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Abstract. Information technology has changed business processes within and
between enterprises. More and more work processes are being conducted under
the supervision of information systems that are driven by process models. Ex-
amples are workflow management systems such as Staffware, enterprise resource
planning systems such as SAP and Baan, but also include many domain specific
systems. It is hard to imagine enterprise information systems that are unaware of
the processes taking place. Although the topic of business process management
using information technology has been addressed by consultants and software
developers in depth, a more fundamental approach has been missing. Only since
the nineties, researchers started to work on the foundations of business process
management systems. This paper addresses some of the scientific challenges in
business process management. In the spirit of Hilbert’s problems1, 10 interesting
problems for people working on Petri-net theory are posed.

1 Introduction

The goal of this paper is to show the relevance, architecture, and Achilles heel of busi-
ness process management systems. This way we hope to interest Petri-net researchers
in some of the scientific challenges in this domain. The definition of a business process
management system used throughout this paper is: a generic software system that is
driven by explicit process designs to enact and manage operational business processes.
The system should be process-aware and generic in the sense that it is possible to mod-
ify the processes it supports. The process designs are often graphical and the focus is
on structured processes that need to handle many cases.

In the remainder of this paper, we will first put business process management and
related technology in its historical context. Then, we will discuss models for process
design. Since business process management systems are driven by explicit models, it
is important to use the right techniques. Next, we will discuss techniques for the anal-
ysis of process models. We will argue that it is vital to have techniques to assert the
correctness of workflow designs. Based on this we will focus on systems for process

? Part of paper is taken from my inaugural lecture “Making Work Flow: On the Design, Analysis,
and Enactment of Business Processes” [6].

1 Note that by no means we are suggesting that the problems in this paper are of the same stature
as the 23 problems raised by David Hilbert in 1900.



enactment, i.e., systems that actually make the “work flow” based on a model of the
processes and organizations involved. Finally, we will pose 10 interesting problems in
the spirit of Hilbert’s problems [31].

2 Business process management from a historical perspective

Only the wisest and stupidest of men never change.
Confucius

To show the relevance of business process management systems, it is interesting to put
them in a historical perspective. Consider Figure 1, which shows some of the ongo-
ing trends in information systems. This figure shows that today’s information systems
consist of a number of layers. The center is formed by the operating system, i.e., the
software that makes the hardware work. The second layer consists of generic appli-
cations that can be used in a wide range of enterprises. Moreover, these applications
are typically used within multiple departments within the same enterprise. Examples
of such generic applications are a database management system, a text editor, and a
spreadsheet program. The third layer consists of domain specific applications. These
applications are only used within specific types of enterprises and departments. Exam-
ples are decision support systems for vehicle routing, call center software, and human
resource management software. The fourth layer consists of tailor-made applications.
These applications are developed for specific organizations.

In the sixties the second and third layer were missing. Information systems were
built on top of a small operating system with limited functionality. Since no generic nor
domain specific software was available, these systems mainly consisted of tailor-made
applications. Since then, the second and third layer have developed and the ongoing
trend is that the four circles are increasing in size, i.e., they are moving to the out-
side while absorbing new functionality. Today’s operating systems offer much more
functionality. Database management systems that reside in the second layer offer func-
tionality which used to be in tailor-made applications. As a result of this trend, the
emphasis shifted from programming to assembling of complex software systems. The
challenge no longer is the coding of individual modules but orchestrating and gluing
together pieces of software from each of the four layers.

Another trend is the shift from data to processes. The seventies and eighties were
dominated by data-driven approaches. The focus of information technology was on
storing and retrieving information and as a result data modeling was the starting point
for building an information system. The modeling of business processes was often ne-
glected and processes had to adapt to information technology. Management trends such
as business process reengineering illustrate the increased emphasis on processes. As a
result, system engineers are resorting to a more process driven approach.

The last trend we would like to mention is the shift from carefully planned designs
to redesign and organic growth. Due to the omnipresence of the Internet and its stan-
dards, information systems change on-the-fly. As a result, fewer systems are built from
scratch. In many cases existing applications are partly used in the new system. Although
component-based software development still has it problems, the goal is clear and it is
easy to see that software development has become more dynamic.
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Fig. 1. Trends relevant for business process management.

