
Inheritance of Interorganizational Workflows:
How to agree to disagree without loosing control?

W.M.P. van der Aalst1;2

1 Department of Technology Management, Eindhoven University of Technology, P.O. Box 513,
NL-5600 MB, Eindhoven, The Netherlands. w.m.p.v.d.aalst@tm.tue.nl

2 Department of Computer Science, University of Colorado at Boulder, Campus Box 430,
Boulder, CO 80309-0430, USA

Abstract. Internet-based technology, E-commerce, and the rise of networked
virtual enterprises have fueled the need for interorganizational workflows. Al-
though XML allows trading partners to exchange information, it cannot be used
to coordinate activities in different organizational entities. Business-to-business
processes are hindered by the lack of a common language to support collabora-
tion. This paper describes the P2P (Public-To-Private) approach which addresses
one of the most notorious problems in this domain: How to design an interor-
ganizational workflow such that there is local autonomy without compromising
the consistency of the overall process. The approach uses a notion of inheritance
and consists of three steps: (1) create a common understanding of the interorga-
nizational workflow by specifying the shared public workflow, (2) partition the
public workflow over the organizational entities involved, and (3) for each orga-
nizational entity: create a private workflow which is a subclass of the relevant
part of the public workflow. This paper shows that this approach avoids typical
anomalies in business-to-business collaboration (e.g., deadlocks and livelocks)
and yields an interorganizational workflow which is guaranteed to realize the be-
havior specified in the public workflow.

Keywords: Information Systems (H), Electronic Commerce (K.4.4), Workflow Man-
agement (H.4.1), Petri Nets (D.2.2), Inheritance of Dynamic Behavior, Verification.

1 Introduction

Today’s corporations often must operate across organizational boundaries. Phenomena
such as E-commerce, extended enterprises, and the Internet stimulate cooperation be-
tween organizations. Therefore, the importance of workflows distributed over a num-
ber of organizations is increasing. Interorganizational workflow offers companies the
opportunity to re-shape business processes beyond the boundaries of their own orga-
nizations. However, interorganizational workflows are typically subject to conflicting
constraints. On the one hand, there is a strong need for coordination to optimize the
flow of work in and between the different organizations. On the other hand, the organi-
zations involved are essentially autonomous and have the freedom to create or modify
workflows at any point in time. As the subtitle of this paper suggests (“How to agree
to disagree without loosing control?”), this is exactly the problem that will be tackled

in this paper. To motivate the approach described in this paper, we first discuss some of
the developments in the field of E-commerce and Internet-based technologies.

E-commerce refers to the enabling of purchasing and selling of goods and services
through a communications network [5, 16, 28, 37, 40, 53, 57]. The ability to conduct
business activities involved in marketing, finance, manufacturing, selling, and nego-
tiation, electronically, is what E-commerce is all about. One major objective of adopt-
ing E-commerce strategies is to reduce costs and improve the efficiency of business
processes by replacing paper business with electronic alternatives. E-commerce, in its
earliest incarnation known as Electronic Data Interchange (EDI), has been tradition-
ally used by larger corporations to share and exchange information between business
partners and suppliers using private networks [19, 34, 35]. EDI enables the exchange
of business data from one computer to another computer. It eliminates the need to
re-key information from documents or messages by supporting the creation of elec-
tronic versions of documents or messages using public standard formats, which can
then be transmitted, received, and interpreted by other systems. Typical applications
were (and still are) supply-chain management processes like order placement and pro-
cessing. However, with the explosive growth of the Internet in the last couple of years,
E-commerce is now able to offer solutions for a much broader range of business pro-
cesses than EDI previously addressed. Also, the extensive availability of the Internet has
enabled smaller companies, hindered previously by the large financial investment re-
quired for these private networks, to conduct business electronically. Technologies like
bar coding, automatic teller machines, e-mail, fax, video-conferencing, workflow, and
the World-Wide-Web have continued to impact the success of E-commerce. Although
the term E-commerce frequently refers to on-line retailing involving businesses and
consumers, experts predict that as E-commerce continues to grow, business-to-business
E-commerce will continue to enjoy the lion share of the revenue.

The Internet and the World-Wide-Web (WWW) have become the de facto standard
for E-commerce. The Internet has evolved from a primitive medium to exchange data
to the backbone of today’s information society. In [32], Kumar and Zhao identify five
stages in the development of the WWW. In the first phase, primitive text-based tools
such as Gopher and Archie are used primarily for knowledge discovery. In the second
phase, hypertext-based graphical browsers are used for knowledge discovery. The third
phase is marked by connecting applications and databases to the WWW using gateways
based on technologies such as CGI. As a result, the WWW can be used to process trans-
actions in a synchronous manner and present up-to-date information. The fourth phase
is the phase where asynchronous mode interaction between series of trading partners
is enabled using semantic languages such as XML, ontologies, etc. In the fifth phase
procedural information is attached to the information exchanged, i.e., the workflow
processes are made explicit (in a common language) and WWW-based applications be-
come “process-aware”. Today, we are in-between phase three and phase four. Kumar
and Zhao [32] envision that the emphasis will shift from short-lived transactions of a
synchronous nature to long-lived transactions which require a complex asynchronous
exchange of information. Clearly, the main focus of WWW-based tools and the asso-
ciated research has been on information, communication, and presentation [50]. As a
result, problems related to collaboration, coordination, and business process support

2

have been neglected. Satisfactory concepts and products to support interorganizational
workflows are still missing. Business-to-business E-commerce will be hindered by these
problems. Therefore, we focus on some of the problems related to interorganizational
workflow.

Contractor

order

specification

cost_statement

product

Subcontractor

Fig. 1. The interactions between contractor and subcontractor.

To introduce the problems tackled in this paper we use a small example of an in-
terorganizational workflow involving two business partners: a contractor and a sub-
contractor. The interaction between these two business partners is shown in Figure 1
using a so-called sequence diagram. First, the contractor sends an order to the sub-
contractor. Then, the contractor sends a detailed specification to the subcontractor and
the subcontractor sends a cost statement to the contractor. Based on the specification
the subcontractor manufactures the desired product and sends it to the contractor. For
this very simple business-to-business protocol a sequence diagram is suitable. However,
sequence diagrams are typically used to describe scenarios rather than a complete spec-
ification of a business-to-business protocol or trade procedure. Sequence diagram have
problems expressing a mixture of choice and synchronization and subtle aspects such
as the moment of choice. In Section 2.3, we will address these subtle, but crucial, issues
using the workflow model shown in Figure 20. Given these limitations, we use Petri
nets [43, 44] to model such business-to-business protocols.

Figure 2 specifies the process described earlier in terms of a Petri net. The transi-
tions, represented by squares, correspond to tasks and the places, represented by circles,
correspond to the causal relations between the tasks [8]. The places order, specifica-
tion, cost statement, and product are used to exchange the messages shown in Figure 1.
Places may contain tokens and, at any time, the distribution of tokens over places speci-
fies the current state of the process. Initially, place i (i.e., the source place) contains one
token corresponding to a new case also called workflow instance. Transitions are en-
abled if each input place contains a token, i.e., initially transition send order is enabled.
Enabled transitions can fire by removing a token from each input place and produc-
ing a token for each output place, i.e., firing send order results in the consumption of
the token in i and the production of three new tokens. After firing send order, tran-
sitions receive order and create specification are enabled. These two transitions can

3

i

o

order

receive_order

create_cost_statement

process_specification

ship_product

cost_statement

specification

product

process_cost_statement

create_specification

handle_product

send_order

Fig. 2. The public workflow Npubl .

be fired, i.e., executed, in any order. After firing these two transitions, transition pro-
cess specification becomes enabled. It is easy to see that starting with a token in place
i all transitions are executed (i.e., fired) in a predefined order thus resulting in the state
with just one token in the sink place o. Moreover, the exchange of tokens via the places
order, specification, cost statement, and product matches the interaction pattern shown
in Figure 1. Since this Petri net exhibits no choices and the degree of parallelism is lim-
ited, the model may seem unnecessary complex. However, for more complex business-
to-business protocols, the more advanced constructs offered by the Petri-net formalism
are indispensable. Moreover, in contrast to Figure 1, Figure 2 also shows the tasks.

We will use the term public workflow for the Petri net shown in Figure 2. One can
think of this Petri net as the contract between the contractor and the subcontractor,
i.e., Figure 2 does not necessarily show the way the tasks are actually executed. The
real process may be much more detailed and involving much more tasks. The public
workflow only contains the tasks which are of interest to both parties.

Figure 2 does not show who is executing the tasks. Therefore, we extend the Petri
net with a notion of hierarchy as shown in figures 3, 4, and 5. Figure 3 shows the top-
level of the interorganizational workflow, i.e., the two business partners involved and the
messages exchanged. The two large squares in Figure 3 are called domains. In this case
there are two domains: one for the contractor (left) and one for the subcontractor (right).
The two domains are connected via the channels order, specification, cost statement,

4

N0
part

contractor

order

cost_statement

specification

product

N1
part

subcontractor

Fig. 3. The interorganizational workflow Qpart .

and product. The shaded rectangles correspond to methods, i.e., services offered by the
domains.

contractor
i

o

process_cost_statement

create_specification

handle_product

send_order

Fig. 4. The WF-net N part
0

(public part of contractor).

In the interorganizational workflow shown in figures 3, 4, and 5, the public workflow
is partitioned over the two domains. Figure 4 shows the contractor’s share of the public
workflow and Figure 5 shows the subcontractor’s share of the public workflow. Tran-
sitions in the two domains are mapped onto methods, i.e., the execution of a transition
provides the corresponding service offered by the domain in Figure 3. In this particular
example there is a one-to-one correspondence between transitions and methods. How-
ever, in general several transitions may offer the same service (i.e., are mapped onto
the same method). Moreover, there may be transitions which are just added for rout-
ing purposes and do not correspond to relevant tasks. These tasks are not mapped onto
methods.

5

subcontractor

receive_order

create_cost_statement

process_specification

ship_product

o

i

Fig. 5. The WF-net N part
1

(public part of subcontractor).

contractor
i

o

process_cost_statement

create_specification

handle_product

send_order

cs

Fig. 6. The WF-net N priv
0

(private part of contractor).

The interorganizational workflow corresponding to the partitioned public workflow
(i.e., figures 3, 4, and 5) serves only as an agreement, i.e., it is the business-to-business
protocol the business partners agreed upon and not the real workflow as it is executed.
The workflow description which is used to actually execute the workflow within one
of the domains is called the private workflow. The private workflow typically contains
several tasks which are only of local interest. Figure 6 shows a rather a-typical pri-
vate workflow. This is the private workflow of the contractor and contains no additional
tasks. The only thing that has been added is the place cs connecting the task which
processes the cost statement to the task creating the specification. This place may have
been added because the contractor thinks that it is more efficient to create the specifi-
cation after the cost statement has been processed. From a local point of view, such a
change is quite acceptable. If the contractor is only interested in the part of the public
workflow shown in Figure 4, the change may seem harmless. However, if the subcon-
tractor executes its local workflow as specified in Figure 5, then the process (i.e., the
overall interorganizational workflow) will deadlock after the execution of send order
and receive order. This example shows that local changes may have dramatic effects.

6

contractor
i

o

process_cost_statement

create_specification

handle_product

send_order

collect_input

prepare_cs

NOK

OK

bill

check

prepare_ph

Fig. 7. An alternative WF-net Npriv
0

(private part of contractor).

Figure 7 shows an alternative private workflow. In this workflow many tasks have
been added which are only of local interest, e.g., in-between the sending of the order
and the creation of the specification task collect input may be executed multiple times.
Although the private workflow shown in Figure 7 adds many tasks to its part of the
public workflow, the original order of the key tasks is not changed. In contrast with
Figure 6, Figure 7 is consistent with Figure 4. If the subcontractor executes its local
workflow as specified in Figure 4 and the contractor executes its local workflow as
specified in Figure 7, then the overall interorganizational workflow will run smoothly
without deadlocks or similar anomalies.

subcontractor

receive_order

create_cost_statement

process_specification

ship_product

o

i

decide
procedure_1

procedure_2

Fig. 8. The WF-net N priv
1

(private part of subcontractor).

