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Abstract. Contemporary workow management systems are driven by

explicit process models, i.e., a completely speci�ed workow design is

required in order to enact a given workow process. Creating a workow

design is a complicated time-consuming process and typically there are

discrepancies between the actual workow processes and the processes as

perceived by the management. Therefore, we have developed techniques

for (re)discovering workow models. Starting point for such techniques

are so-called \workow logs" containing information about the workow

process as it is actually being executed. Unfortunately, it is not possible

to (re)discover every workow process. In this paper we explore the class

of workow processes which can be discovered. The theoretical results

presented in this paper demonstrate that most practical workow pro-

cesses �t into this class. The tool MiMo, also presented in this paper,

supports the (re)discovery of these processes.
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1 Introduction

During the last decade workow management concepts and technology [4, 5,

11, 16, 17] have been applied in many enterprise information systems. Work-

ow management systems such as Sta�ware, IBM MQSeries, COSA, etc. o�er

generic modeling and enactment capabilities for structured business processes.

By making graphical process de�nitions, i.e., models describing the life-cycle of a

typical case (workow instance) in isolation, one can con�gure these systems to

support business processes. Besides pure workow management systems many

other software systems have adopted workow technology. Consider for example

ERP (Enterprise Resource Planning) systems such as SAP, PeopleSoft, Baan

and Oracle, CRM (Customer Relationship Management) software, etc. Despite

its promise, many problems are encountered when applying workow technol-

ogy. One of the problems is that these systems require a workow design, i.e., a

designer has to construct a detailed model accurately describing the routing of

work. Modeling a workow is far from trivial: It requires deep knowledge of the

workow language and lengthy discussions with the workers and management

involved.

Instead of starting with a workow design, we start by gathering information

about the workow processes as they take place. We assume that it is possible

to record events such that (i) each event refers to a task (i.e., a well-de�ned

step in the workow), (ii) each event refers to a case (i.e., a workow instance),



and (iii) events are totally ordered. Any information system using transactional

systems such as ERP, CRM, or workow management systems will o�er this

information in some form. Note that we do not assume the presence of a workow

management system. The only assumption we make, is that it is possible to

collect workow logs with event data. These workow logs are used to construct

a process speci�cation which adequately models the behavior registered. We

use the term process mining for the method of distilling a structured process

description from a set of real executions.

case identifier task identifier

case 1 task A

case 2 task A

case 3 task A

case 3 task B

case 1 task B

case 1 task C

case 2 task C

case 4 task A

case 2 task B

case 2 task D

case 5 task A

case 4 task C

case 1 task D

case 3 task C

case 3 task D

case 4 task B

case 5 task E

case 5 task D

case 4 task D

Table 1. A workow log.

To illustrate the principle of process mining, we consider the workow log

shown in Table 1. This log contains information about �ve cases (i.e., workow

instances). The log shows that for four cases (1,2,3, and 4) the tasks A, B, C,

and D have been executed. For the �fth case only three tasks are executed:

tasks A, E, and D. Each case starts with the execution of A and ends with the

execution of D. If task B is executed, then also task C is executed. However, for

some cases task C is executed before task B. Based on the information shown

in Table 1 and by making some assumptions about the completeness of the log

(i.e., assuming that the cases are representative and a suÆcient large subset of

possible behaviors is observed), we can deduce for example the process model

shown in Figure 1. The model is represented in terms of a Petri net [21]. The

Petri net starts with task A and �nishes with task D. These tasks are represented

by transitions. After executing A there is a choice between either executing B



and C in parallel or just executing task E. To execute B and C in parallel two

non-observable tasks (AND-split and AND-join) have been added. These tasks

have been added for routing purposes only and are not present in the workow

log. Note that for this example we assume that two tasks are in parallel if they

appear in any order. By distinguishing between start events and end events for

tasks it is possible to explicitly detect parallelism.

A

AND
-split

B

C

AND
-join

D

E

Fig. 1. A process model corresponding to the workow log.

Table 1 contains the minimal information we assume to be present. In many

applications, the workow log contains a timestamp for each event and this

information can be used to extract additional causality information. Moreover,

we are also interested in the relation between attributes of the case and the actual

route taken by a particular case. For example, when handing traÆc violations: Is

the make of a car relevant for the routing of the corresponding traÆc violations?

(E.g., People driving a Ferrari always pay their �nes in time.)

For this simple example, it is quite easy to construct a process model that is

able to regenerate the workow log. For larger workowmodels this is much more

diÆcult. For example, if the model exhibits alternative and parallel routing, then

the workow log will typically not contain all possible combinations. Consider

10 tasks which can be executed in parallel. The total number of interleavings

is 10! = 3628800. It is not realistic that each interleaving is present in the log.

Moreover, certain paths through the process model may have a low probability

and therefore remain undetected. Noisy data (i.e., logs containing exceptions)

can further complicate matters.

In this paper, we do not focus on issues such as noise. We assume that there

is no noise and that the workow log contains \suÆcient" information. Under

these ideal circumstances we investigate whether it is possible to rediscover the

workow process, i.e., for which class of workow models is it possible to accu-

rately construct the model by merely looking at their logs. This is not as simple

as it seems. Consider for example the process model shown in Figure 1. The cor-

responding workow log shown in Table 1 does not show any information about

the AND-split and the AND-join. Nevertheless, they are needed to accurately

describe the process. These and other problems are addressed in this paper. For

this purpose we use workow nets (WF-nets). WF-nets are a class of Petri nets



speci�cally tailored towards workow processes. Figure 1 shows an example of a

WF-net.

generate workflow log
based on WF-net

construct WF-net based
on applying workflow

mining techniques

workflow log

WF-net WF-net

WF1 WF2

WF1 = WF2 ?

Fig. 2. The rediscovery problem: For which class of WF-nets is it guaranteed thatWF2

is equivalent to WF1?

To illustrate the rediscovery problem we use Figure 2. Suppose we have a log

based on many executions of the process described by a WF-net WF 1. Based on

this workow log and using a mining algorithm we construct a WF-net WF 2.

An interesting question is whether WF 1 = WF 2. In this paper, we explore the

class of WF-nets for which WF 1 = WF 2.

The remainder of this paper is organized as follows. First, we introduce some

preliminaries, i.e., Petri nets and WF-nets. In Section 3 we formalize the prob-

lem addressed in this paper. Section 4 discusses the relation between causality

detected in the log and places connecting transitions in the WF-net. Based on

these results an algorithm is presented that rediscovers a large class of workow

processes. Section 5 presents a complete toolbox supporting this algorithm. The

paper �nishes with an overview of related work and some conclusions.

2 Preliminaries

This section introduces the techniques used in the remainder of this paper. First,

we introduce standard Petri-net notations, then we de�ne the class of WF-nets.

