the user
to indicate the LLM’s confidence in its own answers, generating multiple candidate
outputs and selecting the best one, or combining several responses into a single, more
robust output. In our framework, we implement LLM self-evaluation by generating
multiple candidate process models for each process description, and then we instruct
the LLM to assess them based on predefined criteria and select the best model.

6.1.1 Implementation and Experimental Setup

For each process description, we conducted four independent runs, generating four
candidate models (labeled R1 to R4). After generating the four candidate models, we
tasked the LLM with self-evaluating them and selecting the best one. In addition
to Gemini-1.5-Pro-002, we replicated the experiment using Gemini-1.5-Flash-002 to
assess whether the impact of self-evaluation differs between high-performing and lower-
performing LLMs.

We crafted a comprehensive prompt that includes the initial task description, the
specific process description, the four generated candidate models, and a request for the
LLM to self-evaluate these candidates and provide an overall quality score for each.
Additionally, we computed the ground truth quality scores as described in Section 5.1.3

23

https://github.com/humam-kourani/EvaluatingLLMsProcessModeling

Listing 5: Evaluation criteria in the prompt for general self-evaluation.

** Evaluation Criteria :**
- ** Behavior Accuracy :** How accurately does the model capture the intended process
behavior?
- ** Completeness :** Does the model include all necessary activities as described?
- ** Correctness :** Are the control flows (e.g., partial orders , choices , loops)
correctly implemented?

Listing 6: Evaluation criteria in the prompt for conformance-based self-evaluation.

** Evaluation Criteria :**
- ** Fitness :** Evaluate how well the process model can reproduce the behaviors of
the process according to the process description.
- ** Precision :** Evaluate the extent to which the process model exclusively
represents behaviors that are allowed in the process according to the process
description.

Table 4: Impact of LLM self-evaluation on process model quality. Under both sets
of evaluation criteria (general and conformance-based), we report the average qual-
ity scores of the process models before self-evaluation and selection, the number of
instances where the LLM’s selected process models are a subset of the best process
models based on the quality assessment, the number of instances of exact matches,
and the average quality scores of the process models post LLM self-evaluation and
selection.

LLM
Avg. Quality Without Evaluation Subset Exact Avg. Quality
Self-Eval. (R1-R4) Criteria Match Match With Self-Eval.

Gemini-1.5-Pro-002 0.86-0.88
General 15/20 5/20 0.91

Conformance 15/20 7/20 0.91

Gemini-1.5-Flash-002 0.73-0.75
General 4/20 0/20 0.72

Conformance 3/20 0/20 0.72

to validate whether the LLM’s selections align with these scores, thereby verifying the
effectiveness of its self-evaluation capabilities.

Evaluation Criteria

We instructed the LLM to evaluate the generated models based on sets of criteria
to ensure a comprehensive assessment of each candidate model’s quality according to
different perspectives. We created two sets of evaluation criteria: a general set (cf.
Listing 5) and a conformance-based set (cf. Listing 6). The first set of criteria focuses
on broader aspects of model quality, while the second set aligns with the quality
metrics used to compute the ground truth scores.

6.1.2 Results and Discussion

The results of the LLM self-evaluation experiments are summarized in Table 4. It
reports the average quality scores of the process models without self-evaluation, the

24

number of instances where the LLM’s selected process models are a subset of the best
process models based on the quality assessment, the number of instances of exact
matches, and the average quality scores of the process models post LLM self-evaluation
and selection. To account for minor variations in quality scores, we applied a 0.02
buffer when determining the best process models in our match calculations.

For Gemini-1.5-Pro-002, the initial average quality of the candidate process mod-
els ranged between 0.86 and 0.88. After applying self-evaluation and selection, the
average quality increased to 0.91, indicating an overall improvement. However, these
improvements were not consistent across all cases. In 5 out of 20 cases, the LLM’s
selected best models did not align with the selection based on the quality assessment.
Despite these discrepancies, the increase in average quality suggests that the self-
evaluation strategy was generally effective for Gemini-1.5-Pro-002. The LLM’s ability
to select models that improved the overall average quality demonstrates its capacity
to critically assess its outputs.

In contrast, Gemini-1.5-Flash-002 exhibited lower performance. The initial average
quality of its candidate models was between 0.73 and 0.75. After self-evaluation, the
average quality slightly decreased to 0.72. The LLM selected the wrong models in 16
or 17 out of 20 cases, depending on the evaluation criteria used. Although the final
impact on average quality was not high, these results suggest that the self-evaluation
strategy may be disadvantageous for Gemini-1.5-Flash-002.