Figure 8 shows the private workflow of the subcontractor. This workflow contains
three tasks not present in the Figure 5: decide, procedure 1, and procedure 2. After
the order is received, a decision is made. Based on this decision one of two possi-
ble procedures is executed. In one procedure, the specification is processed before the

7

cost statement is created. In the other procedure, the cost statement is created before
the specification is processed. Again, from a local perspective, there is no apparent
reason why the private workflow cannot be extended in this way. The first procedure
corresponds to the order specified in the public workflow. The second procedure only
offers the opportunity to reverse the order of the tasks process specification and cre-
ate cost statement. If the private workflow of the subcontractor shown in Figure 8 is
combined with the private workflow of the contractor shown in Figure 6, then there
is still a potential deadlock. However, executing the alternative procedure can actually
help to avoid the deadlock mentioned earlier. If the subcontractor uses the second pro-
cedure, the addition of the place cs in the contractor’s workflow does not result in a
deadlock. This illustrates that the contractor can detect the presence of the alternative
procedure and indicates that the private workflow shown in Figure 8 is not consistent
with Figure 5. If the private workflow of the subcontractor shown in Figure 8 is com-
bined with the private workflow of the contractor shown in Figure 7, then there are
no potential anomalies such deadlocks and livelocks. Nevertheless, something essential
has changed. Based on the public workflow, the contractor may assume that the speci-
fication has been processed by the subcontractor when the cost statement is processed.
However, if the workflow shown in Figure 8 is used, this is no longer guaranteed. There-
fore, we consider the workflow shown in Figure 8 not a suitable candidate to realize the
subcontractor’s share of the public workflow.

subcontractor

receive_order

create_cost_statement

process_specification

ship_product

o

i

process_order decide

short_p

long_p

discuss

produce
assemble

Fig. 9. An alternative WF-net Npriv
1

(private part of subcontractor).

Figure 9 shows an alternative private workflow. This workflow is consistent with the
subcontractor’s part of the public workflow. If the private workflows shown in figures 6
and 9 are combined, the key tasks are executed in the order specified in the public
workflow.

This paper addresses the problems illustrated by this small example: How to make
sure that the local implementation of a workflow does not create all kinds of anomalies
over organizational borders? To solve these problems we propose the P2P (Public-To-
Private) approach which is based on projection inheritance. Projection inheritance has
been defined in [7, 14, 15] and uses encapsulation as a mechanism to establish subclass-

8

superclass relationships. In contrast to many other notions of inheritance, it primarily
addresses the dynamic behavior rather than data types or method signatures. The P2P
approach consists of three steps. In the first step, the public workflow is created. In the
second step, the public workflow is partitioned over a number of domains. Finally, a
private workflow is created for each domain such that the private workflow is a subclass
of the corresponding part of the public workflow. If the P2P approach is followed, it
is guaranteed that the overall workflow (i.e., the workflow obtained by combining all
private workflows) is free of deadlocks and other similar anomalies. Moreover, the over-
all workflow is a subclass of the public workflow. Therefore, it is guaranteed that the
business-to-business protocol specified in the public workflow is actually realized. To
demonstrate the validity of our approach we show that the Greatest Common Denomi-
nator (GCD) of all local views (i.e., the part of the process visible from one domain) is
the public workflow. We also show that the Least Common Multiple (LCM) of all local
views is the overall workflow.

The remainder of this paper is organized as follows. First, we introduce the nota-
tions, techniques, and theoretical results used in this paper. Unfortunately the proofs
are quite complex and require a lot of preliminaries. The paper builds on Petri nets [43,
44], sound WF-nets [1], branching bisimilarity [25], projection inheritance [14], and
GCD/LCM of processes [6, 7]. The corresponding concepts are all introduced in Sec-
tion 2. Readers familiar with these concepts can pass over selected parts of this section.
Section 3 introduces the framework used to model interorganizational workflows. The
P2P approach is described in Section 4. Section 5 demonstrates that the overall work-
flow realizes the public workflow if the P2P approach is used. Section 6 introduces the
notion of views and shows that the GCD and LCM of these views coincide with the pub-
lic respectively overall workflow. Finally, we conclude the paper by relating the results
to existing work, describing our tool Woflan which partly supports the P2P approach,
and summarizing our plans for future work.

2 Preliminaries

In the introduction we sketched the potential problems when connecting autonomous
workflow processes in an interorganizational setting. To reason about these problems
and to present a concrete approach for dealing with this problems, we need to intro-
duce some basic notations and concepts. The concurrent nature of distributed workflow
processes and the tricky nature of the errors pointed out in the introduction, forces
us to use a rigorous formalism that can deal with this issues. Most workflow man-
agement systems use a vendor-specific workflow language. To avoid results which are
tool-specific and to benefit from 40 years of research in concurrent systems, we use
Petri nets. The variant of Petri nets used in this paper, i.e., the class of sound workflow
nets, is closely related to the modeling languages used in contemporary workflow man-
agement systems. The close relationship is demonstrated by our tool Woflan [55] which
automatically translates workflow processes specified with Staffware, COSA, Protos,
XRL, Meteor, etc. to workflow nets. Another reason for using Petri nets is that the P2P
approach heavily depends on the inheritance notions described in [7, 14, 15].

9

2.1 Place/Transition nets

In this section, we define a variant of the classic Petri-net model, namely labeled Place/-
Transition nets. For a more elaborate introduction to Petri nets, the reader is referred to
[21, 41, 43].

Let U be some universe of identifiers; let L be some set of action labels. Lv =
L\{�} is the set of all visible labels. (The role of � , the silent action, will be explained
later.)

We assume that the reader is familiar with basic mathematical notations. We use
P(U) to denote the powerset ofU , i.e., the set consisting of all subsets ofU .U ∗ denotes
the set of all sequences over U and " is the empty sequence (i.e., the sequence of length
0). For some relation R over U (i.e., R ⊂ U ×U), R∗ is the transitive closure of R and
R−1 is the inverse of R. A function f from set A to set B is denoted f : A → B.
rng(f) is the range of f .

Definition 1 (Labeled P/T-net). A labeled Place/Transition net is a tuple (P; T;M; F; `)
where:

1. P ⊆ U is a finite set of places,
2. T ⊆ U is a finite set of transitions such that P ∩ T = ∅,
3. M ⊆ Lv is a finite set of methods such that M ∩ (P ∪ T) = ∅,
4. F ⊆ (P × T) ∪ (T × P) is a set of directed arcs, called the flow relation, and
5. ` : T → M ∪ {�} is a labeling function.

Each transition has a label which refers to the method or operation that is executed if the
transition fires. However, if the transition bears a � label, then no method is executed.
Note that there can be many transitions with the same label, i.e., executing the same
method. Figure 2 shows a P/T net with 13 places and 8 transitions. The figure only
shows the labels of the transitions, i.e., the identifiers of the transitions and some of the
places are not shown. In this particular example there are no two transitions with the
same label. Therefore, we can use the transition labels to identify transitions.

Let (P; T;M; F; `) be a labeled P/T-net. Elements of P ∪T are referred to as nodes.
A node x ∈ P ∪ T is called an input node of another node y ∈ P ∪ T if and only if
there exists a directed arc from x to y; that is, if and only if xFy. Node x is called an
output node of y if and only if there exists a directed arc from y to x. If x is a place
in P , it is called an input place or an output place; if it is a transition, it is called an
input or an output transition. The set of all input nodes of some node x is called the
preset of x; its set of output nodes is called the postset, e.g., the preset of the transition
labeled receive order in Figure 2 is the singleton containing order and the preset of
the transition labeled handle product contains three places. Two auxiliary functions
• ; • : (P ∪T)→ P(P ∪T) are defined that assign to each node its preset and postset,
respectively. For any node x ∈ P ∪ T , •x = {y | yFx} and x• = {y | xFy}. Note
that the preset and postset functions depend on the context, i.e., the P/T-net the function
applies to. If a node is used in several nets, it is not always clear to which P/T-net the
preset/postset functions refer. Therefore, we augment the preset and postset notation

with the name of the net whenever confusion is possible:
N•x is the preset of node x in

net N and x
N• is the postset of node x in net N .

10

Definition 2 (Marked, labeled P/T-net). A marked, labeled P/T-net is a pair (N; s),
where N = (P; T;M; F; `) is a labeled P/T-net and where s is a bag over P denoting
the marking (also called state) of the net. The set of all marked, labeled P/T-nets is
denotedN .

For some bag X over alphabet A and a ∈ A, X(a) denotes the number of occurrences
of a in X , often called the cardinality of a in X . The set of all bags over A is denoted
B(A). The empty bag, which is the function yielding 0 for any element in A, is denoted
0. For the explicit enumeration of a bag we use square brackets and superscripts to
denote the cardinality of the elements. For example, [a2; b; c3] denotes the bag with two
elements a, one b, and three elements c. In this paper, we allow the use of sets as bags.

Definition 3 (Transition enabling). Let (N; s) be a marked, labeled P/T-net in N ,
where N = (P; T;M; F; `). A transition t ∈ T is enabled, denoted (N; s)[t〉, if and
only if each of its input places p contains a token. That is, (N; s)[t〉 ⇔ •t ≤ s.

If a transition t is enabled in marking s (notation: (N; s)[t〉), then t can fire. If, in
addition, t has label a (i.e., a = `(t) is the associated method, operation, or observable
action) and firing t results is marking s ′, then (N; s) [a〉 (N; s′) is used to denote the
potential firing.

Definition 4 (Firing rule). The firing rule [〉 ⊆ N ×L×N is the smallest relation
satisfying for any (N; s) inN , with N = (P; T;M; F; `), and any t ∈ T ,

(N; s)[t〉 ⇒ (N; s) [`(t)〉 (N; s− •t+ t•).
[〉 ⊆ N × L × N is a ternary relation linking markings through transition labels,

i.e., (N; s) [a〉 (N; s′) if any only if there is a transition with label a enabled in (N; s)
whose execution results in (N; s′). Consider the labeled P/T-net shown in Figure 2.
In the marking with just a token in i (i.e., marking [i]) only transition send order is
enabled. Firing this transition in marking [i] results in a state where the three output
places of send order are marked, i.e., the transition consumes one token and produces
three tokens. Note that if transition handle product is fired, three tokens are consumed
and only one token is produced.

Definition 5 (Firing sequence). Let (N; s0) with N = (P; T;M; F; `) be a marked,
labeled P/T-net in N . A sequence � ∈ T ∗ is called a firing sequence of (N; s0) if
and only if � = " or, for some positive natural number n ∈ IN, there exist markings
s1; : : : ; sn ∈ B(P) and transitions t1; : : : ; tn ∈ T such that � = t1 : : : tn and, for all i
with 0 ≤ i < n, (N; si)[ti+1〉 and si+1 = si− •ti+1+ ti+1• . Sequence � is said to be
enabled in marking s0, denoted (N; s0)[�〉. Firing the sequence � results in the unique
marking s, denoted (N; s0) [�〉 (N; s), where s = s0 if � = " and s = sn otherwise.

In Figure 2 the following firing sequence is enabled in marking [i]: send order, re-
ceive order, create specification, process specification, create cost statement, process -
cost statement, ship product, handle product. Execution of this firing sequence starting
in [i] yields marking [o], i.e., the state with just one token in the sink place.

Definition 6 (Reachable markings). The set of reachable markings of a marked, la-
beled P/T-net (N; s) ∈ N with N = (P; T;M; F; `), denoted [N; s〉, is defined as the
set {s′ ∈ B(P) | (∃� : � ∈ T ∗ : (N; s) [�〉 (N; s′))}.

11

In Figure 2, eleven markings are reachable from [i]. Note that there is not a one-to-one
correspondence between places and markings. One marking may mark multiple places
and there are many markings marking a given place.

Definition 7 (Connectedness). A labeled P/T-net N = (P; T;M; F; `) is weakly con-
nected, or simply connected, if and only if, for every two nodes x and y in P ∪ T ,
x(F ∪F−1)∗y. Net N is strongly connected if and only if, for every two nodes x and y
in P ∪ T , xF ∗y.

The P/T-net shown in Figure 2 is connected but not strongly connected since there is no
directed path from place o to place i.

Definition 8 (Directed path). Let (P; T;M; F; `) be a labeled P/T-net. A (directed)
path C from a node n1 to a node nk is a sequence 〈n1; n2; : : : ; nk〉 such that niFni+1
for 1 ≤ i ≤ k − 1. C is elementary if and only if for any two nodes ni and nj on C,
i �= j ⇒ ni �= nj . C is non-trivial iff it contains at least two nodes.

Since the P/T-net shown in Figure 2 is acyclic all directed paths are elementary.

Definition 9 (Union of labeled P/T-nets). Let N0 = (P0; T0;M0; F0; `0) and N1 =
(P1; T1;M1; F1; `1) be two labeled P/T-nets such that (P0 ∪ P1) ∩ (T0 ∪ T1) = ∅ and
such that, for all t ∈ T0 ∩ T1, `0(t) = `1(t). The union N0 ∪ N1 of N0 and N1 is
the labeled P/T-net (P0 ∪ P1; T0 ∪ T1; F0 ∪ F1; `0 ∪ `1). If two P/T-nets satisfy the
abovementioned two conditions, their union is said to be well defined.

Definition 10 (Boundedness). A marked, labeled P/T-net (N; s) ∈ N is bounded if
and only if the set of reachable markings [N; s〉 is finite.

The labeled P/T-net shown in Figure 2 is bounded for any initial marking. The marked
P/T-net shown in Figure 10 is not bounded because place cost statement can be marked
with any number of tokens by executing the transitions create cost statement and repeat
alternatingly.

Definition 11 (Safeness). A marked, labeled P/T-net (N; s) ∈ N with N = (P; T;M;

F; `) is safe if and only if, for any reachable marking s ′ ∈ [N; s〉 and any place p ∈ P ,
s′(p) ≤ 1.