2.1 Petri nets

We use a variant of the classic Petri-net model, namely Place/Transition nets.

For an elaborate introduction to Petri nets, the reader is referred to [10, 20, 21].



De�nition 2.1. (P/T-nets)1 An Place/Transition net, or simply P/T-net, is

a tuple (P; T; F ) where:

1. P is a �nite set of places,

2. T is a �nite set of transitions such that P ∩ T = ∅, and
3. F ⊆ (P × T ) ∪ (T × P ) is a set of directed arcs, called the ow relation.

A marked P/T-net is a pair (N; s), where N = (P; T; F ) is a P/T-net and where

s is a bag over P denoting the marking of the net. The set of all marked P/T-nets

is denoted N .

A marking is a bag over the set of places P , i.e., it is a function from P to

the natural numbers. We use square brackets for the enumeration of a bag, e.g.,

[a2; b; c3] denotes the bag with two a-s, one b, and three c-s. The sum of two bags

(X + Y ), the di�erence (X − Y ), the presence of an element in a bag (a ∈ X),

and the notion of subbags (X ≤ Y ) are de�ned in a straightforward way and

they can handle a mixture of sets and bags.

Let N = (P; T; F ) be a P/T-net. Elements of P ∪T are called nodes. A node

x is an input node of another node y i� there is a directed arc from x to y (i.e.,

xFy). Node x is an output node of y i� yFx. For any x ∈ P ∪T , N• x = {y | yFx}
and x

N•= {y | xFy}; the superscript N may be omitted if clear from the context.

Figure 1 shows a P/T-net consisting of 8 places and 7 transitions. Transition

A has one input place and one output place, transition AND-split has one input

place and two output places, and transition AND-join has two input places and

one output place. The black dot in the input place of A represents a token.

This token denotes the initial marking. The dynamic behavior of such a marked

P/T-net is de�ned by a �ring rule.

De�nition 2.2. (Firing rule) Let (N = (P; T; F ); s) be a marked P/T-net.

Transition t ∈ T is enabled, denoted (N; s)[t〉, i� •t ≤ s. The �ring rule [ 〉 ⊆
N ×T ×N is the smallest relation satisfying for any (N = (P; T; F ); s) ∈ N and

any t ∈ T , (N; s)[t〉 ⇒ (N; s) [t〉 (N; s− •t+ t•).
In the marking shown in Figure 1 (i.e., one token in the source place), transition

A is enabled and �ring this transition removes the token for the input place

and puts a token in the output place. In the resulting marking, two transitions

are enabled: E and AND-split. Although both are enabled only one can �re. If

AND-split �res, one token is consumed and two tokens are produced.

De�nition 2.3. (Reachable markings) Let (N; s0) be a marked P/T-net in

N . A marking s is reachable from the initial marking s0 i� there exists a sequence

of enabled transitions whose �ring leads from s0 to s. The set of reachable

markings of (N; s0) is denoted [N; s0〉.
The marked P/T-net shown in Figure 1 has 8 reachable markings. Sometimes it

is convenient to know the sequence of transitions that are �red in order to reach

1 In the literature, the class of Petri nets introduced in De�nition 2.1 is sometimes

referred to as the class of (unlabeled) ordinary P/T-nets to distinguish it from the

class of Petri nets that allows more than one arc between a place and a transition.



some given marking. This paper uses the following notations for sequences. Let

A be some alphabet of identi�ers. A sequence of length n, for some natural

number n ∈ IN, over alphabet A is a function � : {0; : : : ; n − 1} → A. The

sequence of length zero is called the empty sequence and written ". For the sake

of readability, a sequence of positive length is usually written by juxtaposing the

function values: For example, a sequence � = {(0; a); (1; a); (2; b)}, for a; b ∈ A,

is written aab. The set of all sequences of arbitrary length over alphabet A is

written A∗.

De�nition 2.4. (Firing sequence) Let (N; s0) withN = (P; T; F ) be a marked

P/T net. A sequence � ∈ T ∗ is called a �ring sequence of (N; s0) if and only if,

for some natural number n ∈ IN, there exist markings s1; : : : ; sn and transitions

t1; : : : ; tn ∈ T such that � = t1 : : : tn and, for all i with 0 ≤ i < n, (N; si)[ti+1〉
and si+1 = si − •ti+1 + ti+1•. (Note that n = 0 implies that � = " and that

" is a �ring sequence of (N; s0).) Sequence � is said to be enabled in marking

s0, denoted (N; s0)[�〉. Firing the sequence � results in a marking sn, denoted

(N; s0) [�〉 (N; sn).
De�nition 2.5. (Connectedness) A net N = (P; T; F ) is weakly connected,

or simply connected, i�, for every two nodes x and y in P ∪ T , x(F ∪ F−1)∗y,
where R−1 is the inverse and R∗ the reexive and transitive closure of a relation

R. Net N is strongly connected i�, for every two nodes x and y, xF ∗y.

We assume that all nets are weakly connected and have at least two nodes. The

P/T-net shown in Figure 1 is connected but not strongly connected.

De�nition 2.6. (Boundedness, safeness) A marked net (N = (P; T; F ); s)

is bounded i� the set of reachable markings [N; s〉 is �nite. It is safe i�, for any

s′ ∈ [N; s〉 and any p ∈ P , s′(p) ≤ 1. Note that safeness implies boundedness.

The marked P/T-net shown in Figure 1 is safe (and therefore also bounded)

because none of the 8 reachable states puts more than one token in a place.

De�nition 2.7. (Dead transitions, liveness) Let (N = (P; T; F ); s) be a

marked P/T-net. A transition t ∈ T is dead in (N; s) i� there is no reachable

marking s′ ∈ [N; s〉 such that (N; s′)[t〉. (N; s) is live i�, for every reachable

marking s′ ∈ [N; s〉 and t ∈ T , there is a reachable marking s′′ ∈ [N; s′〉 such
that (N; s′′)[t〉. Note that liveness implies the absence of dead transitions.

None of the transitions in the marked P/T-net shown in Figure 1 is dead. How-

ever, the marked P/T-net is not live since it is not possible to enable each

transition continuously.

2.2 Workow nets

Most workow systems o�er standard building blocks such as the AND-split,

AND-join, OR-split, and OR-join [5, 11, 16, 17]. These are used to model sequen-

tial, conditional, parallel and iterative routing (WFMC [11]). Clearly, a Petri



net can be used to specify the routing of cases. Tasks are modeled by transi-

tions and causal dependencies are modeled by places and arcs. In fact, a place

corresponds to a condition which can be used as pre- and/or post-condition

for tasks. An AND-split corresponds to a transition with two or more output

places, and an AND-join corresponds to a transition with two or more input

places. OR-splits/OR-joins correspond to places with multiple outgoing/ingoing

arcs. Given the close relation between tasks and transitions we use the terms

interchangeably.