Regarding the evaluation criteria, the results indicate that there was no significant
difference between using the general evaluation criteria and the conformance-based cri-
teria for both LLMs. The LLMs made similar assessments regardless of the prompted
criteria, suggesting that the choice of evaluation criteria may not significantly influence
the effectiveness of the self-evaluation.

In summary, the effectiveness of employing LLM self-evaluation to select the best
output among multiple candidates appears to be highly dependent on the selection
of the LLM. Our results highlight that this strategy might be more beneficial for
higher-performing models like Gemini-1.5-Pro-002; however, even for such models,
the improvements are not consistent across all cases. Consequently, while LLM self-
evaluation holds potential, the question of whether the potential improvements justify
the additional time and costs remains unresolved, as the performance gains vary
depending on the chosen LLM.

We acknowledge that these findings are limited as we only used two LLMs in our
experiments. It is also important to note that our conclusions cannot be generalized
to broader applications. Given that all candidate process models were generated by
the same LLM, their quality levels are inherently close. We anticipate that LLM self-
evaluation might yield better results when applied to outputs with larger disparities
in quality.

6.2 LLM Self-Optimization of Input

In this section, we investigate the potential of LLMs to enhance the quality of process
models by self-optimizing the input process descriptions. The hypothesis is that by
allowing LLMs to refine and enrich the initial process descriptions, they might produce
higher-quality process models.

25

Listing 7: Prompt for input optimization.

You are provided with a process description. Your task is to optimize this
description to make it richer and more detailed , while ensuring that all additions
are relevant , accurate , and directly related to the original process. The goal is
to make the description more comprehensive and suitable for process modeling
purposes.

Possible areas for enhancement include:
- ** Detail Enhancement :** Add specific details that are missing but crucial for
understanding the process flow.
- ** Clarity Improvement :** Clarify any ambiguous or vague statements to ensure that
the description is clear and understandable.
- ** Explicit Process Constructs :** Rephrase parts of the description to explicitly
incorporate constructs. For example , change ‘X happens in most cases ’ to ‘there
is an exclusive choice between performing X or skipping it ’.

Table 5: Comparison of average quality scores before and after LLM self-improvement
of process descriptions.

Description Length
Avg. Quality Before Avg. Quality After Cases With
Self-Improvement Self-Improvement Increased Quality

Long (Original) 0.87 0.79 6/20
Medium-Length (50-80%) 0.75 0.82 11/20
Short (15-35%) 0.78 0.72 8/20

6.2.1 Implementation and Experimental Setup

For each process description, we created two additional versions: a summarized version
that retains 50-80% of the original description’s length (medium-length version), and
a compact, very high-level version with 15-35% of the original length (short version).
By crafting shorter versions of the process descriptions, we aimed to introduce vary-
ing levels of detail and specificity. The motivation behind this was to give the LLM
more latitude to enhance and clarify the descriptions, potentially leading to improved
process models upon self-optimization.

For each of the three versions (long, medium-length, and short), we instructed
Gemini-1.5-Pro-002 to improve the description using the prompt illustrated in List-
ing 7. This prompt encourages the LLM to focus on enriching the description by
adding relevant details, clarifying ambiguities, and making process constructs explicit,
without introducing unrelated information.

6.2.2 Results and Discussion

We evaluated the quality of the process models generated from both the original and
the LLM-improved process descriptions. A summary of the results is presented in
Table 5.

Contrary to our hypothesis, our investigation reveals that, for our specific applica-
tion and framework, LLM self-optimization of input does not yield consistent benefits
and may even be counterproductive. For the original long descriptions, the average
quality score was 0.87, which decreased to 0.79 after LLM self-optimization, with

26

Listing 8: Prompt for output optimization.

Could you further improve the model? Please critically evaluate the process model
against the initial process description and improve it accordingly **only where
genuinely beneficial **. If you see no significant areas for enhancement , it is
perfectly acceptable to return the same model without any changes.

only 6 out of 20 cases showing improvement. For the medium-length descriptions, the
average score increased from 0.75 to 0.82 post-optimization, with 11 cases showing
improvement and 9 not. For the short descriptions, the average score decreased from
0.78 to 0.72 after self-optimization, with improvements in only 8 cases.

These results suggest that the changes introduced by the LLM during the self-
optimization process did not systematically contribute to better model quality. While
LLMs can generate coherent text, they may lack the specific domain knowledge
required to accurately enrich process descriptions in a way that leads to better process
models.

In conclusion, our findings suggest that relying on LLMs to autonomously
enhance process descriptions without domain-specific guidance or constraints does not
effectively improve the resultant process models.