Safeness implies boundedness. Therefore, the unbounded marked P/T-net shown in Fig-
ure 10 cannot be safe.

Definition 12 (Dead transition). Let (N; s) be a marked, labeled P/T-net inN . A tran-
sition t ∈ T is dead in (N; s) if and only if there is no reachable marking s ′ ∈ [N; s〉
such that (N; s′)[t〉.
The transitions process cost statement and handle product are dead in the marked P/T-
net shown in Figure 10. Transition process cost statement requires a token from both
specification and cost statement. However, the only way to produce a token for cost sta-
tement is to first fire process specification and remove the token from specification. As
a result, handle product is also never enabled and therefore both transitions are dead.
None of the transitions in Figure 2 is dead given the initial marking [i].

12

i

o

order

receive_order

create_cost_statement

process_specification

ship_product

cost_statement

specification

product

process_cost_statement

create_specification

handle_product

send_order

repeat

Fig. 10. A non-bounded, non-safe, non-live marked P/T-net with two dead transitions.

Definition 13 (Liveness). A marked, labeled P/T-net (N; s) ∈ N with N = (P; T;M;

F; `) is live if and only if, for every reachable marking s ′ ∈ [N; s〉 and transition t ∈ T ,
there is a reachable marking s′′ ∈ [N; s′〉 such that (N; s′′)[t〉.
A marked P/T-net containing dead transitions is not live, e.g., the marked P/T-net shown
in Figure 10 cannot be live because it contains two dead transitions. However, there
are non-live marked P/T-nets without any dead transitions. Consider for example the
P/T-net shown in Figure 2 with initial marking [i] which is not live and has no dead
transitions. Note that if we fuse i and o in Figure 2, then the corresponding net is live in
[i].

2.2 Workflow nets

For the modeling of workflow processes we use labeled P/T-nets with a specific struc-
ture. We will name these nets workflow nets (WF-nets).

Definition 14 (WF-net). Let N = (P; T;M; F; `) be a labeled P/T-net. Net N is a
workflow net (WF-net) if and only if the following conditions are satisfied:

1. instance creation: P contains an input (source) place i ∈ U such that •i = ∅,

13

2. instance completion: P contains an output (sink) place o ∈ U such that o• = ∅,
3. connectedness: �N = (P; T ∪ {�t};M; F ∪ {(o; �t); (�t; i)}; ` ∪ {(�t; �)}) is strongly

connected (�t �∈ T),
4. method use: M = rng(`)\{�},
5. visible start: for any t ∈ T such that t ∈ i• : `(t) ∈ Lv, and
6. visible end : for any t ∈ T such that t ∈ •o: `(t) ∈ Lv.

Note that the connectedness requirement implies that there is one unique source and
one unique sink place. For the readers familiar with the work presented in [1, 4]: the
WF-nets defined in this paper are extended with the latter three requirements, i.e., all
methods are actually used in the network, and the start transitions i• and stop transitions
•o have non-� labels. The P/T-nets shown in figures 2 and 10 are WF-nets. The structure
of a WF-net allows us to define the following functions.

Definition 15 (source; sink ; start ; stop; strip). Let N = (P; T;M; F; `) be a WF-net.

1. source(N) is the (unique) input place i ∈ P such that •i = ∅,
2. sink(N) is the (unique) output place o ∈ P such that o• = ∅,
3. start(N) = {t ∈ T | i ∈ •t} is the set of start transitions,
4. stop(N) = {t ∈ T | o ∈ t• } is the set of stop transitions, and
5. strip(N) = (P ′; T;M; F ∩ ((P ′ × T)∪ (T ×P ′)); `) with P ′ = P\{source(N);

sink(N)} is the WF-net without source and sink place.

Definition 14 only gives a static characterization of a WF-net. Workflows will have a
life-cycle which satisfies the following requirements.

Definition 16 (Soundness). A WF-net N with source(N) = i and sink (N) = o is
said to be weakly sound if and only if the following conditions are satisfied: 1

1. safeness: (N; [i]) is safe,
2. proper completion: for any reachable marking s ∈ [N; [i]〉, o ∈ s implies s = [o],

and
3. completion option: for any reachable marking s ∈ [N; [i]〉, [o] ∈ [N; s〉.
N is said to be strongly sound, or simply sound, if and only if, in addition there are no
dead transitions, i.e., (N; [i]) contains no dead transitions.

The set of all (strongly) sound WF-nets is denotedW . The first requirement states that
a sound WF-net is safe. The second requirement states that the moment a token is put
in place o all the other places should be empty, which corresponds to the termination
of a workflow instance (i.e., a case) without leaving dangling references. The third
requirement states that starting from the initial marking [i], i.e., activation of the case, it
is always possible to reach the marking with one token in place o, which means that it is
always feasible to terminate successfully. If a WF-net meets these three requirements, it
is weakly sound. The fourth requirement, which states that there are no dead transitions,
corresponds to the requirement that for each transition there is an execution sequence

1 Note that [i] and [o] are bags containing the input respectively output place of N.

14

activating this transition. Any weakly sound WF-net is strongly sound if this fourth
requirement is met.

The WF-net shown in Figure 2 is strongly sound. However, the WF-net shown in
Figure 10 is not strongly sound and even not weakly sound, because it is not possible
to mark the sink place o, i.e., the third requirement is violated. (In fact, all requirements
except the second one are violated.)

To show the relation between strong and weak soundness we use the � operator
which removes all dead transitions and corresponding places from the net.

Definition 17 (Removing dead transitions: �). Let (N; s) be a marked, labeled P/T-
net inN , withN = (P; T;M; F; `) and a set of dead transitionsD ⊆ T . � is a function
such that it maps marked P/T-nets onto P/T nets: �(N; s) = (P ′; T ′;M ′; F ′; `′) with
T ′ = T\D, P ′ = {p ∈ P | (•p ∪ p•) �⊆ D}, F ′ = F ∩ ((P ′ × T ′) ∪ (T ′ × P ′)),
dom(`′) = T ′, for t ∈ T ′: `′(t) = `(t), and M ′ = rng(`′)\{�}. If N is a WF-net with
source place i, then � can also be applied without explictly stating the initial marking,
i.e., �(N) = �(N; [i]).

The following theorem states that any weakly sound WF-net can be transformed into a
strongly sound WF-net by removing the dead transitions using the � operator.

Theorem 1 (Relation between weak and strong soundness). Let N be a weakly
sound WF-net. �(N) is strongly sound.

Proof. N satisfies the first three requirements stated Definition 16. Removing the dead
transitions and associated places does not change the set of reachable markings. There-
fore, �(N) satisfies the first three requirements. Moreover, because of the removal
of dead transitions, �(N) also satisfies the fourth requirement. Remains to prove that
�(N) is a WF-net. It is easy to show that the six requirements stated in Definition 14
are not jeopardized by the removal of dead parts. ��
The fact that a weakly sound WF-net can be transformed into strongly sound net allows
us to focus on the properties of strongly sound WF-nets. Therefore, we will use the term
“soundness” to refer to strongly sound WF-nets unless stated otherwise.

Theorem 2 (Characterization of soundness). Let N = (P; T;M; F; `) be a WF-net
and �N = (P; T ∪ {�t};M; F ∪ {(o; �t); (�t; i)}; ` ∪ {(�t; �)}) the short-circuited version
of N (�t �∈ T). N is sound if and only if (�N; [i]) is live and safe.

Proof. The proof is similar to the proof in [1]. The only difference is that in this paper
a stronger notion of soundness is used, which implies safeness rather than boundedness
of the short-circuited net. ��
If we add a transition �t to Figure 2 as described in Theorem 2, then the corresponding
P/T-net is both live and safe. If we add a transition �t to Figure 10, then the resulting net
is not live and unbounded. Note that these observations support Theorem 2.

The fact that soundness coincides with standard properties such as liveness and
safeness allows us to use existing tools and techniques to verify soundness of a given
WF-net.

The alphabet operator � is a function yielding the set of visible labels of all transi-
tions of the net that are not dead.

15

Definition 18 (Alphabet operator �). Let (N; s) be a marked, labeled P/T-net in N ,
with N = (P; T;M; F; `). � : N → P(Lv) is a function such that �(N; s) = {`(t) |
t ∈ T ∧ `(t) �= � ∧ t is not dead}.
Since sound WF-nets do not contain dead transitions, �(N; [i]) equals {`(t) | t ∈
T ∧ `(t) �= �}, which is denoted by �(N).

2.3 Branching bisimilarity

To formalize projection inheritance, we need to formalize a notion of equivalence. In
this paper, we use branching bisimilarity [25] as the standard equivalence relation on
marked, labeled P/T-nets in N . The notion of a silent action is pivotal to the definition
of branching bisimilarity. Silent actions are actions (i.e., transition firings) that cannot
be observed. Silent actions are denoted with the label � , i.e., only transitions in a P/T-net
with a label different from � are observable. Note that we assume that � is an element
of L. The � -labeled transitions are used to distinguish between external, or observable,
and internal, or silent, behavior. A single label is sufficient, since all internal actions are
equal in the sense that they do not have any visible effects.

Two marked, labeled P/T-nets are called branching bisimilar, denoted p∼ b q, if and
only if their observable behaviors coincide (i.e., abstracting from silent actions). For a
formal definition we refer to Definition 33 in Appendix A. Branching bisimilarity (i.e.,
the relation ∼b is an equivalence relation on N , i.e., ∼b is reflexive, symmetric, and
transitive (see Appendix A for more details). Using this equivalence relations we define
two WF-nets N0 and N1 in W to be behavioral equivalent if and only if (N0; [i]) ∼b
(N1; [i]). This will be denoted by N0

∼= N1 (cf. Definition 34 in Appendix A).

2.4 Inheritance

In [7, 14, 15] four notions of inheritance have been identified. Unlike most other notions
of inheritance, these notions focus on the dynamics rather than data and/or signatures of
methods. These inheritance notions address the usual aspects: substitutability (Can the
superclass be replaced by the subclass without breaking the system?), subclassing (im-
plementation inheritance: Can the subclass use the implementation of the superclass?),
and subtyping (interface inheritance: Can the subclass use or conform to the interface of
the superclass?). The four inheritance notions are inspired by a mixture of these aspects.

In this paper, we restrict ourselves to one of the four inheritance notions: projection
inheritance. In the future we hope to extend our framework with other notions of inher-
itance (cf. Section 7). The basic idea of projection inheritance can be characterized as
follows.

If it is not possible to distinguish the behaviors of x and y when arbitrary meth-
ods of x are executed, but when only the effects of methods that are also present
in y are considered, then x is a subclass of y.

For projection inheritance, all new methods (i.e., methods added in the subclass) are
hidden. Therefore, we introduce the abstraction operator � I that can be used to hide
methods.

16

Definition 19 (Abstraction). Let N = (P; T;M; F; `0) be a labeled P/T-net. For any
I ⊆ Lv, the abstraction operator �I is a function that renames all transition labels in
I to the silent action � . Formally, �I (N) = (P; T;M; F; `1) such that, for any t ∈ T ,
`0(t) ∈ I implies `1(t) = � and `0(t) �∈ I implies `1(t) = `0(t).

The definition of projection inheritance is straightforward, given the abstraction opera-
tor and branching bisimilarity as an equivalence notion.

Definition 20 (Inheritance). For any two (weakly) sound WF-nets N0 and N1 in W ,
N1 is a subclass of N0 under projection inheritance, denoted N1 ≤pj N0, if and only if
there is an I ⊆ Lv such that (�I (N1); [i])∼b (N0; [i]).

It is easy to show that ≤pj is a partial order, i.e., ≤pj is reflexive, anti-symmetric, and
transitive [14, 15]. Let us consider the five WF-nets shown in Figure 11 to illustrate the

i

o

a

c

N0

b

i

o

a

c

N1

b d

i

o

a

c

N2

b

e

i

o

a

c

N3

b f

i

o

a

c

N4

b g

Fig. 11. N2, N3, and N4 are subclasses of N0 under projection inheritance.

notion of projection inheritance. N1 is not a subclass of N0 because hiding of the new
task d results in a potential trace where a is followed by c without executing b, i.e.,
the WF-net where d is renamed to � is not branching bisimilar. N2 is a subclass of N0

because hiding e in N2 results in a behavior equivalent to the behavior of N0, i.e., the
addition of e only postpones the execution of b and does not allow for a bypass such
as the one in N1. N3 is also a subclass of N0: Hiding the parallel branch containing f
yields the original behavior. Finally, N4 is also a subclass of N0.

17

Based on the notion of projection inheritance we have defined three inheritance-
preserving transformation rules. These rules correspond to design patterns when ex-
tending a superclass to incorporate new behavior: (1) adding a loop, (2) inserting meth-
ods in-between existing methods, and (3) putting new methods in parallel with existing
methods. See Appendix B for a formal definition of each of these rules. The inheritance-
preserving transformation rules distinguish the work presented in [7, 14, 15] from ear-
lier work on inheritance. The rules correspond to design constructs that are often used
in practice, namely iteration, sequential composition, and parallel composition. If a de-
signer sticks to these rules, inheritance is guaranteed!