The trends shown in Figure 1 provide a historical context for business process man-
agement systems. Business process management systems are either separate applica-
tions residing in the second layer or are integrated components in the domain specific
applications, i.e., the third layer. Notable examples of business process management
systems residing in the second layer are workflow management systems [33, 36] such
as Staffware, MQSeries, and COSA, and case handling systems such as FLOWer. Note
that leading enterprise resource planning systems populating the third layer also offer a
workflow management module. The workflow engines of SAP, Baan, PeopleSoft, Or-
acle, and JD Edwards can be considered as integrated business process management
systems. The idea to isolate the management of business processes in a separate com-
ponent is consistent with the three trends identified. Business process management sys-
tems can be used to avoid hard-coding the work processes into tailor-made applications
and thus support the shift from programming to assembling. Moreover, process ori-
entation, redesign, and organic growth are supported. For example, today’s workflow
management systems can be used to integrate existing applications and support process
change by merely changing the workflow diagram. Give these observations, we hope
to have demonstrated the practical relevance of business process management systems.
In the remainder of this paper we will focus more on the scientific importance of these



systems. Moreover, for clarity we will often restrict the discussion to clear cut business
process management systems such as workflow management systems.

An interesting starting point from a scientific perspective is the early work on office
information systems. In the seventies, people like Skip Ellis [24], Anatol Holt [32], and
Michael Zisman [46] already worked on so-called office information systems, which
were driven by explicit process models. It is interesting to see that the three pioneers
in this area independently used Petri-net variants to model office procedures. During
the seventies and eighties there was great optimism about the applicability of office
information systems. Unfortunately, few applications succeeded. As a result of these
experiences, both the application of this technology and research almost stopped for a
decade. Consequently, hardly any advances were made in the eighties. In the nineties,
there again was a huge interest in these systems. The number of workflow management
systems developed in the past decade and the many papers on workflow technology
illustrate the revival of office information systems. Today workflow management sys-
tems are readily available [36]. However, their application is still limited to specific
industries such as banking and insurance. As was indicated by Skip Ellis it is important
to learn from these ups and downs [26]. The failures in the eighties can be explained
by both technical and conceptual problems. In the eighties, networks were slow or not
present at all, there were no suitable graphical interfaces, and proper development soft-
ware was missing. However, there were also more fundamental problems: a unified way
of modeling processes was missing and the systems were too rigid to be used by people
in the workplace. Most of the technical problems have been resolved by now. However,
the more conceptual problems remain. Good standards for business process modeling
are still missing and even today’s workflow management systems enforce unnecessary
constrains on the process logic (e.g., processes are made more sequential).

WHIRLWIND (1953)

Architecture:  32 bit word length, duplex
CPU, 75kips single address, no interrupts,
4 index registers, real time clock
Memory:  magnetic core (4Kx64word) 6
microseconds cycle time; magnetic drum
(150K word); 4 IBM Model 729 tape drives
(~100K word each); parity checking
I/O:   CRT display, keyboard, light gun, real
time serial data (teletype 1300bps modem),
voice line
Size:  60,000 vacuum tubes, 175,000
diodes, 13,000 transistors; CPU space
50x150 feet each; CPU weight 500,000 lbs;
power consumption: 3 megawatts

Fig. 2. The Whirlwind - photo from the Timeline of Events on Computer History ( c©2001 IEEE).



One of the great challenges of business process management systems is to offer both
support and flexibility [9, 14, 35]. Today’s systems typically are too rigid, thus forcing
people to work around the system. One of the problems is that software developers
and computer scientists are typically inspired by processes inside a computer system
rather than processes outside a computer. Figure 2 illustrates the typical mind-frame of
people developing business process management systems. This photograph shows the
Whirlwind computer, which was the first computer system to have magnetic core mem-
ory (1953). It is interesting to mention that Whirlwind was developed by Jay Forrester
who also developed the well-known Systems Dynamics approach [27]. Software engi-
neers are typically trained in the architecture and systems software of computers like
the Whirlwind and its successors. As a result, these engineers think in terms of control
systems rather than support systems. This explains that few of the existing workflow
management systems allow for the so-called implicit choice, i.e., a choice resolved by
the environment rather than the system [13]. To solve these problems, the typical mind-
frame should be changed such that the business process management system is viewed
as a reactive system rather than merely a control system.

To summarize we state that, although the relevance of business process manage-
ment systems is undisputed, many fundamental problems remain to be solved. In the
remainder of this paper we will try to shed light on some of these problems.