6.3 LLM Self-Optimization of Output

In this section, we examine the potential of LLMs to enhance the quality of their
outputs by self-optimizing the generated process models. The underlying hypothesis
is that by enabling LLMs to critically evaluate and refine their own outputs, they may
identify and correct flaws, leading to higher-quality process models.

6.3.1 Implementation and Experimental Setup

To investigate this approach, we extended our previous experiments by instructing
the LLMs to perform self-optimization on their initial outputs. Specifically, after gen-
erating the initial process model from the process description, we prompted the LLM
to critically evaluate the model against the initial description and improve it accord-
ingly. The prompt used is shown in Listing 8. To prevent unnecessary alterations that
might degrade the model’s quality, we crafted the prompt with intentional restrictive-
ness, emphasizing that the LLM should only make genuinely beneficial changes and
encouraging it to retain the same model if no areas for improvement are identified.
This approach addresses the tendency of LLMs to respond affirmatively to requests,
even when they may lack the knowledge or capability to perform the task, potentially
leading to unintended hallucinations.

We conducted experiments using three different LLMs: Gemini-1.5-Pro-002,
Gemini-1.5-Flash-002, and GPT-4o. The selection of these models was motivated by
the desire to assess whether self-optimization could yield more significant improve-
ments in less-performing models (Gemini-1.5-Flash-002 and GPT-4o) compared to a
high-performing model (Gemini-1.5-Pro-002).

27

Table 6: Impact of LLM self-optimization of output on model quality.

LLM
Avg. Quality Before Avg. Quality After

Max. Improvement Max. Decline
Self-Improvement Self-Improvement

Gemini-1.5-Pro-002 0.87 0.87 +0.14 -0.04
Gemini-1.5-Flash-002 0.73 0.76 +0.29 -0.08
GPT-4o 0.76 0.81 +0.84 -0.03

For each process in our dataset, we generated the initial process model using each
LLM and then applied the self-optimization prompt. We then evaluated the qual-
ity of the initial and improved models. For this experiment, we disabled the error
refinement loop. Instead, in cases where errors occurred, we repeated the same self-
optimization prompt multiple times until an error-free response was achieved. By
bypassing error-handling loops, we aimed to avoid distracting the LLM with error
correction, which might steer it away from the primary goal of enhancing the already
successfully generated model.

6.3.2 Results and Discussion

The results of the experiment are summarized in Table 6. This table includes, for each
LLM, the average quality scores before and after LLM self-optimization of output, as
well as the maximum improvement and maximum decline observed. We do not report
the numbers of performed iterations, as our focus is on the quality of the models and
error-free responses were obtained in the first iteration in most cases.

The results highlight that while the average improvements may appear modest,
self-optimization of output can yield significant benefits in specific instances. GPT-4o
showed the most substantial benefit, with the highest average quality gain (+0.05)
and an instance of very large improvement (+0.84). Gemini-1.5-Flash-002 also saw
significant enhancements, achieving gains up to +0.29. For Gemini-1.5-Pro-002, the
impact of self-optimization was relatively low, with a slight average increase (+0.005),
reflecting the high quality of its initial outputs. We also note that in some cases, self-
optimization of output led to declines in quality. However, the maximum declines were
relatively smaller compared to the maximum improvements, suggesting that while
there is a risk of degradation, the potential for significant enhancement is greater.

In conclusion, our analysis indicates that allowing LLMs to self-optimize their
outputs can, in general, be beneficial within our framework, especially for models that
initially produce lower-quality outputs. However, there is a risk of quality degradation
and it is crucial to design the prompt carefully to discourage hallucinations.

7 Conclusion

In this paper, we extended our LLM-driven process modeling framework by intro-
ducing a comprehensive benchmark and exploring LLM self-improvement strategies.
Our evaluation of 16 state-of-the-art LLMs revealed substantial performance vari-
ations, with Claude-3.5-Sonnet demonstrating exceptional capabilities in generating

28

high-quality process models efficiently. We found a positive correlation between error-
handling performance and the overall quality of the generated models. Additionally,
our analysis indicated consistent quality trends within similar model families.

The investigation of LLM self-improvement strategies revealed that while self-
evaluation depends heavily on the chosen LLM and input optimization shows limited
reliability, output optimization demonstrates promising potential for enhancing qual-
ity. This underscores the possibility of leveraging LLMs to autonomously refine their
outputs, potentially reducing the need for manual intervention. However, carefully
crafted prompts are crucial to discourage hallucinations.