2.5 Greatest common divisor/least common multiple of WF-nets

Projection inheritance provides a (partial) ordering of WF-nets. This ordering, like any
ordering, can be used to define the notions of Greatest Common Divisor (GCD) and
Least Common Multiple (LCM). Since≤pj is not a total ordering, there is not always a
unique upper and lower bound. Therefore, we also define a Maximal Common Divisor
(MCD) and a Minimal Common Multiple (MCM) for a given set of WF-nets.

Definition 21 (GCD, LCM). Let N0; N1; : : : ; Nn−1, where n is some natural number,
and N be sound WF-nets inW .

1. Net N is a Maximal Common Divisor (MCD) of N0; N1; : : : ; Nn−1 if and only if
(a) (∀ k : 0 ≤ k < n : Nk ≤pj N) and,
(b) for any workflow process definitionN ′ such that (∀ k : 0 ≤ k < n : Nk≤pjN

′)
and N ′ ≤pj N , N ′ ∼= N .

2. Net N is a Greatest Common Divisor (GCD) of N0; N1; : : : ; Nn−1 if and only if, it
is an MCD ofN0; N1; : : : ; Nn−1 such that, for all MCDs N ′ ofN0; N1; : : : ; Nn−1,
N ′ ∼= N .

3. Net N is a Minimal Common Multiple (MCM) of N0; N1; : : : ; Nn−1 if and only if
(a) (∀ k : 0 ≤ k < n : N ≤pj Nk) and,
(b) for any workflow process definitionN ′ such that (∀ k : 0 ≤ k < n : N ′≤pjNk)

and N ≤pj N
′, N ′ ∼= N .

4. Net N is a Least Common Multiple (LCM) of N0; N1; : : : ; Nn−1 if and only if, it is
an MCM of N0; N1; : : : ; Nn−1 such that, for all MCMs N ′ of N0; N1; : : : ; Nn−1,
N ′ ∼= N .

The GCD of a set of WF-nets is a WF-net that captures the part these nets have in
common, i.e., the part where they agree on. The LCM captures all possible behaviors.
Consider for example the WF-nets N0, N2, N3, and N4 shown in Figure 11. The GCD
of these four nets is N0. Each of the four WF-nets is a subclass of this net and it is not
possible to find a different WF-net which is also a subclass of N0, N2, N3, and N4 and
at the same time a subclass of N0. N0 is reasonable choice for the GCD: Each of the
nets executes a, b, and c in sequential order. Figure 12 shows NGCD = N0 as the GCD
of N0, N2, N3, and N4. Figure 12 also shows the WF-net NLCM . NLCM is a subclass
of each of the four nets considered. Moreover, it is not possible to find a different WF-
net which is also a subclass of N0, N2, N3, and N4 and at the same time a superclass of

18

i

o

a

c

NGCD

b

e

f

i

o

a

c

NLCM

b g

Fig. 12. The greatest common divisor NGCD and least common multiple NLCM of N0, N2, N3,
and N4 shown in Figure 11.

NLCM . Therefore, NLCM is indeed the LCM of N0, N2, N3, and N4. Any sequence
generated by one of the four nets can also be generated by NLCM after the appropriate
abstraction.

As Figure 12 indicates, the size of the GCD is typically smaller than the LCM.
This may be confusing since the GCD is larger with respect to the ordering ≤ pj . This
apparent paradox can easily be explained by the following property:N 0≤pj N1 implies
�(N0) ⊇ �(N1).

In [6, 7] the notions GCD, MCD, LCM, and MCM have been explored in the context
of the four inheritance relations. For the inheritance relation considered in this paper,
i.e., projection inheritance, the main results can be summarized as follows:

– For any set of sound WF-nets there is a MCD, i.e., an upper bound with respect to
≤pj (modulo branching bisimulation).

– Given any set of WF-nets it is possible to find a MCD. However, it is not always
possible to find an MCM. Consider for example two WF-nets both containing two
transitions labeled a and b. If in one net a is executed before b and in the other net
b is executed before a, then it is not possible to construct an MCM. Note that the
notion of MCM is related to multiple inheritance, i.e., the MCM needs to inherit
the properties of multiple WF-nets. In many object-oriented frameworks multiple
inheritance is difficult to handle. Therefore, it is not surprising that the MCM does
not necessarily exist.

– Let N0; N1; : : : ; Nn−1, where n is some natural number, be n sound WF-nets in
W . If there is a sound WF-net N in W such that (∀ k : 0 ≤ k < n : Nk ≤pj N)

19

and, for any sound WF-net N ′ in W , (∀ k : 0 ≤ k < n : Nk ≤pj N
′) implies

N ≤pj N
′, then N is a GCD of N0; N1; : : : ; Nn−1, i.e., there is one unique MCD

modulo branching bisimulation.
– Similarly, if there is a sound WF-net N in W such that (∀ k : 0 ≤ k < n :
N ≤pj Nk) and, for any sound WF-net N ′ in W , (∀ k : 0 ≤ k < n : N ′ ≤pj Nk)
impliesN ′≤pjN , thenN is an LCM ofN0; N1; : : : ; Nn−1, i.e., there is one unique
MCM modulo branching bisimulation.

3 Interorganizational workflows

The WF-net introduced in Section 2.2 specifies one workflow process in isolation. The
goal of the paper is to tackle problems related to interorganizational workflows. There-
fore, we define an interorganizational workflow net (IOWF-net) as a set of WF-nets
connected through channels.

Definition 22 (IOWF-net). An interorganizational workflow net (IOWF-net) is a tuple
(C; n;N0; N1; : : : ; Nn−1; G) where:

1. C ⊆ U is a finite set of channels,
2. N0; N1; : : : ; Nn−1 are n WF-nets such that:

(a) (∀ k : 0 ≤ k < n : Nk = (Pk; Tk;Mk; Fk; `k)),
(b) (∀ k; l : 0 ≤ k < l < n : (Pk ∪ Tk ∪Mk) ∩ (Pl ∪ Tl ∪Ml) = ∅), and
(c) (∀ k : 0 ≤ k < n : (Pk ∪ Tk ∪Mk) ∩ C = ∅),

3. M = (∪ k : 0 ≤ k < n : Mk) is the union of methods, and
4. G ⊆ (C×M)∪ (M ×C) is a set of directed arcs, called the channel flow relation.

An IOWF-net consists of a set of interconnected WF-nets. The interconnection struc-
ture is specified by a set of channels C, a set of methodsM , and a channel flow relation
G. Figures 3, 4, and 5 show an example of an IOWF-net. Figure 3 shows the four chan-
nels order, specification, cost statement, and product. Figures 4 and 5 show the two
WF-nets. Only the methods (i.e., labels) attached to transitions in the WF-nets are visi-
ble. Npart

0 has four methods: send order, create specification, process cost statement,
and handle product.N part

1 also has four methods: receive order, process specification,
create cost statement, and ship product. Figure 3 also shows the channel flow relation
G, e.g., method send order is connected to channel order, channel order is connected
to method receive order, etc.

The semantics of an IOWF-net are given in terms of a labeled P/T net, i.e., by taking
the union of all WF-nets, adding a place for each channel, connecting transitions to
these newly added places as specified by G, and removing superfluous source and sink
places, the IOWF-net is transformed into a labeled P/T net. We call this the flattening
of the interorganizational workflow. The following definition describes a function at

which transforms any IOWF-net into a labeled P/T net.

Definition 23 (at(Q)). Let Q = (C; n;N0; N1; : : : ; Nn−1; G) be an IOWF-net. N =
(P; T;M; F; `) is the such that:

1. P = C ∪ (∪ k : 0 ≤ k < n : Pk),

20

2. Pi = {source(Nk) | 0 ≤ k < n},
3. Po = {sink(Nk) | 0 ≤ k < n},
4. T = (∪ k : 0 ≤ k < n : Tk),
5. M = (∪ k : 0 ≤ k < n : Mk),
6. ` = (∪ k : 0 ≤ k < n : `k), and
7. F = (∪ k : 0 ≤ k < n : Fk) ∪ {(p; t) ∈ P × T | (p; `(t)) ∈ G} ∪ {(t; p) ∈

T × P | (`(t); p) ∈ G}.
Let N ′ = (P ′; T;M; F ′; `) be the labeled P/T net obtained by removing all places

X = {p ∈ Pi | N• (pN•) �= {p}} ∪ {p ∈ Po | (N•p)N• �= {p}}, i.e., P ′ = P\X and
F ′ = F ∩ ((P ′ × T) ∪ (T × P ′)). at(Q) = N ′ is the flattened IOWF-net.

The definition at is fairly straightforward except for the removal of source and sink
places. Source place source(Nk) is removed if and only if there is a transition which
consumes tokens from source(Nk) and at least one other place, i.e., only source places
which serve as the only input place for all connected transitions are kept. Similarly, sink
place sink(Nk) is removed if and only if there is a transition which produces tokens for
sink(Nk) and at least one other place. Figure 13 shows the flattened interorganizational
workflow defined by figures 3, 6 and 8. Note that the source place and sink place of the
WF-net shown in 8 have been removed in the flattened net: the source place of N priv

1

was not the only input place of receive order and the sink place of N priv
1 was not the

only output place of ship product. In both cases the start/stop transition is connected
to a place representing one of the channels. Note that the WF-net shown in Figure 2
is the flattened interorganizational workflow defined by figures 3, 4, and 5, i.e., the
semantics of the interorganizational workflow are not changed after partitioning N publ

over a contractor subflow and a subcontractor subflow.

receive_order

create_cost_statement

process_specification

ship_product

decide
procedure_1

procedure_2

process_specification

create_cost_statement

i

o

process_cost_statement
create_specification

handle_product

send_order

order

specification

specification

cost_statement

Fig. 13. The flattened interorganizational workflow composed of the private WF-nets shown in
figures 6 and 8.

As is illustrated by Figure 13, the channels connect the WF-nets constituting the
interorganizational workflow. It is easy to see that these connections may cause dead-
locks. For example, if in the WF-net shown in Figure 13 the first procedure is chosen,

21

then the workflow process deadlocks, i.e., the state obtained after executing send order,
receive order, decide, and procedure 1 is dead. Another undesirable phenomenon is
called multiple activation. To explain this anomaly we introduce the term activation. A
subflow in an IOWF-net is activated if at least one of the places in the subflow is marked
(except the source and sink place). Note that a subflow becomes activated after one of
the start transitions fires. A subflow becomes deactivated if each of the subflow places
is empty after one of the stop transitions fires. Ideally, every activation is followed by
a deactivation. However, in an interorganizational workflow an activated subflow could
become activated again without being deactivated first. Such a multiple activation may
lead to all kinds of anomalies because the subflow embedded in the interorganizational
workflow exhibits behavior which is not possible in the WF-net in isolation. For ex-
ample multiple activation of a subflow k may result in states not considered when es-
tablishing the soundness of WF-net Nk. To formulate the requirement that there is no
multiple activation, we define the notion of activation safeness.

Definition 24 (Activation safeness). Let (N; s) be a marked, labeled P/T-net in N ,
where N = (P; T;M; F; `). A subset of places P ′ ⊆ P is activation safe in (N; s) if
and only if for any reachable state s ′ ∈ [N; s〉, any transition t ∈ •P ′\P ′• , and any
place p ∈ P ′: (N; s′)[t〉 implies s′(p) = 0.

A set of places P ′ is activation safe if all transitions producing tokens for P ′ but not
consuming tokens from P ′ are not enabled as long as there are tokens in P ′. It is easy to
see that there is no multiple activation of a subflow in an interorganizational workflow
if and only if the places of each subflow are activation safe. Using Definition 24, we can
formulate the notion of soundness for IOWF-nets.

Definition 25 (Soundness). Let Q = (C; n;N0; N1; : : : ; Nn−1; G) be an IOWF-net
and let N = (P; T;M; F; `) be the corresponding flattened net without dead transi-
tions, i.e., N = �(at(Q)). Q is sound if and only if:

1. (∀ k : 0 ≤ k < n : Nk ∈ W), i.e., all subflows are sound,
2. N ∈ W , i.e., the flattened IOWF-net is a sound WF-net, and
3. (∀ k : 0 ≤ k < n : Pk\{source(Nk); sink (Nk)} is activation safe in (N; [i])), i.e.,

there is no multiple activation.

The first two requirements are fairly straightforward: A sound IOWF-net is composed
of sound WF-nets and the flattened IOWF-net is also a sound WF-net. Note that we
consider the flattened IOWF-net without dead transitions, i.e., the dead parts which do
not affect the dynamic behavior are removed using �. The last requirement has been
added to avoid multiple activation. The IOWF-net defined by figures 3, 4, and 5 is
an example of a sound IOWF-net: it is composed of two sound WF-nets, the flattened
IOWF-net is a sound WF-net, and there is no multiple activation. The IOWF-net defined
by figures 3, 6, and 8 is not sound because the flattened net is not sound.