A Petri net which models the control-ow dimension of a workow, is called a

WorkFlow net (WF-net). It should be noted that a WF-net speci�es the dynamic

behavior of a single case in isolation.

De�nition 2.8. (Workow nets) Let N = (P; T; F ) be a P/T-net and �t a

fresh identi�er not in P ∪ T . N is a workow net (WF-net) i�:

1. object creation: P contains an input place i such that •i = ∅,
2. object completion: P contains an output place o such that o• = ∅,
3. connectedness: �N = (P; T ∪ {�t}; F ∪ {(o; �t); (�t; i)}) is strongly connected,

The P/T-net shown in Figure 1 is a WF-net. Note that although the net is

not strongly connected, the short-circuited net with transition �t is strongly con-

nected. Even if a net meets all the syntactical requirements stated in De�ni-

tion 2.8, the corresponding process may exhibit errors such as deadlocks, tasks

which can never become active, livelocks, garbage being left in the process after

termination, etc. Therefore, we de�ne the following correctness criterion.

De�nition 2.9. (Sound) Let N = (P; T; F ) be a WF-net with input place i

and output place o. N is sound i�:

1. safeness: (N; [i]) is safe,

2. proper completion: for any marking s ∈ [N; [i]〉, o ∈ s implies s = [o],

3. option to complete: for any marking s ∈ [N; [i]〉, [o] ∈ [N; s〉, and
4. absence of dead tasks: (N; [i]) contains no dead transitions.

The set of all sound WF-nets is denoted W .

The WF-net shown in Figure 1 is sound. Soundness can be veri�ed using stan-

dard Petri-net-based analysis techniques. In fact soundness corresponds to live-

ness and safeness of the corresponding short-circuited net [1, 2, 5]. This way eÆ-

cient algorithms and tools can be applied. An example of a tool tailored towards

the analysis of WF-nets is Woan [22].

3 The rediscovery problem

After introducing some preliminaries we return to the topic of this paper: work-

ow mining. The goal of workow mining is to �nd a workow model (e.g., a

WF-net) on the basis of a workow log. Table 1 shows an example of a workow

log. Note that the ordering of events within a case is relevant while the ordering

of events amongst cases is of no importance. Therefore, we de�ne a workow log

as follows.



De�nition 3.1. (Workow trace, Workow log) Let T be a set of tasks.

� ∈ T ∗ is a workow trace and W ∈ P(T ∗) is a workow log.2

The workow trace of case 1 in Table 1 is ABCD. The workow log correspond-

ing to Table 1 is {ABCD; ACBD; AED}. Note that in this paper we abstract

from the identity of cases. Clearly the identity and the attributes of a case are

relevant for workow mining. However, for the theoretical results in this paper,

we can abstract from this. For similar reasons, we abstract from the frequency of

workow traces. In Table 1 workow trace ABCD appears twice (case 1 and case

3), workow trace ACBD also appears twice (case 2 and case 4), and workow

trace AED (case 5) appears only once. These frequencies are not registered in

the workow log {ABCD;ACBD;AED}. Note that when dealing with noise,

frequencies are of the utmost importance. However, in this paper we do not

deal with issues such as noise. Therefore, this abstraction is made to simplify

notation.

To �nd a workow model on the basis of a workow log, the log should be

analyzed for causal relations, e.g., if a task is always followed by another task

it is likely that there is a causal relation between both tasks. To analyze these

relations we introduce the following notations.

De�nition 3.2. (Log-based ordering relations) Let W be a workow log

over T , i.e., W ∈ P(T ∗). Let a; b ∈ T :

{ a >W b if and only if there is a trace � = t1t2t3 : : : tn−1 and i ∈ {1; : : : ; n−2}
such that � ∈W and ti = a and ti+1 = b,

{ a →W b if and only if a >W b and b �>W a,

{ a#W b if and only if a �>W b and b �>W a, and

{ a‖W b if and only if a >W b and b >W a.

Consider the workow log W = {ABCD;ACBD;AED} (i.e., the log shown in

Table 1). Relation >W describes which tasks appeared in sequence (one directly

following the other). Clearly, A >W B, A >W C, A >W E, B >W C, B >W D,

C >W B, C >W D, and E >W D. Relation →W can be computed from >W

and is referred to as the causal relation derived from workow log W . A →W B,

A →W C, A →W E, B →W D, C →W D, and E →W D. Note that B �→W C

because C >W B. Relation ‖W suggests potential parallelism. For log W tasks

B and C seem to be in parallel, i.e., B‖WC and C‖WB. If two tasks can follow

each other directly in any order, then all possible interleavings are present and

therefore they are likely to be in parallel. Relation #W gives pairs of transitions

that never follow each other directly. This means that there are no direct causal

relations and parallelism is unlikely.

Property 3.3. Let W be a workow log over T . For any a; b ∈ T : a →W b or

b →W a or a#W b or a‖W b. Moreover, the relations →W , →−1
W
, #W , and ‖W are

mutually exclusive and partition T × T .3

2 P(T ∗) is the powerset of T ∗, i.e., W ⊆ T ∗.
3 →−1

W
is the inverse of relation →W , i.e., →−1

W
= {(y; x) ∈ T × T | x→W y}.



This property can easy be veri�ed. Note that →W= (>W \ >−1
W
), →−1

W
= (>−1

W

\ >W ), #W = (T × T ) \ (>W ∪ >−1
W
), ‖W = (>W ∩ >−1

W
). Therefore, T × T =

→W ∪→−1
W

∪#W ∪ ‖W . If no confusion is possible, the subscript W is omitted.

To simplify the use of logs and sequences we introduce some additional no-

tations.

De�nition 3.4. (∈, �rst, last) Let A be a set, a ∈ A, and � = a1a2 : : : an ∈ A∗

a sequence over A of length n. ∈, �rst , last are de�ned as follows:

1. a ∈ � if and only if a ∈ {a1; a2; : : : an},
2. �rst(�) = a1, and

3. last(�) = an.

To reason about the quality of a workow mining algorithm we need to make

assumptions about the completeness of a log. For a complex process, a handful

of traces will not suÆce to discover the exact behavior of the process. Relations

→W , →−1
W
, #W , and ‖W will be crucial information for any workow-mining

algorithm. Since these relations can be derived from >W , we assume the log to

be complete with respect to this relation.

De�nition 3.5. (Complete workow log) Let N = (P; T; F ) be a sound

WF-net, i.e., N ∈ W . W is a workow log of N if and only if W ∈ P(T ∗) and
every trace � ∈ W is a �ring sequence of N starting in state [i], i.e., (N; [i])[�〉.
W is a complete workow log of N if and only if (1) for any workow log W ′ of
N : >W ′⊆>W , and (2) for any t ∈ T there is a � ∈ W such that t ∈ �.