Our work contributes valuable insights into the application of LLMs for auto-
mated process modeling. The benchmark provides a foundation for comparing LLM
performance in this domain, while the self-improvement analysis identifies promis-
ing avenues for further enhancing LLM-generated process models. Future research
directions include incorporating additional process perspectives beyond control-flow,
exploring direct BPMN generation without intermediate representations, investigating
alternative prompting strategies, and exploring the integration of external knowledge
sources to further enhance the accuracy and reliability of LLM-generated process
models.

References

[1] Rosing, M., White, S., Cummins, F., Man, H.: Business process model and nota-
tion - BPMN. In: Rosing, M., Scheel, H., Scheer, A. (eds.) The Complete Business
Process Handbook: Body of Knowledge from Process Modeling to BPM, Vol-
ume I, pp. 429–453. Morgan Kaufmann/Elsevier, Massachusets, USA (2015).
https://doi.org/10.1016/B978-0-12-799959-3.00021-5

[2] van Hee, K.M., Sidorova, N., van der Werf, J.M.E.M.: Business process modeling
using Petri nets. Trans. Petri Nets Other Model. Concurr. 7, 116–161 (2013)
https://doi.org/10.1007/978-3-642-38143-0 4

[3] OpenAI: GPT-4 technical report. CoRR abs/2303.08774 (2023) https://doi.
org/10.48550/ARXIV.2303.08774 2303.08774

[4] Rohan Anil et al.: Gemini: A family of highly capable multimodal models.
CoRR abs/2312.11805 (2023) https://doi.org/10.48550/ARXIV.2312.11805
2312.11805

[5] Li, J., Tang, T., Zhao, W.X., Wen, J.-R.: Pretrained language model for text gen-
eration: A survey. In: Zhou, Z.-H. (ed.) Proceedings of the Thirtieth International
Joint Conference on Artificial Intelligence, IJCAI-21, pp. 4492–4499. International
Joint Conferences on Artificial Intelligence Organization, California, USA (2021).
https://doi.org/10.24963/ijcai.2021/612 . Survey Track

[6] Vidan, A., Fiedler, L.H.: A composable just-in-time programming framework with
LLMs and FBP. In: IEEE High Performance Extreme Computing Conference,

29

https://doi.org/10.1016/B978-0-12-799959-3.00021-5
https://doi.org/10.1007/978-3-642-38143-0_4
https://doi.org/10.48550/ARXIV.2303.08774
https://doi.org/10.48550/ARXIV.2303.08774
https://arxiv.org/abs/2303.08774
https://doi.org/10.48550/ARXIV.2312.11805
https://arxiv.org/abs/2312.11805
https://doi.org/10.24963/ijcai.2021/612

HPEC 2023, Boston, MA, USA, September 25-29, 2023, pp. 1–8. IEEE, New
York, USA (2023). https://doi.org/10.1109/HPEC58863.2023.10363587

[7] Zhou, Y., Muresanu, A.I., Han, Z., Paster, K., Pitis, S., Chan, H., Ba, J.: Large
language models are human-level prompt engineers. In: The Eleventh Interna-
tional Conference on Learning Representations, ICLR 2023, Kigali, Rwanda, May
1-5, 2023. OpenReview.net, Online (2023)

[8] Kourani, H., Berti, A., Schuster, D., van der Aalst, W.M.P.: Process model-
ing with large language models. In: van der Aa, H., Bork, D., Schmidt, R.,
Sturm, A. (eds.) Enterprise, Business-Process and Information Systems Mod-
eling - 25th International Conference, BPMDS 2024, and 29th International
Conference, EMMSAD 2024, Limassol, Cyprus, June 3-4, 2024, Proceedings. Lec-
ture Notes in Business Information Processing, vol. 511, pp. 229–244. Springer,
Germany (2024). https://doi.org/10.1007/978-3-031-61007-3 18

[9] Kourani, H., van Zelst, S.J.: POWL: partially ordered workflow language. In:
Francescomarino, C.D., Burattin, A., Janiesch, C., Sadiq, S. (eds.) Business
Process Management - 21st International Conference, BPM 2023, Utrecht, The
Netherlands, September 11-15, 2023, Proceedings. Lecture Notes in Computer
Science, vol. 14159, pp. 92–108. Springer, Germany (2023). https://doi.org/10.
1007/978-3-031-41620-0 6

[10] Dunzer, S., Stierle, M., Matzner, M., Baier, S.: Conformance checking: a state-of-
the-art literature review. In: Betz, S. (ed.) Proceedings of the 11th International
Conference on Subject-Oriented Business Process Management, S-BPM ONE
2019, Seville, Spain, June 26-28, 2019, pp. 4–1410. ACM, New York, USA (2019).
https://doi.org/10.1145/3329007.3329014