The first two requirements in Definition 25 can be checked using the result stated in
Theorem 2. The last requirement does not correspond to well-established notions such
as liveness and safeness and may be hard to check since there are no efficient analysis
techniques/tools to verify this requirement. Therefore, we introduce a stronger require-
ment which can be validated syntactically (i.e., based on the structure of the flattened

22

net). This requirement states that there is not a path from a transition inside one of the
subflows to one of its start transitions not containing one of its stop transitions, i.e., the
topology of the net guarantees that a subflow cannot trigger itself indirectly before it is
deactivated. In other words: there is no self triggering. The following property defines
the absence of self triggering and shows that the absence of self triggering assures that
there is no multiple activation.

Property 1 (Self triggering). Let Q = (C; n;N0; N1; : : : ; Nn−1; G) be an IOWF-net
satisfying the first two requirements stated in Definition 25 (i.e., all subflows are sound
and the flattened IOWF-netN = �(at(Q)) is a sound WF-net). If (∀ k; t; t ′ : 0 ≤ k <

n ∧ t ∈ Tk ∧ t′ ∈ start(Nk) : all non-trivial directed paths in N from t to t ′ contain
at least one occurrence of a transition in stop(Nk)) and (∀ k : 0 ≤ k < n : (∩ t : t ∈
start(Nk) :

N•t) �= ∅) (i.e., start transitions share input places), then Q is sound.

Proof. To prove this property, we use proof by contradiction, i.e., we assume that
for some subflow k ∈ D, there is a firing sequence � such that (N; [i]) [�〉 (N; s),
t ∈ start(Nk), (N; s)[t〉, and p ∈ Pk is marked in s. Without loss of generality, we
further assume that s was the first state in the sequence having these properties (i.e., a
start transition is enabled while a place in Pk is marked). Partition the sequence � in
two subsequences �1 and �2 such that �2 contains all firings since the last firing of a
transition in stop(Nk), i.e., �1 is either empty or ends with the last firing of a transition
in stop(Nk). The first sequence ends in state s′ (i.e., (N; [i]) [�1〉 (N; s′)). Note that in
s′ all places in Pk are empty. (Otherwise there would have been a prefix of � contain-
ing the anomaly.) Now we concentrate on the second subsequence: (N; s ′) [�2〉 (N; s).
In this sequence no transition in stop(Nk) fires. Therefore, we remove all transitions
stop(Nk) from N and name the new net N ′. Note that (N ′; s′) [�2〉 (N ′; s). The re-
quirement that all non-trivial directed paths in N from a transition inside N k to one
of the start transitions in Nk contain at least one of the stop transitions in Nk im-
plies that we can partition the transitions of N ′ in two subsets TX and TY such that

{t ∈ T\Tk | tN
′
• ∩ N ′

• start(Nk) �= ∅} ⊆ TX , Tk ⊆ TY , and
N ′
• TX ∩ TY N ′

• = ∅ be-
cause all stop transitions have been removed. Now we apply the well-known exchange
lemma (see for example page 23 in [21]) which allows us to project � 2 onto the transi-

tions in TX and TY : �2X and �2Y . Since
N ′
• TX ∩ TY

N ′
• = ∅, the exchange lemma

shows that we can first execute �2X followed by �2Y . Let state s′′ be the state after
executing �2X , i.e., (N ′; s′) [�2X 〉 (N ′; s′′). It is easy to see that in s′′ at least one of
the input places of the start transitions of Nk contains multiple tokens, because start
transitions share input places. (Note that �2Y marks a place in Pk, i.e., fires at least one
start transition of Nk, and also enables a start transition of Nk without adding any new
tokens to the input places.) Therefore, the safeness property is violated. The sequence
composed of �1 followed by �2X is also possible in (N; [i]). Therefore, (N; [i]) cannot
be a sound WF-net and we find a contradiction. ��
Property 1 shows that the only way that a subflow becomes activated multiple times
(i.e., the place is not activation safe), is through self triggering.

Based on the notion of soundness of IOWF-nets (Definition 25) and the semantics
of IOWF-nets (Definition 23), we define requirements for a partitioning to be valid.

23

Definition 26 (Valid partitioning). Let N be a sound WF-net and Q be an IOWF-net.
Q is a valid partitioning of N if and only if Q is sound and N = �(at(Q)).

The IOWF-net defined by figures 3, 4, and 5 is a valid partitioning of the WF-net shown
in Figure 2.

4 P2P approach

The example used in the introduction is a nice illustration of the anomalies that can oc-
cur if business partners do not have a common understanding of the interorganizational
workflow at hand. Many problems that are not likely to occur in a workflow which is un-
der the supervision of one organizational unit will occur in a workflow partitioned over
multiple organizations. Recent developments such as the rise of the WWW, business-
to-business E-commerce, and networked virtual companies, have fueled the need for
more (complex) interorganizational workflows. To avoid anomalies such as interorga-
nizational deadlocks and livelocks on the one hand and to allow local autonomy for the
organizational units involved on the other hand, we propose the P2P (Public-to-Private)
approach. This approach is based on projection inheritance and consists of three steps.
These steps were already introduced informally in Section 1.

Definition 27 (P2P approach). Let D = {0; 1; : : : ; n− 1} be a set of n domains. The
Public-To-Private (P2P) approach consists of the following three steps:

Step 1 Create a public workflow N publ = (P publ ; T publ ;Mpubl ; F publ ; `publ) such
that Npubl is a sound WF-net.

Step 2 Map each task onto one of the domains, i.e., construct a functionmap : T publ →
D and a valid partitioning Qpart = (C; n;Npart

0 ; N
part
1 ; : : : ; N

part
n−1 ; G) of Npubl

such that for all k ∈ D: N part

k = (P part

k ; T
part

k ;M
part

k ; F
part

k ; `
part

k) and T part

k =
{t ∈ T publ |map(t) = k}. Qpart is called the partitioned public workflow and for

each domain k ∈ D: N part
k is called the public part of k.

Step 3 For each domain k ∈ D define a sound WF-net N priv
k = (P priv

k ; T
priv
k ;M

priv
k ;

F
priv
k ; `

priv
k) such that N priv

k is a subclass of Npart
k under projection inheritance

(i.e., Npriv
k ≤pj N

part
k), the labels of start and stop transitions are not changed

(i.e., {`privk (t) | t ∈ start(Npriv

k) ∪ stop(Npriv

k)} ⊆ �(Npart

k)), and Qoverall =

(C; n;Npriv
0 ; N

priv
1 ; : : : ; N

priv
n−1 ; G) is an IOWF-net. N priv

k is called the private
workflow of domain k, Qoverall is called the overall workflow, and N overall =
�(at(Qoverall)) is called the overall WF-net.

In the first step, the public workflow is created. This workflow is specified in terms
of a sound WF-net N publ and serves as a contract between all business partners in-
volved. Figure 2 shows an example of such a public workflow. In the second step, the
public workflow is partitioned over the set of domains D. Note that each domain cor-
responds to an organizational entity. For the definition of the P2P approach, we prefer
to use the more neutral term “domain” instead of terms like “business partner” and
“organizational unit”. Figures 3, 4, and 5 show an example of such a partitioning over

24

two domains. Note that the partitioned workflow is a valid interorganizational workflow
Qpart as defined in definitions 22 and 26. At first glance it may seem that this require-
ment is rather restrictive. This is not the case, as we will motivate later. As a result of
the partitioning, each fragment of the partitioned workflow corresponds to one of the
domains and is represented by a sound WF-net. The WF-net N part

k of a domain k is
called the public part of k. In the final step, the public parts are replaced by private
workflows. Each private workflow corresponds to the actual workflow as it is executed
in one of the domains. The key of the P2P approach is that each private workflowN

priv
k

is a subclass of the corresponding private workflowN
part

k under projection inheritance,
i.e., Npriv

k ≤pj N
part
k . Moreover, a private workflow is not allowed to change the labels

of start and stop transitions. This requirement follows from the fact that at the interor-
ganizational level it has to be clear whether a domain is active or not. Figures 7 and
9 show two private workflows satisfying the requirements formulated in Step 3. The
interorganizational workflow obtained by connecting the private workflows is called
the overall workflow Qoverall . Note that figures 3, 7, and 9 describe such an overall
workflow. Since Qoverall is an IOWF-net, we can use function at to obtain the overall
WF-netNoverall = �(at(Qoverall)). In the next section we will show that the fattened
IOWF-net is indeed a WF-net. In fact we will show both the WF-net N overall and the
IOWF-net Qoverall are sound. Figure 14 shows the fattened IOWF-net of the overall
workflow described in figures 3, 7, and 9. It is easy to verify that the result shown in
Figure 14 is indeed a sound WF-net.

The P2P approach does not impose any restrictions on the public workflow, i.e.,
any sound WF-net can be promoted to public workflow. However, the requirement that
the partitioning in Step 2 has to be valid may seem quite restrictive. Recall that the
partitioning is only valid if all public parts (i.e., local fragments of the workflow) are
sound, there is no multiple activation, and the flattened IOWF-net equals the public
workflow. To illustrate the implications of these prerequisites consider the three WF-
nets shown in Figure 15. Each of the four WF-nets consists of four sequential tasks:
prepare, produce, assemble, and ship. The dashed lines indicate the partitioning of the
corresponding WF-nets. The first WF-net, i.e., Figure 15(a), is partitioned vertically:
prepare and produce are mapped onto one domain and assemble and ship are mapped
onto another domain. It is easy to see that this partitioning is valid. The WF-net shown in
Figure 15(b) is partitioned horizontally: prepare and ship are mapped onto one domain
and produce and assemble are mapped onto another domain. This partitioning is not
valid because the first fragment, i.e., the P/T net on the left-hand-side of the line in
Figure 15(b), is not a WF-net. The causal relation between prepare and ship via produce
and assemble is removed by partitioning the WF-net. The P2P requires each fragment to
be a sound WF-net, i.e., each public part of the workflow in isolation should be a correct
workflow. Clearly, the requirement stated in Step 2 is very restrictive. However, a closer
observation of Figure 15(b) shows that there is no apparent reason why the horizontal
partitioning should not be allowed. As Figure 15(c) shows the problem can easily be
solved by adding an implicit place c4. The horizontal partitioning of the WF-net with
c4 is valid. This example shows that if a partitioning is not valid, it is often possible to
“massage” the public workflow a bit to make a valid partitioning possible.

25

i

o

process_cost_statement

create_specification

handle_product

send_order

collect_input

prepare_cs

NOK

OK

bill

check

prepare_ph

receive_order

create_cost_statement

process_specification

ship_product

process_order decide

short_p

long_p

discuss

produce
assemble

order

specification

cost_statement

product

Fig. 14. The flattened IOWF Noverall composed of the private WF-nets shown in figures 7 and 9.

Place c4 is called implicit since it does not influence the behavior of the WF-net,
i.e., a place of a marked P/T net is said to be implicit or redundant if and only if it does
not depend on the number of tokens in the place whether any of its output transitions is
enabled by some reachable marking.

Definition 28 (Implicit place). Let (N; s) with N = (P; T;M; F; `) be a marked,
labeled, ordinary P/T net. A place p ∈ P is called implicit in (N; s) if and only if, for
all reachable markings s′ ∈ [N; s〉 and transition t ∈ p• , s′ ≥ •t\{p} ⇒ s′ ≥ •t.
Implicit places and their properties have been studied in [18, 20]. Adding implicit places
does not change the behavior. In fact, extending a WF-net with implicit places yields
a P/T net which is branching bisimilar to the original net [14, 15]. From a computa-
tional point of view, it may be quite expensive to check whether a place is implicit.
However, several authors have investigated techniques to find structural implicit places
[17, 18, 20]. A structural implicit place is a place which is guaranteed to be implicit
by the structure of the Petri net. Every structural implicit place is an implicit place,
but there may be implicit places which are not structural implicit. Since the set of all

26

i

c1prepare

o

produce

assemblec3

c2
ship

(a)

i

c1prepare

o

produce

assemblec3

c2
ship

(b)

i

c1

o

produce

assemblec3

c2

(c)

c4

prepare

ship

Fig. 15. A valid partitioning (a), a non-valid partitioning (b), and a valid partitioning obtained by
adding implicit place c4 (c).

27

structural implicit places can be found without constructing the reachability graph, it
allows for very efficient analysis techniques. For this particular application, it suffices
to only consider structural implicit places. Moreover, it is quite easy to build a facility
which (semi-)automatically adds implicit places where needed. For more information
on adding (structural) implicit places, we refer to [2, 5].

By adding implicit places it is possible to make any partitioning valid as long as
each public part of the public workflow has a clear starting point and a clear ending
point, i.e., subflow k is activated by firing one of its start transitions and is deactivated
by firing one of its stop transitions, every activation/deactivation is communicated via
a channel or the source/sink place of the public workflow, and there is no multiple
activation. These conditions are quite reasonable: it should always be clear if a domain
is activated or not. If these conditions are met, then the partitioning can be made valid
by adding (structural) implicit places.