A workow log of a sound WF-net only contains behaviors that can be exhibited

by the corresponding process. A workow log is complete if all tasks that poten-

tially directly follow each other in fact directly follow each other in some trace

in the log. Note that transitions that connect the input place i of a WF-net to

its output place o are \invisible" for >W . Therefore, the second requirement has

been added. If there are no such transitions, this requirement can be dropped as

is illustrated by the following property.

Property 3.6. Let N = (P; T; F ) be a sound WF-net and let W be a complete

workow log of N : {t ∈ T | ∃t′∈T t >W t′ ∨ t′ >W t} = {t ∈ T | t �∈ i • ∩ • o}.
Proof. Consider a transition t ∈ T . Since N is sound there is �ring sequence

containing t. If t ∈ i• ∩ •o, then this sequence has length 1 and t cannot appear

in >W because this is the only �ring sequence containing t. If t �∈ i• ∩ • o, then
the sequence has at least length 2, i.e., t is directly preceded or followed by a

transition and therefore appears in >W . 2

We will formulate the rediscovery problem introduced in Section 1 assuming a

complete workow log. Before formulating this problem we de�ne what it means

for a WF-net to be rediscovered.

De�nition 3.7. (Ability to rediscover) Let N = (P; T; F ) be a sound WF-

net, i.e., N ∈ W , and let � be a mining algorithm which maps workow logs of

N onto sound WF-nets, i.e., � : P(T ∗) → W . If for any complete workow log



W of N the mining algorithm returns N (modulo renaming of places), then � is

able to rediscover N .

Note that no mining algorithm is able to �nd names of places. Therefore, we

ignore place names, i.e., � is able to rediscover N if and only if �(W ) = N

modulo renaming of places.

The goal of this paper is twofold. First of all, we are looking for a mining

algorithm that is able to rediscover sound WF-nets, i.e., based on a complete

workow log the corresponding workow process can be derived. Second, given

such an algorithm we want to indicate the class of workow nets which can be

rediscovered. Clearly, this class should be as large as possible. Note that there is

no mining algorithm which is able to rediscover all sound WF-nets. For example,

if in Figure 1 we add a place p connecting transitions A andD, there is no mining

algorithm able to detect p since this place is implicit, i.e., the addition of the

place does not change the behavior of the net and therefore is not visible in the

log.

To conclude we summarize the rediscovery problem: \Find a mining algo-

rithm able to rediscover a large class of sound WF-nets on the basis of complete

workow logs." This problem was illustrated in the introduction using Figure 2.

4 Workow mining

In this section, the rediscovery problem is tackled. Before we present a mining

algorithm able to rediscover a large class of sound WF-nets, we investigate the

relation between the causal relations detected in the log (i.e., →W ) and the

presence of places connecting transitions. First, we shows that causal relations

in →W imply the presence of places. Then, we explore the class of nets for

which the reverse also holds. Based on these observations, we present a mining

algorithm.

4.1 Causal relations imply connecting places

If there is a causal relation between two transitions according to the workow

log, then there has to be a place connecting these two transitions.

Theorem 4.1. Let N = (P; T; F ) be a sound WF-net and let W be a complete

workow log of N . For any a; b ∈ T : a →W b implies a • ∩ • b �= ∅.
Proof. Assume a →W b and a • ∩ • b = ∅. We will show that this leads

to a contradiction and thus prove the theorem. Since a > b there is a �ring

sequence � = t1t2t3 : : : tn−1 and i ∈ {1; : : : ; n− 2} such that � ∈ W and ti = a

and ti+1 = b. Let s be the state just before �ring a, i.e., (N; [i]) [�′〉 (N; s) with
�′ = t1 : : : ti−1. Let s

′ be the marking after �ring b in state s, i.e., (N; s)[b〉(N; s′).
Note that b is enabled in s because it is enabled after �ring a and a • ∩ • b = ∅
(i.e., a does not produce tokens for any of the input places of b). a cannot be

enabled in s′, otherwise b > a and not a →W b. Since a is enabled in s but not

in s′, b consumes a token from an input place of a and does not return it, i.e.,



((•b) \ (b•)) ∩ •a �= ∅. There is a place p such that p ∈ •a, p ∈ •b, and p �∈ b•.
Moreover, a • ∩ • b = ∅. Therefore, p �∈ a•. Since the net is safe, p contains

precisely one token in marking s. This token is consumed by ti = a and not

returned. Hence b cannot be enabled after �ring ti. Therefore, � cannot be a

�ring sequence of N starting in i. 2

Let N1 = ({i; p1; p2; p3; p4; o}; {A;B;C;D}; {(i; A); (A; p1); (A; p2); (p1; B); (B;
p3); (p2; C); (C; p4); (p3; D); (p4; D); (D; o)}). (This the WF-net with B and C in

parallel, see N1 in Figure 4.) W1 = {ABCD;ACBD} is a complete log over N1.

Since A →W1
B, there has to be a place between A and B. This place corresponds

to p1 in N1. Let N2 = ({i; p1; p2; o}; {A;B;C;D}; {(i; A); (A; p1); (p1; B); (B; p2);
(p1; C); (C; p2); (p2; D); (D; o)}). (This is the WF-net with a choice between B

and C, see N2 in Figure 4.) W2 = {ABD;ACD} is a complete log over N2.

Since A →W2
B, there has to be a place between A and B. Similarly, A →W2

C

and therefore there has to be a place between A and C. Both places correspond

to p1 in N1. Note that in the �rst example (N1/W1) the two causal relations

A →W1
B and A →W1

C correspond to two di�erent places while in the second

example the two causal relations A →W1
B and A →W1

C correspond to a single

place.

4.2 Connecting places \often" imply causal relations

In this subsection we investigate which places can be detected by simply in-

specting the log. Clearly, not all places can be detected. For example places

may be implicit which means that they do not a�ect the behavior of the pro-

cess. These places remain undetected. Therefore, we limit our investigation to

WF-nets without implicit places.

De�nition 4.2. (Implicit place) Let N = (P; T; F ) be a P/T-net with initial

marking s. A place p ∈ P is called implicit in (N; s) if and only if, for all reachable

markings s′ ∈ [N; s〉 and transitions t ∈ p•, s′ ≥ •t \ {p} ⇒ s′ ≥ •t.
Figure 1 contains no implicit places. However, as indicated before, adding a place

p connecting transition A and B yields an implicit place. No mining algorithm

is able to detect p since the addition of the place does not change the behavior

of the net and therefore is not visible in the log.

Fig. 3. Two constructs not allowed in SWF-nets.



For the rediscovery problem it is very important that the structure of the

WF-net clearly reects its behavior. Therefore, we also rule out the constructs

shown in Figure 3. The left construct illustrates the constraint that choice and

synchronization should never meet. If two transitions share an input place, and

therefore \�ght" for the same token, they should not require synchronization.