[11] Bellan, P., Dragoni, M., Ghidini, C.: A qualitative analysis of the state of the
art in process extraction from text. In: Vizzari, G., Palmonari, M., Orlandini, A.
(eds.) Proceedings of the AIxIA 2020 Discussion Papers Workshop Co-located
with the the 19th International Conference of the Italian Association for Artifi-
cial Intelligence (AIxIA2020), Anywhere, November 27th, 2020. CEUR Workshop
Proceedings, vol. 2776, pp. 19–30. CEUR-WS.org, Germany (2020)

[12] A. R. Gonçalves, J.C., Santoro, F.M., Baião, F.A.: Let me tell you a story - on
how to build process models. J. Univers. Comput. Sci. 17(2), 276–295 (2011)
https://doi.org/10.3217/JUCS-017-02-0276

[13] Friedrich, F., Mendling, J., Puhlmann, F.: Process model generation from natu-
ral language text. In: Mouratidis, H., Rolland, C. (eds.) Advanced Information
Systems Engineering - 23rd International Conference, CAiSE 2011, London, UK,
June 20-24, 2011. Proceedings. Lecture Notes in Computer Science, vol. 6741, pp.
482–496. Springer, Germany (2011). https://doi.org/10.1007/978-3-642-21640-4
36

30

https://doi.org/10.1109/HPEC58863.2023.10363587
https://doi.org/10.1007/978-3-031-61007-3_18
https://doi.org/10.1007/978-3-031-41620-0_6
https://doi.org/10.1007/978-3-031-41620-0_6
https://doi.org/10.1145/3329007.3329014
https://doi.org/10.3217/JUCS-017-02-0276
https://doi.org/10.1007/978-3-642-21640-4_36
https://doi.org/10.1007/978-3-642-21640-4_36

[14] Sholiq, S., Sarno, R., Astuti, E.S.: Generating BPMN diagram from textual
requirements. J. King Saud Univ. Comput. Inf. Sci. 34(10 Part B), 10079–10093
(2022) https://doi.org/10.1016/J.JKSUCI.2022.10.007

[15] Ivanchikj, A., Serbout, S., Pautasso, C.: From text to visual BPMN process mod-
els: design and evaluation. In: Syriani, E., Sahraoui, H.A., Lara, J., Abrahão,
S. (eds.) MoDELS ’20: ACM/IEEE 23rd International Conference on Model
Driven Engineering Languages and Systems, Virtual Event, Canada, 18-23 Octo-
ber, 2020, pp. 229–239. ACM, New York, USA (2020). https://doi.org/10.1145/
3365438.3410990

[16] van der Aalst, W.M.P.: Process Mining - Discovery, Conformance and Enhance-
ment of Business Processes. Springer, Germany (2011). https://doi.org/10.1007/
978-3-642-19345-3

[17] Busch, K., Rochlitzer, A., Sola, D., Leopold, H.: Just tell me: Prompt engi-
neering in business process management. In: van der Aa, H., Bork, D., Proper,
H.A., Schmidt, R. (eds.) Enterprise, Business-Process and Information Systems
Modeling - 24th International Conference, BPMDS 2023, and 28th International
Conference, EMMSAD 2023, Zaragoza, Spain, June 12-13, 2023, Proceedings.
Lecture Notes in Business Information Processing, vol. 479, pp. 3–11. Springer,
Germany (2023). https://doi.org/10.1007/978-3-031-34241-7 1

[18] Vidgof, M., Bachhofner, S., Mendling, J.: Large language models for business
process management: Opportunities and challenges. In: Francescomarino, C.D.,
Burattin, A., Janiesch, C., Sadiq, S.W. (eds.) Business Process Management
Forum - BPM 2023 Forum, Utrecht, The Netherlands, September 11-15, 2023,
Proceedings. Lecture Notes in Business Information Processing, vol. 490, pp.
107–123. Springer, Cham (2023). https://doi.org/10.1007/978-3-031-41623-1 7

[19] Norouzifar, A., Kourani, H., Dees, M., van der Aalst, W.M.P.: Bridg-
ing domain knowledge and process discovery using large language models.
CoRR abs/2408.17316 (2024) https://doi.org/10.48550/ARXIV.2408.17316
2408.17316

[20] Kourani, H., Berti, A., Hennrich, J., Kratsch, W., Weidlich, R., Li, C., Arslan,
A., Schuster, D., van der Aalst, W.M.P.: Leveraging large language models for
enhanced process model comprehension. CoRR abs/2408.08892 (2024) https:
//doi.org/10.48550/ARXIV.2408.08892 2408.08892