5 The overall workflow realizes the public workflow

The P2P approach starts with the creation of a public workflow which serves as some
kind of contract. Then, the P2P approach partitions the public workflow and creates a
set of private workflows which together constitute the overall workflow. One can think
of the overall workflow as the interorganizational workflow actually being executed. In
this section, we show that when using the P2P approach the overall workflow in fact
realizes the public workflow. To be more precise, we will show that:

– the flattened overall workflow is a sound WF-net (i.e., N overall ∈ W),
– the overall workflow Qoverall is sound, and
– the overall WF-net is a subclass of the public workflow under projection inheritance

(i.e., Noverall ≤pj N
publ).

To prove these properties, we start this section with a rather complex but fairly general
theorem. The theorem states that under certain conditions, a subflow can be replaced a
subclass subflow without endangering soundness and yielding a subclass.

Figure 16 illustrates the essence of Theorem 3: Consider a sound WF-net N 0 com-
posed of NA and NB . NA and NB communicate through a set of common places
PA ∩ PB . NB is chosen in such a way that if we remove the places PA ∩ PB and
add a source and sink place we obtain a sound WF-net NW

B . In addition, it is assumed
that there is no multiple activation. Moreover, there are three additional P/T nets NC ,
NW
C , and N1. N1 is composed of NA and NC . The connections between NA and NC

in N1 are essentially the same as the connections between NA and NB in N0, e.g.,
PA ∩ PC = PA ∩ PB (see Theorem 3 for details). Moreover, NC is chosen in such a
way that if we remove the places PA ∩ PC and add a source and sink place we obtain
a sound WF-net NW

C which is a subclass of NW
B under projection inheritance. Under

these conditions N1 is guaranteed to be sound and a subclass of N0. In other words:
Theorem 3 shows that inheritance is some kind of congruence under the composition
of WF-nets.

Theorem 3 (Compositionality of projection inheritance). Let N0 = (P0; T0;M0;

F0; `0), N1 = (P1; T1; M1; F1; `1), NA = (PA; TA;MA; FA; `A), NB = (PB ; TB ;

28

NC

N1

NA

NB

N0

NA
subclass of

subclass of

Fig. 16. The essence of Theorem 3: if NWC is a subclass of NWB , then N1 is a subclass of N0.

MB ; FB ; `B), NC = (PC ; TC ;MC ; FC ; `C), NW
B = (PW

B ; TWB ;MW
B ; FW

B ; `WB), and
NW
C = (PW

C ; TWC ;MW
C ; FW

C ; `WC) be labeled P/T-nets. If

1. N0 is a sound WF-net in W with source place i = source(N0) and sink place
o = sink(N0),

2. N0 = NA ∪NB is well defined,
3. N1 = NA ∪NC is well defined,
4. TA ∩ TB = ∅,
5. TA ∩ TC = ∅,
6. PA ∩ PB = PA ∩ PC ,
7. NW

B is a sound WF-net in W such that strip(NW
B) = (PB\PA; TB ;MB; FB ∩

((PW
B × TWB) ∪ (TWB × PW

B)); `B), iB = source(NW
B), oB = sink(NW

B), and
{iB; oB} ∩ P0 = ∅,

8. NW
C is a sound WF-net in W such that strip(NW

C) = (PC\PA; TC ;MC ; FC ∩
((PW

C × TWC) ∪ (TWC × PW
C)); `C), iC = source(NW

C), oC = sink(NW
C), and

{iC ; oC} ∩ P1 = ∅,
9. {`B(t) | t ∈ start(NW

B)} = {`C(t) | t ∈ start(NW
C)}, i.e., the sets of start labels

coincide,
10. {`B(t) | t ∈ stop(NW

B)} = {`C(t) | t ∈ stop(NW
C)}, i.e., the sets of stop labels

coincide,

11. (∀ t : t ∈ TB ∧ `B(t) = � : (
N0• t ∩ PA = ∅) ∧ (t

N0• ∩ PA = ∅)),
12. (∀ t : t ∈ TC ∧ `1(t) �∈ �(NW

B) : (
N1• t ∩ PA = ∅) ∧ (t

N1• ∩ PA = ∅)),
13. (∀ t; t′ : t ∈ TB ∧ t′ ∈ TC ∧ `B(t) = `C(t

′) : (
N0• t ∩ PA =

N1• t′ ∩ PA) ∧ (t
N0•

∩ PA = t′
N1• ∩ PA)),

14. PW
B is activation safe in (N0; [i]), and

15. NW
C ≤pj N

W
B ,

then N1 is a weakly sound WF-net inW such that N1 ≤pj N0.

Proof. The proof is a variant of the proof of Theorem 40 given in [9]. Note that N 1 is
not necessarily strongly sound. However, by simply removing the dead parts we obtain

29

a strongly sound WF-nets, i.e., �(N1) is sound. This solves the problem raised in [10].
��

By applying Theorem 3 it is possible to prove that N overall obtained using the P2P
approach is a sound WF-net and a subclass of N publ .

Theorem 4. Let D, Npubl , Qoverall , and N overall be as defined in Definition 27.

1. Qoverall is sound, and
2. Noverall is a subclass of Npubl under projection inheritance (i.e., N overall ≤pj

Npubl).

Proof. For any k ∈ D: Qk = (C; n;Npriv
0 ; : : : ; N

priv
k−1 ; N

part
k ; : : : ; N

part
n−1 ; G), i.e., Qk

is the IOWF-net where the first k public parts are replaced by private workflows. We
use induction in k to prove that Qk is sound and �(at(Qk)) is a subclass of Npubl for
any k ∈ D.

Base case Assume that k = 0. Qk = Qpart . Qpart is a valid partitioning of N publ .
Therefore, Qk is sound and �(at(Qk)) = Npubl . Moreover, �(at(Qk)) is a
subclass of Npubl .

Inductive step Assume that k ≥ 1. The induction hypothesis states that Qk−1 is sound
and �(at(Qk−1)) is a subclass of Npubl . We need to prove that Qk is sound and

�(at(Qk)) is a subclass of Npubl . QA = (C; n;Npriv
0 ; : : : ; N

priv
k−2 ; N

part
k ; : : : ;

N
part
n−1 ; G

′) with G′ = G\((C ×Mk−1) ∪ (Mk−1 × C)). Clearly, Qk−1, Qk and
QA are IOWF-nets. Therefore, we can apply the function at to obtain N 1 =

�(at(Qk)), N0 = �(at(Qk−1)), and NA = �(at(QA)). Let NW
B = N

part
k−1

andNW
C = N

priv
k−1 . It is easy to verify thatN0,N1,NA,NW

B , andNW
C satisfy all the

requirements mentioned in Theorem 3. Therefore, Theorem 3 can be used to show
that N1 = �(at(Qk)) is sound and N1 = at(Qk) ≤pj N0 = �(at(Qk−1)).
Since projection inheritance is transitive, �(at(Qk)) ≤pj �(at(Qk−1)), and �(
at(Qk−1)) ≤pj N

publ , we conclude that �(at(Qk)) ≤pj N
publ . Remains to

prove that there is no multiple activation in Qk. Since �(at(Qk))≤pj N
publ and

Npubl contains all start and stop transitions of the individual subflows, it is not
possible to fire a start transition while the places in the subflow are not empty.
This can easily be verified by considering the firing sequences in �(at(Q k)) after
abstraction.Qk is sound because all subflows are sound, �(at(Qk)) is sound, and
there is no multiple activation.

Hence, Qoverall = Qn is sound and N overall = �(at(Qn)) is a subclass of Npubl .
��

Theorem 4 clearly shows the value of the P2P approach: Without the need for any co-
ordination among the business parters involved, the resulting interorganizational work-
flow is guaranteed to be sound. Moreover, it is guaranteed that the resulting interorgani-
zational workflow realizes the public workflow, i.e., the tasks agreed upon in the public
workflow are executed in the proper order. Consider for example the public workflow
Npart shown in Figure 2 and the IOWF-net Qoverall described by figures 3, 7, and 9.

30

Qoverall can be obtained via the P2P approach since the WF-net shown in Figure 7 is
a subclass of the WF-net shown in Figure 4 and the WF-net shown in Figure 9 is a
subclass of the WF-net shown in Figure 5. Therefore, it is guaranteed that the overall
WF-net shown in Figure 14 is sound and a subclass of the WF-net Figure 2.

6 Local view

In this section we focus on the view on the interorganizational workflow from the per-
spective of one of the domains. The local view of a domain is a detailed description its
own private workflow and a high-level description of the part of the workflow handled
by the other domains, i.e., the local view of k ∈ D is composed of N part

0 , Npart
1 , : : : ;

N
part
k−1 , Npriv

k , Npart
k+1 , : : : ; Npart

n−1 .

Definition 29 (Local view). Let D, Qpart , Npart
k , and N

priv
k , etc. be as defined in

Definition 27. For all k ∈ D: Qview
k = (C; n;N0; N1; : : : ; Nn−1; G) with Nk = N

priv
k

and (∀ l : 0 ≤ l < n ∧ l �= k : Nl = N
part
l) is called the local view. N view

k =
�(at(Qview

k)) is the local view WF-net.

Figure 17 shows the local view WF-net N view
0 of the contractor on the interorganiza-

tional workflow described by figures 3, 7, and 9. The contractor has a detailed view of
its own part of the workflow (left) and a high-level view of the subcontractor’s part of
the workflow (right).

i

o

process_cost_statement

create_specification

handle_product

send_order

collect_input

prepare_cs

NOK

OK

bill

check

prepare_ph

order

specification

cost_statement

product

receive_order

create_cost_statement

process_specification

ship_product

Fig. 17. The local view Nview
0 of the contractor on the interorganizational workflow composed of

the private WF-nets shown in figures 7 and 9.

The following theorem shows that each local view has some desirable properties.

Theorem 5. Let D, Npubl , Noverall , Qview
k , Nview

k , etc. be as defined in definitions 27
and 29. For any k ∈ D:

31

1. Qview
k is sound,

2. Noverall is a subclass of N view
k (i.e., Noverall ≤pj N

view
k), and

3. N view
k is a subclass of Npubl (i.e., N view

k ≤pj N
publ).

Proof. Reorder the domains such that k is the first domain, i.e., Qpart = (C; n;Npart
k ;

N
part
0 ; N

part
1 ; : : : ; N

part

k−1 ; N
part

k+1 ; : : : N
part
n−1 ; G). After reordering use a proof similar to

the proof of Theorem 4. Let Qk be as defined in the proof of Theorem 4 (after re-
ordering). Qview

k = Q1, Nview
k = �(at(Q1)), Npubl = �(at(Q0)), Noverall =

�(at(Qn−1)). Clearly, Qview
k is sound. Moreover, for all i; j ∈ D with i ≥ j:

�(at(Qi))≤pj �(at(Qj)). Hence, Noverall ≤pj N
view
k ≤pj N

publ . ��
Theorem 5 illustrates that the local views generated by the P2P approach are consistent
with the public workflow and the overall workflow, i.e., each local view is sound, is a
subclass of the public workflow, and a superclass of the overall workflow. Consider for
example the interorganizational workflow described by figures 3, 7, and 9. The contrac-
tor’s local view described by the WF-net shown in Figure 17 is guaranteed to be sound,
is a subclass of the the WF-net shown in Figure 2, and is a superclass of the WF-net
shown in Figure 14.

If we combine all local views and calculate the GCD, i.e., the part of the workflow
all domains agree on, then we obtain the public workflow. If we calculate the LCM,
then we obtain the overall workflow.

Theorem 6. Let D, Npubl , Noverall , Nview
k , etc. be as defined in definitions 27 and 29.

1. Npubl is the greatest common divisor (GCD) of N view
0 ; Nview

1 ; : : : Nview
n−1 .

2. Noverall is the least common multiple (LCM) of N view
0 ; Nview

1 ; : : :Nview
n−1 .

Proof. To prove that N publ is the GCD, we use the property stated in Section 2.5.
We need to prove that (a) (∀ k : 0 ≤ k < n : N view

k ≤pj N
publ), and (b) for any

sound WF-net N ′ in W , (∀ k : 0 ≤ k < n : N view
k ≤pj N

′) implies Npubl ≤pj N
′.

Property (a) follows directly from Theorem 5. To prove (b) take an arbitrary N ′ in W
such that (∀ k : 0 ≤ k < n : N view

k ≤pj N
′). We need to show that N publ ≤pj N

′.
First note that �(Npubl) = (∩ k : 0 ≤ k < n : �(Nview

k)) ⊇ �(N ′). Take an
arbitrary local view WF-net, e.g., N view

0 . Hiding the methods �(N view
0)\�(Npubl)in

Nview
0 yields Npubl . Hiding the methods �(N view

0)\�(N ′) in Nview
0 yields N ′. Since

(�(Nview
0)\�(Npubl)) ⊆ (�(Nview

0)\�(N ′)), we obtain N ′ by abstracting from the
methods �(N publ)\ �(N ′) in Npubl , i.e., Npubl ≤pj N

′ and (b) holds.
The proof that N overall is the LCM is similar. A crucial element of this proof is the

observation that �(N overall) = (∪ k : 0 ≤ k < n : �(Nview
k)) ⊆ �(N ′). ��

Theorems 5 and 6 illustrate the fact that both the workflow all business partners agreed
on (Npubl) and the actual workflow (N overall) are in harmony with the local views.
These results demonstrate the sophistication of the P2P approach.