This means that choices (places with multiple output transitions) should not be

mixed with synchronizations. The right-hand construct in Figure 3 illustrates the

constraint that if there is a synchronization all preceding transitions should have

�red, i.e., it is not allowed to have synchronizations directly preceded by an OR-

join. WF-nets which satisfy these requirements are named structured workow

nets.

De�nition 4.3. (SWF-net) A WF-net N = (P; T; F ) is an SWF-net (Struc-

tured workow net) if and only if:

1. For all p ∈ P and t ∈ T with (p; t) ∈ F : |p • | > 1 implies | • t| = 1.

2. For all p ∈ P and t ∈ T with (p; t) ∈ F : | • t| > 1 implies | • p| = 1.

3. There are no implicit places.

At �rst sight the three requirements in De�nition 4.3 seem quite restrictive.

From a practical point of view this is not the case. First of all, SWF-nets al-

low for all routing constructs encountered in practice, i.e., sequential, parallel,

conditional and iterative routing are possible and the basic workow building

blocks (AND-split, AND-join, OR-split and OR-join) are supported. Second,

WF-nets that are not SWF-nets are typically diÆcult to understand and should

be avoided if possible. Third, many workow management systems only allow for

workow processes that correspond to SWF-nets. The latter observation can be

explained by the fact that most workow management systems use a language

with separate building blocks for OR-splits and AND-joins. Finally, there is a

very pragmatic argument. If we drop any of the requirements stated in De�ni-

tion 4.3, relation >W does not contain enough information to successfully mine

all processes in the resulting class.

The reader familiar with Petri nets will observe that SWF-nets belong to the

class of free-choice nets [10]. This allows us to use eÆcient analysis techniques

and advanced theoretical results. For example, using these results it is possible

to decide soundness in polynomial time [2].

SWF-nets also satisfy another interesting property.

Property 4.4. Let N = (P; T; F ) be an SWF-net. For any a; b ∈ T and p1; p2 ∈
P : if p1 ∈ a • ∩ • b and p2 ∈ a • ∩ • b, then p1 = p2.

This property follows directly from the de�nition of SWF-nets and states that

no two transitions are connected by multiple places. This property illustrates

that the structure of an SWF-net clearly reects its behavior and vice versa.

This is exactly what we need to be able to rediscover a WF-net from its log.

We already showed that causal relations in →W imply the presence of places.

Now we try to prove the reverse for the class of SWF-nets. First, we focus on

the relation between the presence of places and >W .



Theorem 4.5. Let N = (P; T; F ) be a sound SWF-net and letW be a complete

workow log of N . For any a; b ∈ T : a • ∩ • b �= ∅ implies a >W b.

Proof. Let a; b ∈ T . Assume p ∈ a • ∩ • b. We prove a >W b by considering

two cases.

(i) |p • | > 1. Consider a �ring sequence � ending with transition a. Such a

�ring sequence exists since N is sound. This �ring sequence marks p. If p is

marked, b is enabled because in an SWF-net |p • | > 1 implies | • t| = 1 for

all transitions consuming tokens from p. Hence, a >W b.

(ii) |p • | = 1. b is the only output transition of p. If p is the only input place

of b, then any occurrence of a can be followed by b and a >W b. If b has

multiple input places (| • b| > 1), then the fact that N is a SWF-net implies

| • p| = 1. Therefore, a is the only transition producing tokens for p. Since

p is not implicit, there is a marking s ∈ [N; [i]〉 such that s ≥ •b \ {p} but

not s ≥ •b, i.e., b blocks on p. Since N is sound and tokens from the input

places of b can only be removed by �ring b, the �ring sequence leading to s

can be extended to �re a directly followed by b. Hence, a >W b.

2

Unfortunately a • ∩ • b �= ∅ does not imply a →W b. To illustrate this consider

Figure 4. For the �rst two nets (i.e., N1 and N2), two tasks are connected if

and only if there is a causal relation. This does not hold for N3 and N4. In N3,

A →W3
B, A →W3

D, and B →W3
D. However, not B →W3

B. Nevertheless,

there is a place connecting B to B. In N4, although there are places connecting

B to C and vice versa, B �→W3
C and B �→W3

C. These examples indicate that

loops of length one (see N3) and length two (see N4) are harmful. Surprisingly,

loops of length three or longer are no problem as is illustrated in the following

theorem.

Theorem 4.6. Let N = (P; T; F ) be a sound SWF-net and letW be a complete

workow log of N . For any a; b ∈ T : a • ∩ • b �= ∅ and b • ∩ • a = ∅ implies

a →W b.

Proof. Let a; b ∈ T . Assume a• ∩ • b �= ∅ and b• ∩ • a = ∅. To prove a →W b,

we show that a >W b and b �>W a. a >W b follows directly from Theorem 4.5.

Remains to prove that b �>W a. We will prove this by showing that it is not

possible to have a �ring sequence � = t1t2t3 : : : tn−1 such that (N; [i])[�〉 and
tn−2 = b and tn−1 = a. Let �′, sn, and sn−2 be such that (N; [i]) [�〉 (N; sn),
�′ = t1t2t3 : : : tn−3, and (N; [i]) [�′〉 (N; sn−2). (Note that (N; sn−2) [ba〉 (N; sn).)
Let p ∈ a • ∩ • b. In state sn−2, p is marked. Moreover, a is enabled in sn−2

because a is enabled after �ring b and b• ∩ • a = ∅. Let s′ be the marking after
�ring a in sn−2, i.e., (N; sn−2) [a〉 (N; s′). If p �∈ •a, then a produces a token

for p while there is a token already there, i.e., in s′ place p contains at least

two tokens. This is not possible since a sound WF-net is safe. Hence, there is a

contradiction if p �∈ •a. If p ∈ •a, then bp �∈ b• because b • ∩ • a = ∅. In this

case, �ring b disables a (i.e., (•b\ b•)∩•a �= ∅) and thus � is not a possible �ring

sequence. 2
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Acyclic nets have no loops of length one or length two. Therefore, it is easy to

derive the following property.

Property 4.7. Let N = (P; T; F ) be an acyclic sound SWF-net and let W be

a complete workow log of N . For any a; b ∈ T : a • ∩ • b �= ∅ if and only if

a →W b.

The results presented thus far focus on the correspondence between connecting

places and causal relations. However, causality (→W ) is just one of the four log-

based ordering relations de�ned in De�nition 4.3. The following theorem explores

the relation between the sharing of input and output places and #W .

Theorem 4.8. LetN = (P; T; F ) be a sound SWF-net such that for any a; b ∈ T :

a • ∩ • b = ∅ or b • ∩ • a = ∅ and let W be a complete workow log of N .