3 Models for process design

A camel is a horse designed by committee.
Sir Alec Issigonis

Business process management systems are driven by models of processes and organiza-
tions. By changing these models, the behavior of the system adapts to its environment
and changing requirements. These models cover different perspectives. Figure 3 shows
some of the perspectives relevant for business process management systems [33]. The
process perspective describes the control-flow, i.e., the ordering of tasks. The informa-
tion perspective describes the data that are used. The resource perspective describes
the structure of the organization and identifies resources, roles, and groups. The task
perspective describes the content of individual steps in the processes. Each perspec-
tive is relevant. However, the process perspective is dominant for the type of systems
addressed in this talk.

Many techniques have been proposed to model the process perspective. Some of
these techniques are informal in the sense that the diagrams used have no formally de-
fined semantics. These models are typically very intuitive and the interpretation shifts
depending on the modeler, application domain, and characteristics of the business pro-
cesses at hand. Examples of informal techniques are ISAC, DFD, SADT, and IDEF.
These techniques may serve well for discussing work processes. However, they are in-
adequate for directly driving information systems since they are incomplete and subject
to multiple interpretations. Therefore, more precise ways of modeling are required.

Figure 4 shows an example of an order handling process modeled in terms of a
so-called workflow net [1]. Workflow nets are based on the classical Petri-net model
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invented by Carl Adam Petri in the early sixties [39]. The squares are the active parts of
the model and correspond to tasks. The circles are the passive parts of the model and are
used to represent states. In the classical Petri net, the squares are named transitions and
the circles places. A workflow net models the life-cycle of one case. Examples of cases
are insurance claims, tax declarations, and traffic violations. Cases are represented by
tokens and in this case the token in start corresponds to an order. Task register is a so-
called AND-split and is enabled in the state shown. The arrow indicates that this task
requires human intervention. If a person executes this task, the token is removed from
place start and two tokens are produced: one for c1 and one for c2. Then, in parallel,
two tasks are enabled: check availability and send bill. Depending on the eagerness of
the workers executing these two tasks either check available or send bill is executed
first. Suppose check availability is executed first. If the ordered goods are available,
they can be shipped by executing task ship goods. If they are not available, either a



replenishment order is issued or not. Note that check availability is an OR-split and
produces one token for c3, c4, or c5. Suppose that not all ordered goods are available,
but the appropriate replenishment orders were already issued. A token is produced for
c3 and task update becomes enabled. Suppose that at this point in time task send bill
is executed, resulting in the state with a token in c3 and c6. The token in c6 is input
for two tasks. However, only one of these tasks can be executed and in this state only
receive payment is enabled. Task receive payment can be executed the moment the pay-
ment is received. Task reminder is an AND-join/AND-split and is blocked until the bill
is sent and the goods have been shipped. Note that the reminder is sent after a specified
period as indicated by the clock symbol. However, it is only possible to send a remain-
der if the goods have been actually shipped. Assume that in the state with a token in
c3 and c6 task update is executed. This task does not require human involvement and
is triggered by a message of the warehouse indicating that relevant goods have arrived.
Again check availability is enabled. Suppose that this task is executed and the result
is positive. In the resulting state ship goods can be executed. Now there is a token in
c6 and c7 thus enabling task reminder. Executing task reminder again enables the task
send bill. A new copy of the bill is sent with the appropriate text. It is possible to send
several reminders by alternating reminder and send bill. However, let us assume that
after the first loop the customer pays resulting in a state with a token in c7 and c8. In
this state, the AND-join archive is enabled and executing this task results in the final
state with a token in end.

This very simple workflow net shows some of the routing constructs relevant for
business process modeling. Sequential, parallel, conditional, and iterative routing are
present in this model. There also are more advanced constructs such as the choice be-
tween receive payment and reminder. This is a so-called implicit choice since it is not
resolved by the system but by the environment of the system. The moment the bill is
sent, it is undetermined whether receive payment or reminder will be the next step in
the process. Another advanced construct is the fact that task reminder is blocked until
the goods have been shipped. The latter construct is a so-called milestone. The reason
that we point out both constructs is that many systems have problems supporting these
rather fundamental process patterns [13].