[21] Chen, S., Liao, H.: Bert-log: Anomaly detection for system logs based on pre-
trained language model. Appl. Artif. Intell. 36(1) (2022) https://doi.org/10.1080/
08839514.2022.2145642

[22] Devlin, J., Chang, M., Lee, K., Toutanova, K.: BERT: pre-training of deep bidi-
rectional transformers for language understanding. In: Burstein, J., Doran, C.,
Solorio, T. (eds.) Proceedings of the 2019 Conference of the North American

31

https://doi.org/10.1016/J.JKSUCI.2022.10.007
https://doi.org/10.1145/3365438.3410990
https://doi.org/10.1145/3365438.3410990
https://doi.org/10.1007/978-3-642-19345-3
https://doi.org/10.1007/978-3-642-19345-3
https://doi.org/10.1007/978-3-031-34241-7_1
https://doi.org/10.1007/978-3-031-41623-1_7
https://doi.org/10.48550/ARXIV.2408.17316
https://arxiv.org/abs/2408.17316
https://doi.org/10.48550/ARXIV.2408.08892
https://doi.org/10.48550/ARXIV.2408.08892
https://arxiv.org/abs/2408.08892
https://doi.org/10.1080/08839514.2022.2145642
https://doi.org/10.1080/08839514.2022.2145642

Chapter of the Association for Computational Linguistics: Human Language
Technologies, NAACL-HLT 2019, Minneapolis, MN, USA, June 2-7, 2019, Vol-
ume 1 (Long and Short Papers), pp. 4171–4186. Association for Computational
Linguistics, Pennsylvania, USA (2019). https://doi.org/10.18653/V1/N19-1423

[23] Muff, F., Fill, H.-G.: Limitations of ChatGPT in Conceptual Modeling: Insights
from Experiments in Metamodeling. Gesellschaft für Informatik e.V. (2024).
https://doi.org/https://dl.gi.de/handle/20.500.12116/43782

[24] Klievtsova, N., Benzin, J., Kampik, T., Mangler, J., Rinderle-Ma, S.: Conver-
sational process modelling: State of the art, applications, and implications in
practice. In: Francescomarino, C.D., Burattin, A., Janiesch, C., Sadiq, S.W.
(eds.) Business Process Management Forum - BPM 2023 Forum, Utrecht, The
Netherlands, September 11-15, 2023, Proceedings. Lecture Notes in Business
Information Processing, vol. 490, pp. 319–336. Springer, Cham (2023). https:
//doi.org/10.1007/978-3-031-41623-1 19

[25] Ziche, C., Apruzzese, G.: LLM4PM: A case study on using large language models
for process modeling in enterprise organizations. CoRR abs/2407.17478 (2024)
https://doi.org/10.48550/ARXIV.2407.17478 2407.17478

[26] Fontenla-Seco, Y., Winkler, S., Gianola, A., Montali, M., Peńın, M.L., Diz, A.J.B.:
The droid you’re looking for: C-4pm, a conversational agent for declarative pro-
cess mining. In: Fahland, D., Jiménez-Ramı́rez, A., Kumar, A., Mendling, J.,
Pentland, B.T., Rinderle-Ma, S., Slaats, T., Versendaal, J., Weber, B., Weske, M.,
Winter, K. (eds.) Proceedings of the Best Dissertation Award, Doctoral Consor-
tium, and Demonstration & Resources Forum at BPM 2023 Co-located with 21st
International Conference on Business Process Management (BPM 2023), Utrecht,
The Netherlands, September 11th to 15th, 2023. CEUR Workshop Proceedings,
vol. 3469, pp. 112–116. CEUR-WS.org, Germany (2023)

[27] Grohs, M., Abb, L., Elsayed, N., Rehse, J.: Large language models can accomplish
business process management tasks. In: Weerdt, J.D., Pufahl, L. (eds.) Business
Process Management Workshops - BPM 2023 International Workshops, Utrecht,
The Netherlands, September 11-15, 2023, Revised Selected Papers. Lecture Notes
in Business Information Processing, vol. 492, pp. 453–465. Springer, Germany
(2023)

[28] Fill, H., Fettke, P., Köpke, J.: Conceptual modeling and large language mod-
els: Impressions from first experiments with ChatGPT. Enterp. Model. Inf. Syst.
Archit. Int. J. Concept. Model. 18, 3 (2023) https://doi.org/10.18417/EMISA.
18.3