1. If a; b ∈ T and a • ∩ b• �= ∅, then a#W b.

2. If a; b ∈ T and •a ∩ •b �= ∅, then a#W b.

3. If a; b; t ∈ T , a →W t, b →W t, and a#W b, then a • ∩ b • ∩ • t �= ∅.
4. If a; b; t ∈ T , t →W a, t →W b, and a#W b, then •a ∩ •b ∩ t• �= ∅.
Proof. Let a; b; t ∈ T . We prove each of the four items separately.

1. If a • ∩ b• �= ∅, then there is a common output place p ∈ a • ∩ b•. If
a �ring of a is directly followed by b (or vice versa), then two subsequent

transitions produce a token for p. These transitions do not consume tokens

from p (a • ∩ • b = ∅ or b • ∩ • a = ∅). Therefore, p contains at least two

tokens after �ring a and b. This is not possible since (N; [i]) is safe. Hence,

a �>W b and b �>W a which implies a#W b.

2. Similar arguments apply to the situation where p ∈ •a ∩ •b.
3. Assume a→W t, b→W t, and a#W b. Theorem 4.1 implies that there are two

places p1; p2 ∈ P such that p1 ∈ a • ∩ • t and p2 ∈ b •∩ • t. Also assume that
a • ∩b • ∩ • t = ∅. This implies that p1 �= p2. We demonstrate that the latter

assumption leads to a contradiction. In every complete �ring sequence a, b,

and t �re the same number of times because |•p1| = |p1•| = |•p2| = |p2•| = 1.

In fact a and t (and b and t) �re alternatingly. Since b →W t there is a �ring

sequence where a �res before b and the �ring of b is directly followed by t. It

is not possible that a is directly followed by b. Therefore, there is a directed

path lab ∈ F ∗ from a to b. If there was no directed path lab, a could be

\delayed" until b becomes enabled and a �ring sequence where a is directly

followed by b is possible. Let Lab be the set of elementary directed paths

from a to b. Lab is marked if one of its places contains a token and Lab is

unmarked if none of its places contains a token. Not every execution of a is

followed by b (Since a →W t there is a �ring sequence where b �res before a

and the �ring of a is directly followed by t.) Therefore, there are transitions

removing tokens from Lab other than b. These transitions are in conict

with transitions preserving tokens for Lab. However, since N is free-choice

these conicts cannot be controlled. Since these choices should be controlled

depending on whether a, b or neither a nor b is the next to �re. Hence we

�nd a contradiction.



4. Similar arguments apply to the situation where t →W a, t →W b, and a#W b.

2

The relations→W , →−1
W
, #W , and ‖W are mutually exclusive. Therefore, we can

derive that for sound SWF-nets with no short loops, a‖W b implies a • ∩ b• =

•a ∩ •b = ∅. Moreover, a →W t, b →W t, and a • ∩ b • ∩ • t = ∅ implies a‖W b.

Similarly, t →W a, t →W b, and •a ∩ •b ∩ t• = ∅, also implies a‖W b. These

results will be used to underpin the mining algorithm presented in the following

subsection.

4.3 Mining algorithm

Based on the results in the previous subsections we now present an algorithm

for mining processes. The algorithm uses the fact that for many WF-nets two

tasks are connected if and only if their causality can be detected by inspecting

the log.

De�nition 4.9. (Mining algorithm �) LetW be a workow log over T . �(W )

is de�ned as follows.

1. TW = {t ∈ T | ∃�∈W t ∈ �},
2. TI = {t ∈ T | ∃�∈W t = �rst(�)},
3. TO = {t ∈ T | ∃�∈W t = last(�)},
4. XW = {(A;B) | A ⊆ TW ∧B ⊆ TW ∧ ∀a∈A∀b∈Ba →W b ∧ ∀a1;a2∈Aa1#W a2 ∧

∀b1;b2∈Bb1#W b2},
5. YW = {(A;B) ∈ XW | ∀(A′;B′)∈XWA ⊆ A′ ∧B ⊆ B′ =⇒ (A;B) = (A′; B′)},
6. PW = {p(A;B) | (A;B) ∈ YW } ∪ {iW ; oW },
7. FW = {(a; p(A;B)) | (A;B) ∈ YW ∧ a ∈ A} ∪ {(p(A;B); b) | (A;B) ∈

YW ∧ b ∈ B} ∪ {(iW ; t) | t ∈ TI} ∪ {(t; oW ) | t ∈ TO}, and
8. �(W ) = (PW ; TW ; FW ).

The mining algorithm constructs a net (PW ; TW ; FW ). Clearly, the set of transi-

tions TW can be derived by inspecting the log. In fact, as shown in Property 3.6,

if there are no traces of length one, TW can be derived from >W . Since it is

possible to �nd all initial transitions TI and all �nal transition TO, it is easy

to construct the connections between these transitions and iW and oW . Besides

the source place iW and the sink place oW , places of the form p(A;B) are added.

For such place, the subscript refers to the set of input and output transitions,

i.e., •p(A;B) = A and p(A;B)• = B. A place is added in-between a and b if and

only if a →W b. However, some of these places need to be merged in case of OR-

splits/joins rather than AND-splits/joins. For this purpose the relationsXW and

YW are constructed. (A;B) ∈ XW if there is a causal relation from each member

of A to each member of B and the members of A and B never occur next to

one another. Note that if a →W b, b →W a, or a‖W b, then a and b cannot be

both in A (or B). Relation YW is derived from XW by taking only the largest

elements with respect to set inclusion.



Based on � de�ned in De�nition 4.9, we turn to the rediscovery problem. Is it

possible to rediscover WF-nets using �(W )? Consider the �ve SWF-nets shown

in Figure 4. If � is applied to a complete workow log of N1, the resulting net is

N1 modulo renaming of places. Similarly, if � is applied to a complete workow

log of N2, the resulting net is N2 modulo renaming of places. As expected, � is

not able to rediscoverN3 andN4. �(W3) is not a WF-net since B is not connected

to the rest of the net. �(W4) is not a WF-net since C is not connected to the rest

of the net. In both cases two arcs are missing in the resulting net. N3 and N4

illustrate that the mining algorithm is unable to deal with short loops. Loops

of length three or longer are no problem. For example �(W5) = N5 modulo

renaming of places. The following theorem proves that � is able to rediscover

the class of SWF-nets provided that there are no short loops.

Theorem 4.10. LetN = (P; T; F ) be a sound SWF-net and letW be a complete

workow log of N . If for all a; b ∈ T a•∩• b = ∅ or b•∩•a = ∅, then �(W ) = N

modulo renaming of places.

Proof. Let �(W ) = (PW ; TW ; FW ). Since W is complete, it is easy to see that

T = TW . Remains to prove that every place in N corresponds to a place in �(W )

and vice versa.