Workflow nets have clear semantics. The fact that we are able to play the so-called
token game using a minimal set of rules shows the fact that these models are executable.
None of the informal informal techniques mentioned before (i.e., ISAC, DFD, SADT,
and IDEF) have formal semantics. Besides workflow nets there are many other formal
techniques. Examples are the many variants of process algebra [17] and statecharts [29].
The reason we prefer to use a variant of Petri nets is threefold [1]:

– Petri nets are graphical and yet precise.
– Petri nets offer an abundance of analysis techniques.
– Petri nets treat states as first-class citizens.

The latter point deserves some more explanation. Many techniques for business process
modeling focus exclusively on the active parts of the process, i.e., the tasks. This is
rather surprising since in many administrative processes the actual processing time is
measured in minutes and the flow time is measured in days. This means that most of



the time cases are in-between two subsequent tasks. Therefore, it is vital to model these
states explicitly.

In recent years, the Unified Modeling Language (UML, [20]) has become the de
facto standard for software development. UML has four diagrams for process modeling.
UML supports variants of statecharts and its activity diagrams are inspired by Petri nets.
UML combines both good and bad ideas and can be considered semi-formal. Many
colleagues are trying to provide solid semantics for UML. In my opinion, it would have
been better to start with a solid foundation.

4 Techniques for process analysis

From the errors of others, a wise man corrects his own.
Syrus

Business process management systems allow organizations to change their processes
by merely changing the models. The models are typically graphical and can be changed
quite easily. This provides more flexibility than conventional information systems. How-
ever, by reducing the threshold for change, errors are introduced more easily. Therefore,
it is important to develop suitable analysis techniques. However, it is not sufficient to
just develop these techniques. It is as least as important to look at methods and tools to
make them applicable in a practical context.

Traditionally, most techniques used for the analysis of business processes, originate
from operations research. All students taking courses in operations management will
learn to apply techniques such as simulation, queueing theory, and Markovian analysis.
The focus mainly is on performance analysis and less attention is paid to the correct-
ness of models. Verification and validation are often neglected. As a result, systems fail
by not providing the right support or even break down [2, 42]. Verification is needed
to check whether the resulting system is free of logical errors. Many process designs
suffer from deadlocks and livelocks that could have been detected using verification
techniques. Validation is needed to check whether the system actually behaves as ex-
pected. Note that validation is context dependent while verification is not. A system that
deadlocks is not correct in any situation. Therefore, verifying whether a system exhibits
deadlocks is context independent. Validation is context dependent and can only be done
with knowledge of the intended business process.

To illustrate the relevance of validation and verification and to demonstrate some
of the techniques available, we return to the workflow net shown in Figure 4. This
workflow process allows for the situation where a replenishment is issued before any
payment is received. Suppose that we want to change the design such that replenish-
ments are delayed until receiving payment. An obvious way to model this is to connect
task receive payment with replenish using an additional place c9 as shown in Figure 5.
Although this extension seems to be correct at first glance, the resulting workflow net
has several errors. The workflow will deadlock if a second replenishment is needed and
something is left behind in the process if no replenishments are needed. These are logi-
cal errors that can be detected without any knowledge of the order handling process. For
verification, application independent notions of correctness are needed. One of these no-
tions is the so-called soundness property [1]. A workflow net is sound if and only if the
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Fig. 5. An incorrect WF-net.

workflow contains no dead parts (i.e., tasks that can never be executed), from any reach-
able state it is always possible to terminate, and the moment the workflow terminates all
places except the sink place (i.e., place end) are empty. Note that soundness rules out
logical errors such as deadlocks and livelocks. The notion of soundness is applicable
to any workflow language. An interesting observation is that soundness corresponds to
liveness and boundedness of the short-circuited net [1]. The latter properties have been
studied extensively [41, 23]. As a result, powerful analysis techniques and tools can be
applied to verify the correctness of a workflow design. Practical experience shows that
many errors can be detected by verifying the soundness property. Moreover, Petri-net
theory can also be applied to guide the designer towards the error.

Soundness does not guarantee that the workflow net behaves as intended. Consider
for example, the workflow net shown in Figure 6. Compared to the original model,
the shipment of goods is skipped if some of the goods are not available. Again this
may seem to be a good idea at first glance. However, customers are expected to pay
even if the goods are never delivered. In other words, task receive payment needs to
be executed although task ship goods may never be executed. The latter error can only
be detected using knowledge about the context. Based on this context one may decide
whether this is acceptable or not. Few analysis techniques exist to automatically sup-
port this kind of validation. The only means of validation offered by today’s workflow
management systems is gaming and simulation.