7 Related work and future extensions

Petri nets have been proposed for modeling workflow process definitions long before the
term “workflow management” was coined and workflow management systems became

32

readily available. Consider for example the work on Information Control Nets, a variant
of the classical Petri nets, in the late seventies [22, 23]. For the reader interested in
the application of Petri nets to workflow management, we refer to the workshops on
workflow management held in conjunction with the annual International Conference
on Application and Theory of Petri Nets and an elaborate paper on workflow modeling
using Petri nets [1].

Only a few papers in the literature focus on the verification of workflow process
definitions. In [27] some verification issues have been examined and the complexity of
selected correctness issues has been identified, but no concrete verification procedures
have been suggested. In [1] and [12] concrete verification procedures based on Petri
nets have been proposed. This paper builds upon the work presented in [1] where the
concept of a sound WF-net was introduced (see Section 2.2). The technique presented
in [12] has been developed for checking the consistency of transactional workflows in-
cluding temporal constraints. However, the technique is restricted to acyclic workflows
and only gives necessary conditions (i.e., not sufficient conditions) for consistency. In
[47] a reduction technique has been proposed. This reduction technique uses a cor-
rectness criterion which corresponds to soundness and the class of workflow processes
considered are in essence acyclic free-choice Petri nets. Based on this reduction tech-
nique the analysis tool FlowMake [46] has been developed. Flowmake can interface
with the IBM MQSeries Workflow product. Some researchers worked on the composi-
tional verification of workflows [14, 56] using well-known Petri-net results such as the
refinement rules in [54].

This paper differs from the above approaches because the focus is on interorgani-
zational workflows. Only a few papers explicitly focus on the problem of verifying the
correctness of interorganizational workflows [2, 31]. In [2] the interaction between do-
mains is specified in terms of message sequence charts and the actual overall workflow
is checked with respect to these message sequence charts. A similar, but more formal
and complete, approach is presented by Kindler, Martens, and Reisig in [31]. The au-
thors give local criteria, using the concept of scenarios (similar to runs or basic message
sequence charts), to guarantee the absence of certain anomalies at the global level. Both
approaches [2, 31] are not constructive, i.e., they only specify criteria for various no-
tions of correctness but do not provide concrete design rules such as the transformation
rules presented in Section 2.4.

In the last decade several researchers [13, 29, 30, 36] explored notions of behav-
ioral inheritance (also named subtyping or substitutability). Researchers in the domain
of formal process models (e.g., Petri-nets and process algebras) have tackled similar
questions based on the explicit representation of a process by using various notions of
(bi)simulation [14]. The inheritance notion used in this paper is characterized by the
fact that it is equipped with both inheritance-preserving transformation rules to con-
struct subclasses [14, 15] and transfer rules to migrate instances from a superclass to a
subclass and vice versa [7]. These features are very relevant for a both constructive and
robust approach towards interorganizational workflows.

The primary focus of this paper is to ensure correctness of interorganizational work-
flows at a conceptual level. The P2P approach is independent of the workflow manage-
ment systems used and can be applied in different technical infrastructures. Clearly,

33

many researchers have focused on different aspects of interorganizational workflows
[24, 26, 33, 38, 39, 45, 48]. Much work has been done on workflow transactions in the
context of cross-organizational workflows, e.g., [24, 26, 45]. However, this work typi-
cally considers correctness issues at the task level rather than the process level. For ex-
ample, the coordination model and the service model presented in [24] are not explicitly
addressing control flow problems resulting from causal relations (or the absence of such
relations). The work conducted in projects such as CrossFlow [26], WISE [33], OSM
[38], and COSMOS [39] is highly relevant for the enactment of interorganizational
workflows. However, these projects do not consider the correctness issues tackled in
this paper. Consider for example the Common Open Service Market (COSM) infras-
tructure proposed in [38, 39]. This infrastructure proposes mobile agents. The control-
flow within each agent is managed by a Petri-net-based workflow engine. Unfortunately,
this work does not address the design problems mentioned in the introduction of this
paper. Based on these observations, we conclude that the P2P is complementary to the
work reported in [24, 26, 33, 38, 39, 45, 48].

In this paper, we did not address implementation issues. Most of today’s commercial
workflow systems use a centralized enactment service. Therefore, many of the research
prototypes such as MENTOR (University of Saarland at Saarbrucken), METEOR (Uni-
versity of Georgia), MOBILE (University of Erlangen), Panta Rhei (University of Kla-
genfurt), and WASA (University of Muenster) focus on distribution aspects. These sys-
tems typically provide for message passing. Therefore, they can be used to support the
P2P approach. A more detailed discussion on the architecture of an enactment service
to take care of interorganizational workflows is outside the scope of this paper. The
focus of this paper is on the design and analysis of interorganizational workflows.

We have developed a tool named Woflan (WOrkFLow ANalyzer, [1, 55]). Woflan
is an analysis tool which can be used to verify the correctness of a workflow process
definition. The analysis tool uses state-of-the-art techniques to find potential errors in
the definition of a workflow process. Woflan is designed as a WFMS-independent anal-
ysis tool. In principle it can interface with many workflow management systems. At the
moment, Woflan can interface with the WFMS COSA (Software Ley [51]), the WFMS
METEOR (LSDIS [49]), the WFMS Staffware (Staffware [52]), and the BPR-tool Pro-
tos (Pallas Athena [42]). Woflan has not been designed to analyze interorganizational
workflows. However, Woflan can be used to verify the soundness property used through-
out this paper. Moreover, Woflan can also check whether one workflow (i.e., WF-net)
is a subclass of another workflow. One of the key features of Woflan is ability to guide
the user to the source of a design error, i.e., Woflan supplies many context-sensitive
diagnostics which support the user in correcting design flaws. Although Woflan has not
specifically been designed to verify the correctness of interorganizational workflows, it
can support some of the crucial steps in the P2P approach, e.g., Woflan can verify the
correctness of the public workflow, and, for each domain, Woflan can be used to check
whether the private workflow is a subclass of the corresponding public part under pro-
jection inheritance. Figure 18 shows a screenshot of Woflan while analyzing a process
realized using the workflow management system COSA.

To illustrate the relevance of the results we have used the P2P approach to design an
interorganizational workflow for a fictive electronic bookstore similar to amazon.com or

34

Fig. 18. A screenshot showing COSA (background) and Woflan (foreground): The public work-
flow of an electronic bookstore is implemented using COSA and verified using Woflan.

35

bn.com. This case study has been described in [11]. The screenshot shown in Figure 18
shows the analysis of the public workflow of the book ordering process of an electronic
bookstore described in [3]. A predecessor of the P2P approach has also been applied to
an interorganizational workflow in the Telecom industry [5]. This workflow deals with
the issue of service bundling between service providers.

In the future we hope to extend the P2P approach in several directions. First of all,
we want to address local dynamic changes. The transfer rules presented in [7] can be
used to migrate cases (i.e., workflow instances) from a superclass to a subclass and vice
versa. Therefore, it is possible to change the workflows in each of the domains on the
fly, i.e., it is possible to automatically transfer each case to the latest version of the pro-
cess. As long as the superclass/subclass relationships are established, it is possible to
migrate cases without jeopardizing the correctness of both the local and overall work-
flow. Second, we want to tackle a topic we did not address in this paper: reconfiguration
of interorganizational workflows. In this paper, we assumed the public workflow and the
partitioning of the public workflow over the domains to be fixed. In real applications,
tasks are moved from one organization to another and the “contract” (i.e., the public
workflow) is changed on a regular basis. A preliminary exploration of these problems
shows that the P2P approach can be extended to address these reconfiguration issues.
Third, we want to evaluate the P2P approach using a real implementation. For example,
we could use the workflow management system METEOR [49] to enact some of the in-
terorganizational workflows designed using the P2P approach. The METEOR system is
entirely based on CORBA to provide a platform independent and reliable environment.
It also supports interoperability mechanisms like SWAP and JFLOW. Moreover, the
METEOR3 model introduces the notion of foreign task vs. native tasks. A foreign task
refers to a task whose realization (implementation) is unknown to workflow designer,
whereas the implementation details are known to the workflow designer for a native
task. Another important feature for interorganizational workflows are channels (also
called sink nodes) that are used to specify communication or synchronization between
two independent workflows. Some preliminary work using METEOR and a predecessor
of the P2P approach was already presented in [5]. Fourth, we would like to experiment
with other notions of inheritance. This paper deploys only the notion of projection in-
heritance. In [7, 14, 15] we defined three other notions of inheritance. These notions
seem to be less suitable for interorganizational workflows. Nevertheless, we would like
to try to generalize some of the results using a weaker notion of inheritance. Finally, we
plan to extend Woflan to offer more support for interorganizational workflows.

Acknowledgements The author would like to thank Twan Basten for his excellent work
on inheritance of dynamic behavior, Eric Verbeek for the development of Woflan, a
verification tool which can be used to analyze many of the properties defined in this
paper, and Kemafor Anyanwu for applying the P2P approach to a telecommunications
case. Finally, the author would like to thank the anonymous referees and the associate
editor for their useful suggestions.

References

1. W.M.P. van der Aalst. The Application of Petri Nets to Workflow Management. The Journal

36

of Circuits, Systems and Computers, 8(1):21–66, 1998.
2. W.M.P. van der Aalst. Interorganizational Workflows: An Approach based on Message Se-

quence Charts and Petri Nets. Systems Analysis - Modelling - Simulation, 34(3):335–367,
1999.

3. W.M.P. van der Aalst. Inheritance of Interorganizational Workflows: How to Agree to Dis-
agree Without Loosing Control? BETA Working Paper Series, WP 46, Eindhoven University
of Technology, Eindhoven, 2000.

4. W.M.P. van der Aalst. Workflow Verification: Finding Control-Flow Errors using Petri-net-
based Techniques. In W.M.P. van der Aalst, J. Desel, and A. Oberweis, editors, Business
Process Management: Models, Techniques, and Empirical Studies, volume 1806 of Lecture
Notes in Computer Science, pages 161–183. Springer-Verlag, Berlin, 2000.

5. W.M.P. van der Aalst and K. Anyanwu. Inheritance of Interorganizational Workflows to
Enable Business-to-Business E-commerce. In A. Dognac, E. van Heck, T. Saarinnen, and et.
al., editors, Proceedings of the Second International Conference on Telecommunications and
Electronic Commerce (ICTEC’99), pages 141–157, Nashville, Tennessee, October 1999.

6. W.M.P. van der Aalst and T. Basten. Identifying Commonalities and Differences in Object
Life Cycles using Behavioral Inheritance. In J.M. Colom and M. Koutny, editors, Application
and Theory of Petri Nets 2001, volume 2075 of Lecture Notes in Computer Science, pages
32–52. Springer-Verlag, Berlin, 2001.

7. W.M.P. van der Aalst and T. Basten. Inheritance of Workflows: An Approach to Tackling
Problems Related to Change. Theoretical Computer Science, 270(1-2):125–203, 2002.

8. W.M.P. van der Aalst and K.M. van Hee. Workflow Management: Models, Methods, and
Systems. MIT press, Cambridge, MA, 2002.

9. W.M.P. van der Aalst, K.M. van Hee, and R.A. van der Toorn. Component-Based Soft-
ware Architectures: A Framework Based on Inheritance of Behavior. Science of Computer
Programming, 42(2-3):129–171, 2002.

10. W.M.P. van der Aalst, K.M. van Hee, and R.A. van der Toorn. Compositionality of Projection
Inheritance (Erratum). Science of Computer Programming, 44(3):343–344, 2002.

11. W.M.P. van der Aalst and M. Weske. The P2P approach to Interorganizational Workflows.
In K.R. Dittrich, A. Geppert, and M.C. Norrie, editors, Proceedings of the 13th Interna-
tional Conference on Advanced Information Systems Engineering (CAiSE’01), volume 2068
of Lecture Notes in Computer Science, pages 140–156. Springer-Verlag, Berlin, 2001.

12. N.R. Adam, V. Atluri, and W. Huang. Modeling and Analysis of Workflows using Petri Nets.
Journal of Intelligent Information Systems, 10(2):131–158, 1998.

13. P. America. Designing an Object-Oriented Programming Language with Behavioral Sub-
typing. In J.W. de Bakker, W.P. de Roever, and G. Rozenberg, editors, Foundation of
Object-Oriented Languages, volume 489 of Lecture Notes in Computer Science, pages 60–
90. Springer-Verlag, Berlin, 1991.

14. T. Basten. In Terms of Nets: System Design with Petri Nets and Process Algebra. PhD thesis,
Eindhoven University of Technology, Eindhoven, The Netherlands, December 1998.

15. T. Basten and W.M.P. van der Aalst. Inheritance of Behavior. Journal of Logic and Algebraic
Programming, 47(2):47–145, 2001.

16. R. Benjamin and R. Wigand. Electronic markets and virtual value chains on the information
superhighway. Sloan Management Review, pages 62–72, 1995.