Let p ∈ P . We need to prove that there is a pW ∈ PW such that
N• p =NW• pW

and p
N•= pW

NW• . If p = i, i.e., the source place or p = o, i.e., the sink place,

then it is easy to see that there is a corresponding place in �(W ). Transitions

in i
N• ∪ N• o can �re only once directly at the beginning of a sequence or at the

end. Therefore, the construction given in De�nition 4.9 involving iW , oW , TI ,

and TO yields a source and sink place with identical input/output transitions.

If p �∈ {i; o}, then let A =
N• p, B = p

N• , and pW = p(A;B). If pW is indeed a place

of �(W ), then
N• p =

�(W )• pW and p
N•= pW

�(W )• . This follows directly from the

de�nition of the ow relation FW in De�nition 4.9. To prove that pW = p(A;B)

is a place of �(W ), we need to show that (A;B) ∈ YW . (A;B) ∈ XW , because

(1) Theorem 4.6 implies that ∀a∈A∀b∈Ba →W b, (2) Theorem 4.8(1) implies that

∀a1;a2∈Aa1#Wa2, and (3) Theorem 4.8(2) implies that ∀b1;b2∈Bb1#W b2. To prove

that (A;B) ∈ YW , we need to show that it is not possible to have (A′; B′) ∈ X

such that A ⊆ A′, B ⊆ B′, and (A;B) �= (A′; B′) (i.e., A ⊂ A′ or B ⊂ B′).
Suppose that A ⊂ A′. There is an a′ ∈ T \ A such that ∀b∈Ba′ →W b and

∀a∈Aa#W a′. Theorem 4.8(3) implies that a
N• ∩ a′N• ∩ N• b �= ∅ for some b ∈ B.

Let p′ ∈ a
N• ∩ a′ N• ∩ N• b. Property 4.4 implies p′ = p. However, a′ �∈ A =

N• p
and a′ ∈N• p′, and we �nd a contradiction (p′ = p and p′ �= p). Suppose that

B ⊂ B′. There is a b′ ∈ T \ B such that ∀a∈Aa →W b′ and ∀b∈Bb#W b′. Using
Theorem 4.8(4) and Property 4.4, we can show that this leads to a contradiction.

Therefore, (A;B) ∈ YW and pW ∈ PW .

Let pw ∈ PW . We need to prove that there is a p ∈ P such that
N• p =

NW• pW

and p
N•= pW

NW• . If pw = iw or pw = ow, then pw corresponds to i respectively o.

This is a direct consequence of the construction given in De�nition 4.9 involving

iW , oW , TI , and TO. If pw �∈ {iw; ow}, then there are sets A and B such that

(A;B) ∈ YW and pw = p(A;B).
�(N)• pw = A and pw

�(N)• = B. Remains to prove



that there is a p ∈ P such that
N• p = A and p

N•= B. Since (A;B) ∈ YW implies

that (A;B) ∈ XW , for any a ∈ A and b ∈ B there is a place connecting a and b

(use a →W b and Theorem 4.1). Using Theorem 4.8, we can prove that there is

just one such place. Let p be this place. Clearly,
N• p ⊆ A and p

N•⊆ B. Remains

to prove that
N• p = A and p

N•= B. Suppose that a′ ∈N• p\A (i.e.,
N• p �= A). Select

an arbitrary a ∈ A and b ∈ B. Using Theorem 4.6, we can show that a′ →W b.

Using Theorem 4.8(1), we can show that a#Wa′. This holds for any a ∈ A

and b ∈ B. Therefore, (A ∪ {a′}; B) ∈ XW . However, this is not possible since

(A;B) ∈ YW ((A;B) should be maximal). Therefore, we �nd a contradiction. We

�nd a similar contradiction if we assume that there is a b′ ∈ p
N• \B. Therefore,

we conclude that
N• p = A and p

N•= B. 2
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Fig. 5. Another process model corresponding to the workow log shown in Table 1.

Nets N1, N2 and N5 shown in Figure 4 satisfy the requirements stated in Theo-

rem 4.10. Therefore, it is no surprise that � is able to rediscover these nets. The

net shown in Figure 1 is also an SWF-net with no short loops. Therefore, we

can successfully rediscover the net if the AND-split and the AND-join are visible

in the log. The latter assumption is not realistic if these two transitions do not

correspond to real work. Given the fact the log shown in Table 1 does not list the

occurrence of these events, indicates that this assumption is not valid. There-

fore, the AND-split and the AND-join should be considered invisible. However,

if we apply � to this log W = {ABCD; ACBD; AED}, then the result is quite

surprising. The resulting net �(W ) is shown in Figure 5. Although the net is

not an SWF-net it is a sound WF-net whose observable behavior is identical to

the net shown in Figure 1. Also note that the WF-net shown in Figure 5 can

be rediscovered although it is not an SWF-net. This example shows that the

applicability is not limited to SWF-nets. However, for arbitrary sound WF-nets

it is not possible to guarantee that they can be rediscovered.

To conclude this section, we revisit the �rst two requirements in De�ni-

tion 4.3. In Section 4.2 we already motivated the restriction to SWF-nets. To

illustrate the necessity of these requirements consider �gures 6 and 7. The WF-

netN6 shown in Figure 6 is sound but not an SWF-net since the �rst requirement

is violated (N6 is not free-choice). If we apply the mining algorithm to a com-



A D

C

E

N6

B

A D

C

E

N7

B

Fig. 6. The non-free-choice WF-net N6 cannot be rediscovered.

plete workow log W6 of N6, we obtain the WF-nets N7 also shown in Figure 6

(i.e., �(W6) = N7). Clearly, N6 cannot be rediscovered using �. Although N7

is a sound SWF-net its behavior is di�erent from N6, e.g., workow trace ACE

is possible in N7 but not in N6. This example motivates the �rst requirement

in De�nition 4.3. The second requirement is motivated by Figure 7. N8 violates

the second requirement. If we apply the mining algorithm to a complete work-

ow log W8 of N8, we obtain the WF-net �(W8) = N9 also shown in Figure 7.

Although N9 is behaviorally equivalent, N8 cannot be rediscovered using the

mining algorithm.

Although the requirements stated in De�nition 4.3 are necessary in order to

prove that this class of workow processes can be rediscovered on the basis of a

complete workow log, the applicability is not limited to SWF-nets. The exam-

ples given in this section show that in many situations a behaviorally equivalent

WF-net can be derived. Even in the cases where the resulting WF-net is not be-

haviorally equivalent, the results are meaningful, e.g., the process represented by

N7 is di�erent from the process represented by N6 (cf. Figure 6). Nevertheless,

N7 is similar and captures most of the behavior.

5 MiMo: A tool to (re)discover workow processes

The algorithm presented in the previous section has been implemented using our

tool ExSpect [3]. ExSpect (EXecutable SPECi�cation Tool) supports high-level
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Fig. 7. WF-net N8 cannot be rediscovered. Nevertheless � returns a WF-net which is

behavioral equivalent.