An interesting technique to support validation is inheritance of dynamic behavior.
Inheritance can be used as a technique to compare processes. Inheritance relates sub-
classes with superclasses [19]. A workflow net is a subclass of a superclass workflow net
if certain dynamic properties are preserved. A subclass typically contains more tasks. If
by hiding and/or blocking tasks in the subclass one obtains the superclass, the subclass
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inherits the dynamics of the superclass.2 The superclass can be used to specify the min-
imal properties the workflow design should satisfy. By merely checking whether the ac-
tual design is a subclass of the superclass, one can validate the essential properties. Con-
sider for example Figure 7. This workflow net describes the minimal requirements the
order handling process should satisfy. The tasks register, ship goods, receive payment,
and archive are mandatory. Tasks ship goods and receive payment may be executed in
parallel but should be preceded by register and followed by archive. The original order
handling process shown in Figure 4 is a subclass of this superclass. Therefore, the min-
imal requirements are satisfied. However, the order handling process shown in Figure 6
is not a subclass. The fact that task ship goods can be skipped demonstrates that not all
properties are preserved.

start register

receive_payment

archive

ship_goods

end

c1

c2

c3

c4

Fig. 7. A superclass WF-net.

2 We have identified four notions of inheritance. In this paper, we only refer to life-cycle inheri-
tance.



Inheritance of dynamic behavior is a very powerful concept that has many appli-
cations. Inheritance-preserving transformation rules and transfer rules offer support at
design-time and at run-time [8]. Subclass-superclass relationships also can be used to
enforce correct processes in an E-commerce setting. If business partners only execute
subclass processes of some common contract process, then the overall workflow will
be executed as agreed. It should be noted that workflows crossing the borders of orga-
nizations are particularly challenging from a verification and validation point of view
[4]. Errors resulting from miscommunication between business partners are highly dis-
ruptive and costly. Therefore, it is important to develop techniques and tools for the
verification and validation of these processes.

Fig. 8. A screenshot showing the verification and validation capabilities of Woflan.

Few tools aiming at the verification of workflow processes exist. Woflan [43] and
Flowmake [42] are two notable exceptions. We have been working on Woflan since
1997. Figure 8 shows a screenshot of Woflan. Woflan combines state-of-the-art scien-
tific results with practical applications [3, 11, 43, 45]. Woflan can interface with leading
workflow management systems such as Staffware and COSA. It can also interface with
BPR-tools such as Protos. Workflow processes designed using any of these tools can be
verified for correctness. It turns out that the challenge is not to decide whether the de-
sign is sound or not. The real challenge is to provide diagnostic information that guides
the designer to the error. Woflan also supports the inheritance notions mentioned be-
fore. Given two workflow designs, Woflan is able to decide whether one is a subclass of
the other. Tools such as Woflan illustrate the benefits of a more fundamental approach.



Large scale experiments with experienced students show that workflow designers fre-
quently make errors and that these design errors can be detected using Woflan [43].

5 Systems for process enactment

If the automobile had followed the same development cycle as the computer, a
Rolls-Royce would today cost $100, get one million miles to the gallon, and

explode once a year, killing everyone inside.
Robert Cringely

Progress in computer hardware has been incredible. In 1964 Gordon Moore, predicted
that the number of elements on a produced chip would double every 18 months. 3 Up un-
til now, Moore’s law still applies. Information technology has also resulted in a spectac-
ular growth of the information being gathered. The commonly used term “information
overload” illustrates this growth. It is estimated that for each individual, i.e., child, man,
and woman, 250 megabytes of data are gathered each year [37]. The Internet and the
World-Wide-Web have made an abundance of information available at low costs. How-
ever, despite the apparent progress in computer hardware and information processing,
many information systems leave much to be desired. Typically, software contains er-
rors and people need to work around the system to get things done. These observations
justify the use of solid models and analysis techniques, as discussed before.

Thus far, the focus of this paper has been on the design and analysis of work pro-
cesses. Now it is time to focus on the systems to enact these work processes. Figure 9
shows the typical architecture of a business process management system. The designer
uses the design tools to create models describing the processes and the structure of the
organization. The manager uses management tools to monitor the flow of work and act
if necessary. The worker interacts with the enactment service. The enactment service
can offer work to workers and workers can search, select and perform work. To support
the execution of tasks, the enactment service may launch various kinds of applications.
Note that the enactment service is the core of the system deciding on “what”, “how”,
“when”, and “by whom”. Clearly, the enactment service is driven by models of the pro-
cesses and the organizations. By merely changing these models the system evolves and
adapts. This is the ultimate promise of business process management systems.