[29] Berti, A., Kourani, H., van der Aalst, W.M.P.: PM-LLM-Benchmark: Evaluating
large language models on process mining tasks. CoRR abs/2407.13244 (2024)
https://doi.org/10.48550/ARXIV.2407.13244 2407.13244

32

https://doi.org/10.18653/V1/N19-1423
https://doi.org/https://dl.gi.de/handle/20.500.12116/43782
https://doi.org/10.1007/978-3-031-41623-1_19
https://doi.org/10.1007/978-3-031-41623-1_19
https://doi.org/10.48550/ARXIV.2407.17478
https://arxiv.org/abs/2407.17478
https://doi.org/10.18417/EMISA.18.3
https://doi.org/10.18417/EMISA.18.3
https://doi.org/10.48550/ARXIV.2407.13244
https://arxiv.org/abs/2407.13244

[30] Fournier, F., Limonad, L., Skarbovsky, I.: Towards a Benchmark for Causal
Business Process Reasoning with LLMs (2024)

[31] Fahland, D., Fournier, F., Limonad, L., Skarbovsky, I., Swevels, A.J.E.: How well
can large language models explain business processes? (2024)

[32] Rebmann, A., Schmidt, F.D., Glavas, G., van der Aa, H.: Evaluating the abil-
ity of llms to solve semantics-aware process mining tasks. In: 6th International
Conference on Process Mining, ICPM 2024, Kgs. Lyngby, Denmark, October
14-18, 2024, pp. 9–16. IEEE, New York, USA (2024). https://doi.org/10.1109/
ICPM63005.2024.10680677

[33] Kourani, H., Schuster, D., van der Aalst, W.M.P.: Scalable discovery of partially
ordered workflow models with formal guarantees. In: 5th International Confer-
ence on Process Mining, ICPM 2023, Rome, Italy, October 23-27, 2023, pp.
89–96. IEEE, New York, USA (2023). https://doi.org/10.1109/ICPM60904.2023.
10271941

[34] Leemans, S.J.J.: Robust Process Mining with Guarantees - Process Discovery,
Conformance Checking and Enhancement. Lecture Notes in Business Informa-
tion Processing, vol. 440. Springer, Germany (2022). https://doi.org/10.1007/
978-3-030-96655-3

[35] Xu, B., Yang, A., Lin, J., Wang, Q., Zhou, C., Zhang, Y., Mao, Z.: Expert-
prompting: Instructing large language models to be distinguished experts.
CoRR abs/2305.14688 (2023) https://doi.org/10.48550/ARXIV.2305.14688
2305.14688

[36] Martino, A., Iannelli, M., Truong, C.: Knowledge injection to counter large lan-
guage model (LLM) hallucination. In: Pesquita, C., Skaf-Molli, H., Efthymiou,
V., Kirrane, S., Ngonga, A., Collarana, D., Cerqueira, R., Alam, M., Trojahn,
C., Hertling, S. (eds.) The Semantic Web: ESWC 2023 Satellite Events - Her-
sonissos, Crete, Greece, May 28 - June 1, 2023, Proceedings. Lecture Notes in
Computer Science, vol. 13998, pp. 182–185. Springer, Germany (2023). https:
//doi.org/10.1007/978-3-031-43458-7 34

[37] Tom B. Brown et al.: Language models are few-shot learners. In: Larochelle,
H., Ranzato, M., Hadsell, R., Balcan, M., Lin, H. (eds.) Advances in Neural
Information Processing Systems 33: Annual Conference on Neural Information
Processing Systems 2020, NeurIPS 2020, December 6-12, 2020, Virtual (2020)

[38] Bellan, P., van der Aa, H., Dragoni, M., Ghidini, C., Ponzetto, S.P.: PET: an
annotated dataset for process extraction from natural language text tasks. In:
Cabanillas, C., Garmann-Johnsen, N.F., Koschmider, A. (eds.) Business Pro-
cess Management Workshops - BPM 2022 International Workshops, Münster,
Germany, September 11-16, 2022, Revised Selected Papers. Lecture Notes in Busi-
ness Information Processing, vol. 460, pp. 315–321. Springer, Germany (2022).