Petri-nets and has been used to build a toolbox named MiMo (Mining Module).

MiMo consists of two parts: (1) a workow log generator and (2) a workow log

analyzer. The workow log generator generates workow traces on the basis of a

process model. It is possible to build a graphical model of the workow process

in terms of an hierarchical WF-net. Using the MiMo toolbox a workow log is

generated automatically. The generation process can be controlled (e.g., started

and stopped) by the designer. Instead of using the workow log generator, it is

also possible to upload workow traces from a �le.

The workow log analyzer is the most interesting part of the MiMo tool-

box. The analyzer is a straightforward implementation of the mining algorithm

presented in the previous section. This part of the MiMo toolbox automatically

generates a Petri net on the basis of a workow log. It is possible to generate

a Petri net on-the-y and the user can inspect →W , >W , #W , and ‖W at any

time.

Fig. 8. A screenshot of the ExSpect module MiMo while mining a workow process.

Figure 8 shows a screenshot of the ExSpect module MiMo. The screenshot

shows the architecture (upper left window), the workow log generator (upper



right window), and the workow log analyzer (bottom window). All examples in

this paper have been analyzed using the MiMo toolbox.

6 Related Work

The idea of process mining is not new [6{9, 12{15,19]. Cook and Wolf have

investigated similar issues in the context of software engineering processes. In [7]

they describe three methods for process discovery: one using neural networks, one

using a purely algorithmic approach, and one Markovian approach. The authors

consider the latter two the most promising approaches. The purely algorithmic

approach builds a �nite state machine where states are fused if their futures

(in terms of possible behavior in the next k steps) are identical. The Markovian

approach uses a mixture of algorithmic and statistical methods and is able to

deal with noise. Note that the results presented in [6] are limited to sequential

behavior. Cook and Wolf extend their work to concurrent processes in [8]. They

propose speci�c metrics (entropy, event type counts, periodicity, and causality)

and use these metrics to discover models out of event streams. However, they do

not provide an approach to generate explicit process models. Recall that the �nal

goal of the approach presented in this paper is to �nd explicit representations

for a broad range of process models, i.e., we want to be able to generate a

concrete Petri net rather than a set of dependency relations between events.

In [9] Cook and Wolf provide a measure to quantify discrepancies between a

process model and the actual behavior as registered using event-based data.

The idea of applying process mining in the context of workow management

was �rst introduced in [6]. This work is based on workow graphs, which are

inspired by workow products such as IBM MQSeries workow (formerly known

as Flowmark) and InConcert. In this paper, two problems are de�ned. The �rst

problem is to �nd a workow graph generating events appearing in a given

workow log. The second problem is to �nd the de�nitions of edge conditions.

A concrete algorithm is given for tackling the �rst problem. The approach is

quite di�erent from the approach envisioned in this proposal. Given the nature

of workow graphs there is no need to identify the nature (AND or OR) of joins

and splits. Moreover, workow graphs are acyclic. The only way to deal with

iteration is to enumerate all occurrences of a given activity. In [19], a tool based

on these algorithms is presented. Herbst and Karagiannis also address the issue

of process mining in the context of workow management [12{15]. The approach

uses the ADONIS modeling language and is based on hidden Markov models

where models are merged and split in order to discover the underlying process.

The work presented in [12, 14, 15] is limited to sequential models. A notable

di�erence with other approaches is that the same activity can appear multiple

times in the workow model. The result in [13] incorporates concurrency but

also assumes that workow logs contain explicit causal information. The latter

technique is similar to [6, 19] and su�ers from the drawback that the nature of

splits and joins (i.e., AND or OR) is not discovered.



In contrast to existing work we addressed workow processes with concur-

rent behavior right from the start (rather than adding ad-hoc mechanisms to

capture parallelism), i.e., detecting concurrency is has been our prime concern

in this paper. Some preliminary results have been reported in [18, 23, 24]. In [23,

24] a heuristic approach using rather simple metrics is used construct so-called

\dependency/frequency tables" and \dependency/frequency graphs". In [18] an-

other variant of this technique is presented using examples from the health-care

domain. The preliminary results presented in [18, 23, 24] only provide heuristics

and focus on issues such as noise. This paper di�ers from these approaches in

the sense that we prove that for certain subclasses it is possible to �nd the right

workow model.

7 Conclusion

In this paper we addressed the workow rediscovery problem. This problem was

formulated as follows: \Find a mining algorithm able to rediscover a large class

of sound WF-nets on the basis of complete workow logs." We presented an

algorithm that is able to rediscover a large and relevant class of workow pro-

cesses. Through examples we also showed that the algorithm provides interesting

analysis results for workow processes outside this class. In the future, we hope

to improve the mining algorithm such that it is able to rediscover an even larger

class of WF-nets. At this point in time, two improvements seem to be possible.

First of all, it should be possible to deal with \short loops" of a particular form.

Second, the rediscovery problem could be relaxed to take behaviorally equivalent

WF-nets into account.

It is important to see the results presented in this paper in the context of a

larger e�ort [18, 23, 24]. The rediscovery problem is not a goal by itself. The over-

all goal is to be able to analyze any workow log without any knowledge of the

underlying process and in the presence of noise. The theoretical results presented

in this paper provide insights that are consistent with empirical results found

earlier [18, 23, 24]. It is quite interesting to see that the challenges encountered

in practice match the challenges encountered in theory. For example, the fact

that workow process exhibiting non-free-choice behavior (i.e., violating the �rst

requirement of De�nition 4.3) are diÆcult to mine was observed both in theory

and in practice. Therefore, we consider the work presented in this paper as a

stepping stone for good and robust workow mining techniques.

At this point in time, we are applying our workow mining techniques to

two applications. The �rst application is in health-care where the ow of multi-

disciplinary patients is analyzed. We have analyzed workow logs (visits to dif-

ferent specialist) of patients with peripheral arterial vascular diseases of the

Elizabeth Hospital in Tilburg and the Academic Hospital in Maastricht. Pa-

tients with peripheral arterial vascular diseases are a typical example of multi-

disciplinary patients. The second application concerns the processing of �nes by

the CJIB (Centraal Justitieel Incasso Bureau), the Dutch Judicial Collection

Agency located in Leeuwarden. For example �nes with respect to traÆc viola-



tions are processed by the CJIB. However, this government agency also takes

care of the collection of administrative �nes related to crimes, etc. Through

workow mining we try to get insight in the life-cycle of for example speeding

tickets. Some preliminary results show that it is very diÆcult to mine the ow

of multi-disciplinary patients given the large number of exceptions, incomplete

data, etc. However, it is relatively easy to mine well-structured administrative

processes such as the processes within the CJIB. In both applications we are also

trying to take attributes of the cases being processed into account. This way we

hope to �nd correlations between properties of the case and the route through

the workow process.
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