Today’s workflow management systems have an architecture consistent with Fig-
ure 9. Consider, for example, the screenshots of Staffware shown in Figure 10. Staffware
is one of the leading workflow management systems. The top window shows the design
tool of Staffware while defining a simple workflow process. Work is offered through so-
called work queues. One worker can have multiple work queues and one work queue
can be shared among multiple workers. The window in the middle shows the set of
available work queues (left) and the content of one of these work queues (right). The

3 Moore (founder of Intel), commenting on the growth of the microelectronics industry in 1964,
noted a doubling of the number of elements on a produced chip once every 12 months. For
a decade that meant a growth factor of approximately 1000. Today, when Moore’s Law is
quoted, the time constant typically quoted is 18 months. However, some argue that a constant
of 24 months is more appropriate.
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Fig. 9. The architecture of a business process management system.

bottom window shows an audit trail of a case. The three windows show only some of
the capabilities offered by contemporary workflow management systems. It is fairly
straightforward to map these windows onto the architecture. In other processes-aware
information systems such as enterprise resource planning systems, one will find the
architecture shown in Figure 9 embedded in a larger architecture.

Despite the acceptance of process-aware information systems, the current genera-
tion of products leaves much to be desired. In the next section we will highlight some
of the challenging problems in this domain.

6 Challenging problems

A scientific truth does not triumph by convincing its opponents and making
them see the light, but rather because its opponents eventually die and a new

generation grows up that is familiar with it.
Maxwell Planck

In 1900 David Hilbert gave a lecture before the International Congress of Mathemati-
cians in Paris. In this lecture he gave gave a massive homework assignment to all the
mathematicians of the world in the form of 23 problems [31]. These problems became
the backbone for mathematical research in the 20th century. Most of the problems have
been partially solved; some have been restated and the new interpretations have been
solved. By merely formulating a number of problems, Hilbert directed research efforts
towards the problems he thought to be relevant. In this paper, we are trying to direct the
attention of researchers to 10 Petri-net-related problems relevant for business process
management.



Fig. 10. The Graphical Workflow Definer, Work Queue, and Audit Trail of Staffware.

1. What is the complexity of deciding soundness?
Given a workflow net it is possible to decide soundness by constructing and inspect-
ing the reachability graph. It is also shown that soundness coincides with liveness
and boundedness of the short-circuited net [1]. For subclasses such as free-choice
workflow nets and workflow nets without PT- and TP-handles soundness can be
analyzed in polynomial time [5]. However, for arbitrary workflow nets, the best
known algorithm is non-primitive recursive space [43]. An open question is whether
the structure of a workflow net can be exploited to improve this algorithm.

2. How to calculate differences/commonalities of processes?
Inheritance is well-defined for static structures such as classes, e.g., a class is a sub-
class of another class if it has the attributes/methods of the superclass. It is more
difficult to compare processes, cf. [19] for a discussion on this topic. The absence
of a well-established notion of inheritance makes it difficult to compare processes
let alone reason about differences/commonalities of processes. For example, one
can have two processes sharing the same set of tasks. This does not imply that one
can be substituted by the other. Similarly, it is difficult to define what two pro-
cesses have in common if they do not agree on the ordering of tasks. A first attempt
to reason about differences/commonalities of processes was given in [7]. Unfortu-



nately, existing notions are unsatisfactory since they provide only partial solutions
and their computational complexity is unknown. Many practical questions are re-
lated to these issues. For example, when harmonizing procedures of different enter-
prises/govenments it is interesting to calculate what they have in common and list
the differences. Therefore, the quest for good notions and algorithms to calculate
differences/commonalities of processes is highly relevant.