33

https://doi.org/10.1109/ICPM63005.2024.10680677
https://doi.org/10.1109/ICPM63005.2024.10680677
https://doi.org/10.1109/ICPM60904.2023.10271941
https://doi.org/10.1109/ICPM60904.2023.10271941
https://doi.org/10.1007/978-3-030-96655-3
https://doi.org/10.1007/978-3-030-96655-3
https://doi.org/10.48550/ARXIV.2305.14688
https://arxiv.org/abs/2305.14688
https://doi.org/10.1007/978-3-031-43458-7_34
https://doi.org/10.1007/978-3-031-43458-7_34

https://doi.org/10.1007/978-3-031-25383-6 23

[39] Miyake, D., Iohara, A., Saito, Y., Tanaka, T.: Negative-prompt inver-
sion: Fast image inversion for editing with text-guided diffusion models.
CoRR abs/2305.16807 (2023) https://doi.org/10.48550/ARXIV.2305.16807
2305.16807

[40] Kourani, H., Berti, A., Schuster, D., van der Aalst, W.M.P.: ProMoAI: Process
modeling with generative AI. In: Proceedings of the Thirty-Third International
Joint Conference on Artificial Intelligence, IJCAI 2024, Jeju, South Korea, August
3-9, 2024, pp. 8708–8712. ijcai.org, California (2024). https://doi.org/10.24963/
ijcai.2024/1014

[41] Berti, A., van der Aalst, W.M.P.: Reviving token-based replay: Increasing speed
while improving diagnostics. In: van der Aalst, W.M.P., Bergenthum, R., Car-
mona, J. (eds.) Proceedings of the International Workshop on Algorithms &
Theories for the Analysis of Event Data, Satellite Event of Petri Nets 2019 and
ACSD 2019. CEURWorkshop Proceedings, vol. 2371, pp. 87–103. CEUR-WS.org,
Germany (2019)

[42] Munoz-Gama, J., Carmona, J.: A fresh look at precision in process confor-
mance. In: Hull, R., Mendling, J., Tai, S. (eds.) BPM 2010. Proceedings. LNCS,
vol. 6336, pp. 211–226. Springer, Germany (2010). https://doi.org/10.1007/
978-3-642-15618-2 16

[43] Berti, A., van Zelst, S.J., Schuster, D.: PM4Py: A process mining library for
Python. Softw. Impacts 17, 100556 (2023) https://doi.org/10.1016/J.SIMPA.
2023.100556

[44] Zhang, X., Peng, B., Tian, Y., Zhou, J., Jin, L., Song, L., Mi, H., Meng, H.: Self-
alignment for factuality: Mitigating hallucinations in llms via self-evaluation. In:
Ku, L., Martins, A., Srikumar, V. (eds.) Proceedings of the 62nd Annual Meeting
of the Association for Computational Linguistics (Volume 1: Long Papers), ACL
2024, Bangkok, Thailand, August 11-16, 2024, pp. 1946–1965. Association for
Computational Linguistics, Pennsylvania, USA (2024)

[45] Song, Y., Wang, G., Li, S., Lin, B.Y.: The good, the bad, and the greedy: Evalu-
ation of llms should not ignore non-determinism. CoRR abs/2407.10457 (2024)
https://doi.org/10.48550/ARXIV.2407.10457 2407.10457

34

https://doi.org/10.1007/978-3-031-25383-6_23
https://doi.org/10.48550/ARXIV.2305.16807
https://arxiv.org/abs/2305.16807
https://doi.org/10.24963/ijcai.2024/1014
https://doi.org/10.24963/ijcai.2024/1014
https://doi.org/10.1007/978-3-642-15618-2_16
https://doi.org/10.1007/978-3-642-15618-2_16
https://doi.org/10.1016/J.SIMPA.2023.100556
https://doi.org/10.1016/J.SIMPA.2023.100556
https://doi.org/10.48550/ARXIV.2407.10457
https://arxiv.org/abs/2407.10457

	Introduction
	Related Work
	LLM-Based Process Modeling Framework
	Framework Overview
	Process Representation
	Prompt Engineering
	Model Generation and Refinement
	Refinement Loop

	Error Handling
	Limitations

	Tool Support
	Benchmarking State-of-the-Art Large Language Models
	Experimental Setup and Design
	Selection of Large Language Models
	Design of Processes
	Assessment of Generated Models
	Simulation of Event Logs
	Standardizing Activity Labels
	Quality Score Computation

	Error Handling Settings

	Results and Analysis
	Error Handling Performance
	Quality of the Generated Models
	Time Efficiency
	Summary of Results

	Evaluating LLM Self-Improvement Strategies
	LLM Self-Evaluation
	Implementation and Experimental Setup
	Evaluation Criteria

	Results and Discussion

	LLM Self-Optimization of Input
	Implementation and Experimental Setup
	Results and Discussion

	LLM Self-Optimization of Output
	Implementation and Experimental Setup
	Results and Discussion

	Conclusion