3. Which workflow process patterns are the essential ones?
The Workflow Management Coalition (WFMC) has standardized basic building
blocks such as AND/XOR-splits/joins [36]. Using these building blocks one can
model sequential, parallel, conditional, and iterative processes. However, these ba-
sic control-flow patterns are unable to directly cope with more advanced patterns.
Some of these more advanced patterns are described in [12, 13]. Examples are
patterns dealing with multiple instances, e.g., an insurance claim with a variable
number of witness statements, and advanced synchronization patterns, e.g., the n-
out-of-m join and the OR-join (only synchronize when needed). Some patterns can
be modeled quite easily in terms of Petri nets. Other patterns can only be mod-
eled after introducing color sets and spaghetti-like diagrams. After four decades of
Petri-net modeling, a mature and complete set of process patterns is still missing
and designers are re-inventing the wheel every day. Clearly, most patterns are do-
main dependent. The set of patterns reported in [12, 13] is specific for workflow
management. The question is whether this set is complete. Another question is how
frequently these patterns are used/needed in practice.

4. How to evaluate and compare the expressive power of workflow management sys-
tems?
Over the last decade, more than 200 different commercial workflow management
systems became available. Surprisingly, almost every system uses a propriety lan-
guage for modeling workflow processes (despite the efforts of the WFMC [36]).
Only a handful of systems is based on formal methods such as Petri nets (e.g.,
COSA by Thiel AG and Income by Promatis). Many systems use a vendor-specific
variant of flow-charts extended with parallelism or Petri-net like diagrams such as
the event-driven process chains (e.g., ARIS and SAP). Some systems also use very
different principles such as false-token propagation (e.g., InConcert by TIBCO and
MQSeries Workflow by IBM) and data-driven controls (e.g., FLOWer by Pallas
Athena). This makes it very difficult to compare systems. Nevertheless, it is impor-
tant to have insights in the expressive power of these systems. Note that the term
“expressive power” is not used in the traditional sense. The term is used to refer
to the effort needed to construct models that reflect the process logic in a direct
manner. Note that the patterns mentioned before can be used as a stepping stone for
developing a method for evaluating and comparing process-enabled systems such
as workflow management systems.

5. Which class of workflow processes can be rediscovered?
Contemporary workflow management systems are driven by explicit process mod-
els, i.e., a completely specified workflow design is required in order to enact a given
workflow process. Creating a workflow design is a complicated time-consuming
process and typically there are discrepancies between the actual workflow pro-
cesses and the processes as perceived by the management, workers, and ultimately



the workflow designer. Therefore, it is interesting to develop techniques for (re)dis-
covering workflow models based on observations of the real workflow. Starting
point for such techniques are so-called “workflow logs” containing information
about the workflow process as it is actually being executed (cf. Figure 11). Un-
fortunately, it is difficult to (re)discover an arbitrary workflow process. All known
process mining techniques fail to properly detect non-free-choice structures [22,
44]. An open question is which class of workflow processes (i.e., a subclass of
workflow nets) can be rediscovered assuming “complete” logs.

A

B

C

DE

case 1 : task A
case 2 : task A
case 3 : task A
case 3 : task B
case 1 : task B
case 1 : task C
case 2 : task C
case 4 : task A
case 2 : task B
case 2 : task D
case 5 : task A
case 4 : task C
case 1 : task D
case 3 : task C
case 3 : task D
case 4 : task B
case 5 : task E
case 5 : task D

case 4 : task D

mining algorithm

Fig. 11. Using mining techniques it is possible to distill a workflow net (right) from a workflow
log (left).

6. Which are the minimal requirements needed to ensure the correct cooperation be-
tween workflow processes?
The rise of E-business has increased the number of workflow processes crossing or-
ganizational boundaries. As a result, there is a need to connect autonomous work-
flow processes in such a way that some overall objective is satisfied. A minimal
correctness criterion for a set of interoperating workflow nets is soundness. Sup-
pose that each of the local workflow nets is sound. Which requirements should hold
in order to guarantee soundness of the overall workflow? In [34] some results are
given using scenarios specified in terms of sequence diagrams. Another approach
based on inheritance was presented in [15]. Nevertheless, the overall problem re-
mains unsolved.

7. How to successfully migrate instances while dynamically changing the workflow
process?
Workflow processes may change on the fly as a result of changing laws, reengineer-
ing efforts, etc. This often leads to the situation where cases (workflow instances)
have to migrate from the old workflow process to the new workflow process. As
was first demonstrated in [25] this may lead to all kind of anomalies (e.g., dead-
locks, livelocks, etc.). Consider a case that is moved from a process with A and B
in parallel to a process with A and B in sequence. If the case is in a state after ex-
ecuting B but before executing A, there is no corresponding state in the sequential
process. This phenomenon is known as the “dynamic change bug” [25]. In [8] it is



demonstrated that these anomalies can be avoided if the old and the new process
are in a subclass/superclass relation. In [16] the problem is tackled for workflow
processes without loops. Despite these partial solutions, the more general problem
remains unsolved.

8. How to incorporate structural, historical, and actual data to predict the future per-
formance of a process?
When it comes to performance analysis, most approaches focus on the steady-state
of a process using assumptions about the arrival process (e.g., a Poisson arrival
process) and the processing times (e.g., a Gamma distribution). The problem is
that such an analysis requires additional modeling, does not exploit the information
available, and cannot be used for short-term decisions. Business process manage-
ment systems contain information about the structure of the process (e.g., a work-
flow process or business rules), historical data (e.g., transaction logs), and actual
data (e.g., the state of each case). In principle, this information can be used to auto-
matically generate performance models to predict throughput times and utilization
rates in the near future. A workflow net augmented with predictions about the ar-
rival of new cases, the processing times of tasks, and routing probabilities (note
that such settings can be derived from historical data) can be used to generate a
simulation model. If this simulation model is initialized using the current marking
of the net, the near future can be analyzed. Such an approach requires a mixture
of structural, historical, and actual data [40]. One of the problems is that these dif-
ferent kinds of data may overlap or may even be conflicting. Another problem is
that most tools are designed for steady-state analysis rather than the analysis of the
transient behavior. These and other problems need to be tackled in order to exploit
the information in today’s business process management systems.

9. How to calculate the throughput time of concurrent workflow processes?
When it comes to the analysis of processes with parallelism, little has changed since
the landmark paper by Baskett et al. [18] in 1975. Most of the fundamental prob-
lems remain. Queueing networks are particularly suitable for sequential processes
[21] and stochastic nets [38] are typically restricted to phase-type distributions and
suffer from the state-explosion problem. An alternative approach was presented in
[10]. This approach allows for arbitrary discrete-time distributions provided that
the workflow net can be constructed using sequential, parallel, conditional, and/or
iterative routing. The problem with this approach is that it becomes intractable in
case of iteration and long-tailed distributions. Approaches based on simulation are
typically time-consuming and do not give exact results. The problem remains that
there is no analytical technique which can cope with parallelism and non-phase-
type distributions.

10. How to allocate a fixed set of resources to tasks to optimize performance?
Most techniques for performance analysis are of type “What if?” and assume a
given distribution of resources over tasks. Clearly, an optimal distribution of re-
sources can be achieved by a “What if?” analysis of all possible resource alloca-
tions. Unfortunately, such an approach is intractable for large numbers of resources
and tasks. An interesting alternative approach was given by Goldratt [28]. He pro-
poses to first allocate the minimal number resources to each task. This can be de-
termined by simply taking the product of the frequency of a task and the average



processing time. The additional resources are distributed one-by-one using the fol-
lowing mechanism: Determine the bottleneck and allocate one free resource to this
bottleneck. Then again determine the bottleneck after adding this resource and allo-
cate the next free resource. This procedure is repeated until all free resources have
been allocated. Clearly, this procedure is much more efficient than analyzing all
possible resource allocations. Unfortunately, as shown in [30], this procedure does
not lead to an optimal distribution. In [30] it is shown that for various interpreta-
tions of the term bottleneck (e.g., average queue time and resource utilization) there
exist counterexamples for Goldratt’s algorithm. Van Hee and Reijers also propose
a so-called marginal allocation strategy. This strategy is optimal for state-machine
workflow nets with Poisson arrivals and negative exponential service times [30].
Unfortunately, all known strategies fail in the presence of parallelism and/or non-
exponential service times.

As indicated before, we do not claim that this list of problems is of the same stature
as Hilbert’s problems. In fact, the list is heavily biased by personal experiences. Some
problems are very concrete (e.g., the complexity of deciding soundness) while others
are more general, and therefore, less concrete (e.g., how to allocate a set of resources).

7 Conclusion

In this paper, the application of Petri nets to business process management was dis-
cussed. First, business process management was put in its historical perspective. Then,
the topics of process design, process analysis, and process enactment were discussed.
These topics have been illustrated using Petri nets. To conclude, in the spirit of Hilbert’s
problems, 10 interesting problems for people working on Petri-net theory have been
posed. We hope that the challenges mentioned in this paper will stimulate new and
exciting research.
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