17. G. Berthelot. Checking Properties of Nets Using Transformations. In G. Rozenberg, editor,
Advances in Petri Nets 1985, volume 222 of Lecture Notes in Computer Science, pages 19–
40. Springer-Verlag, Berlin, 1986.

18. G. Berthelot. Transformations and Decompositions of Nets. In W. Brauer, W. Reisig,
and G. Rozenberg, editors, Advances in Petri Nets 1986 Part I: Petri Nets, central mod-
els and their properties, volume 254 of Lecture Notes in Computer Science, pages 360–376.
Springer-Verlag, Berlin, 1987.

37

19. R.W.H. Bons, R.M. Lee, and R.W. Wagenaar. Designing trustworthy interorganizational
trade procedures for open electronic commerce. International Journal of Electronic Com-
merce, 2(3):61–83, 1998.

20. J.M. Colom and M. Silva. Improving the Linearly Based Characterization of P/T Nets. In
G. Rozenberg, editor, Advances in Petri Nets 1990, volume 483 of Lecture Notes in Computer
Science, pages 113–146. Springer-Verlag, Berlin, 1990.

21. J. Desel and J. Esparza. Free Choice Petri Nets, volume 40 of Cambridge Tracts in Theoret-
ical Computer Science. Cambridge University Press, Cambridge, UK, 1995.

22. C.A. Ellis. Information Control Nets: A Mathematical Model of Office Information Flow.
In Proceedings of the Conference on Simulation, Measurement and Modeling of Computer
Systems, pages 225–240, Boulder, Colorado, 1979. ACM Press.

23. C.A. Ellis and G.J. Nutt. Modelling and Enactment of Workflow Systems. In M. Ajmone
Marsan, editor, Application and Theory of Petri Nets 1993, volume 691 of Lecture Notes in
Computer Science, pages 1–16. Springer-Verlag, Berlin, 1993.

24. D. Georgakopoulos, H. Schuster, A. Cichocki, and D. Baker. Managing process and service
fusion in virtual enterprises. Information Systems, 24(6):429–456, 1999.

25. R.J. van Glabbeek and W.P. Weijland. Branching Time and Abstraction in Bisimulation
Semantics. Journal of the ACM, 43(3):555–600, 1996.

26. P. Grefen, K. Aberer, Y. Hoffner, and H. Ludwig. CrossFlow: Cross-organizational Workflow
Management in Dynamic Virtual Enterprises. International Journal of Computer Systems,
Science, and Engineering, 15(5):277–290, 2001.

27. A.H.M. ter Hofstede, M.E. Orlowska, and J. Rajapakse. Verification Problems in Conceptual
Workflow Specifications. Data and Knowledge Engineering, 24(3):239–256, 1998.

28. R. Kalakota and A.B. Whinston. Frontiers of Electronic Commerce. Addison-Wesley, Read-
ing, Massachusetts, 1996.

29. H. Kilov and W. Harvey, editors. Object-Oriented Behavioral Specifications, volume 371 of
The Kluwer International Series in Engineering and Computer Science. Kluwer Academic
Publishers, Boston, MA, USA, 1996.

30. H. Kilov, B. Rumpe, and I. Simmonds, editors. Behavioral Specifications of Businesses
and Systems, volume 523 of The Kluwer International Series in Engineering and Computer
Science. Kluwer Academic Publishers, Boston, MA, USA, 1999.

31. E. Kindler, A. Martens, and W. Reisig. Inter-Operability of Workflow Applications: Local
Criteria for Global Soundness. In W.M.P. van der Aalst, J. Desel, and A. Oberweis, editors,
Business Process Management: Models, Techniques, and Empirical Studies, volume 1806 of
Lecture Notes in Computer Science, pages 235–253. Springer-Verlag, Berlin, 2000.

32. A. Kumar and J.L. Zhao. Workflow Support for Electronic Commerce Applications. Deci-
sion Support Systems, 32(3):265–278, 2002.

33. A. Lazcano, G. Alonso, H. Schuldt, and C. Schuler. The WISE Approach to Electronic Com-
merce. International Journal of Computer Systems, Science, and Engineering, 15(5):345–
357, 2001.

34. R.M. Lee. Distributed Electronic Trade Scenarios: Representation, Design, Prototyping.
International Journal of Electronic Commerce, 3(2):105–120, 1999.

35. R.M. Lee and R.W.H. Bons. Soft-Coded Trade Procedures for Open-edi. International
Journal of Electronic Commerce, 1(1):27–49, 1996.

36. B. Liskov and J. Wing. A Behavioral Notion of Subtyping. ACM Transactions on Program-
ming Languages and Systems, 16(6):1811–1841, November 1994.

37. T.W. Malone, R.I. Benjamin, and J. Yates. Electronic Markets and Electronic Hierarchies:
Effects of Information Technology on Market Structure and Corporate Strategies . Commu-
nications of the ACM, 30(6):484–497, 1987.

38

38. M. Merz, B. Liberman, and W. Lamersdorf. Using Mobile Agents to Support Interorgani-
zational Workflow-Management. International Journal on Applied Artificial Intelligence,
11(6):551–572, 1997.

39. M. Merz, B. Liberman, and W. Lamersdorf. Crossing Organisational Boundaries with
Mobile Agents in Electronic Service Markets. Integrated Computer-Aided Engineering,
6(2):91–104, 1999.

40. M. Merz, B. Liberman, K. Muller-Jones, and W. Lamersdorf. Interorganisational Workflow
Management with Mobile Agents in COSM. In Proceedings of PAAM96 Conference on the
Practical Application of Agents and Multiagent Systems, 1996.

41. T. Murata. Petri Nets: Properties, Analysis and Applications. Proceedings of the IEEE,
77(4):541–580, April 1989.

42. Pallas Athena. Protos User Manual. Pallas Athena BV, Plasmolen, The Netherlands, 1999.
43. W. Reisig and G. Rozenberg, editors. Lectures on Petri Nets I: Basic Models, volume 1491

of Lecture Notes in Computer Science. Springer-Verlag, Berlin, 1998.
44. W. Reisig and G. Rozenberg, editors. Lectures on Petri Nets II: Applications, volume 1492

of Lecture Notes in Computer Science. Springer-Verlag, Berlin, 1998.
45. A. Reuter and F. Schwenkreis. Contracts - a low-level mechanism for building general-

purpose workflow management-systems. Data Engineering Bulletin, 18(1):4–10, 1995.
46. W. Sadiq and M.E. Orlowska. FlowMake Product Informa-

tion, Distributed Systems Technology Centre, Queensland, Australia.
http://www.dstc.edu.au/Research/Projects/FlowMake/productinfo/index.html.

47. W. Sadiq and M.E. Orlowska. Applying Graph Reduction Techniques for Identifying Struc-
tural Conflicts in Process Models. In M. Jarke and A. Oberweis, editors, Proceedings of
the 11th International Conference on Advanced Information Systems Engineering (CAiSE
’99), volume 1626 of Lecture Notes in Computer Science, pages 195–209. Springer-Verlag,
Berlin, 1999.

48. H. Schuster, D. Georgakopoulos, A. Cichocki, and D. Baker. Modeling and Composing
Service-based and Reference Process-based Multi-enterprise Processes. In B. Wangler and
L. Bergman, editors, Advanced Information Systems Engineering, 12th International Con-
ference CAiSE 2000, number 1789 in Lecture Notes in Computer Science, pages 247–263.
Springer Verlag, Berlin, 2000.

49. A. Sheth, K. Kochut, and J. Miller. Large Scale Distributed Information Systems (LSDIS)
laboratory, METEOR project page. http://lsdis.cs.uga.edu/proj/meteor/meteor.html.

50. A.P. Sheth, W.M.P. van der Aalst, and I.B. Arpinar. Processes Driving the Networked Econ-
omy: ProcessPortals, ProcessVortex, and Dynamically Trading Processes. IEEE Concur-
rency, 7(3):18–31, 1999.

51. Software-Ley. COSA User Manual. Software-Ley GmbH, Pullheim, Germany, 1998.
52. Staffware. Staffware 2000 / GWD User Manual. Staffware plc, Berkshire, United Kingdom,

1999.
53. The White House. A Framework for Global Electronic Commerce.

http://www.ecommerce.gov/framewrk.htm, 1997.
54. R. Valette. Analysis of Petri Nets by Stepwise Refinements. Journal of Computer and System

Sciences, 18:35–46, 1979.
55. H.M.W. Verbeek, T. Basten, and W.M.P. van der Aalst. Diagnosing Workflow Processes

using Woflan. The Computer Journal, 44(4):246–279, 2001.
56. M. Voorhoeve. Compositional Modeling and Verification of Workflow Processes. In W.M.P.

van der Aalst, J. Desel, and A. Oberweis, editors, Business Process Management: Models,
Techniques, and Empirical Studies, volume 1806 of Lecture Notes in Computer Science,
pages 184–200. Springer-Verlag, Berlin, 2000.

57. V. Zwass. Electronic commerce: structures and issues . International Journal of Electronic
Commerce, 1(1):3–23, 1996.

39

A Branching bisimilarity

As indicated in Section 2.3, we need a notion of equivalence to formalize projection
inheritance For this purpose we use branching bisimilarity [25] as the standard equiva-
lence relation on marked, labeled P/T-nets inN .

The notion of a silent action is pivotal to the definition of branching bisimilarity.
Silent actions are actions (i.e., transition firings) that cannot be observed. Silent actions
are denoted with the label � , i.e., only transitions in a P/T-net with a label different from
� are observable. Note that we assume that � is an element of L. The � -labeled tran-
sitions are used to distinguish between external, or observable, and internal, or silent,
behavior. A single label is sufficient, since all internal actions are equal in the sense that
they do not have any visible effects.

In the context of workflow management, we want to distinguish successful termina-
tion from deadlock. A termination predicate defines in what states a marked P/T-net can
terminate successfully. If a marked, labeled P/T-net is in a state where it cannot perform
any actions or terminate successfully, then it is said to be in a deadlock. Based on the
notion of soundness, successful termination corresponds to the state with one token in
the sink place.

Definition 30. The class of marked, labeled P/T-netsN is equipped with the following
termination predicate: ↓ = {(N; [o]) | N is a WF-net ∧ o = sink(N)}.
To define branching bisimilarity, two auxiliary definitions are needed: (1) a relation
expressing that a marked, labeled P/T-net can evolve into another marked, labeled P/T-
net by executing a sequence of zero or more � actions; (2) a predicate expressing that a
marked, labeled P/T-net can terminate by performing zero or more � actions.

Definition 31. The relation =⇒ ⊆ N × N is defined as the smallest relation
satisfying, for any p; p′; p′′ ∈ N , p =⇒ p and (p =⇒ p′ ∧ p′ [�〉 p′′) ⇒ p =⇒ p′′.

Definition 32. The predicate ⇓ ⊆ N is defined as the smallest set of marked, labeled
P/T-nets satisfying, for any p; p′ ∈ N , ↓ p⇒ ⇓ p and (⇓ p ∧ p′ [�〉 p) ⇒ ⇓ p′.
Let, for any two marked, labeled P/T-nets p; p ′ ∈ N and action � ∈ L, p [(�)〉 p′ be an
abbreviation of the predicate (� = � ∧p = p ′)∨p [�〉p′. Thus, p [(�)〉p′ means that zero
� actions are performed, when the first disjunct of the predicate is satisfied, or that one
� action is performed, when the second disjunct is satisfied. For any observable action
a ∈ L\{�}, the first disjunct of the predicate can never be satisfied. Hence, p [(a)〉 p ′ is
simply equal to p [a〉 p′, meaning that a single a action is performed.

Definition 33 (Branching bisimilarity). A binary relation R ⊆ N × N is called a
branching bisimulation if and only if, for any p; p ′; q; q′ ∈ N and � ∈ L,

1. pRq ∧ p [�〉 p′ ⇒
(∃ q′; q′′ : q′; q′′ ∈ N : q =⇒ q′′ ∧ q′′ [(�)〉 q′ ∧ pRq′′ ∧ p′Rq′);

2. pRq ∧ q [�〉 q′ ⇒
(∃ p′; p′′ : p′; p′′ ∈ N : p =⇒ p′′ ∧ p′′ [(�)〉 p′ ∧ p′′Rq ∧ p′Rq′); and

3. pRq ⇒ (↓ p⇒ ⇓ q ∧ ↓ q ⇒ ⇓ p).

40

�

�

�

p

p
′

p

p
′

q

q
′′
= q

′

q

q
′′

q
′

Fig. 19. The essence of a branching bisimulation.

Two marked, labeled P/T-nets are called branching bisimilar, denoted p ∼ b q, if and
only if there exists a branching bisimulationR such that pRq.

Figure 19 shows the essence of a branching bisimulation. The firing rule is depicted by
arrows. The dashed lines represent a branching bisimulation. A marked, labeled P/T-
net must be able to simulate any action of an equivalent marked, labeled P/T-net after
performing any number of silent actions, except for a silent action which it may or may
not simulate. The third property in Definition 33 guarantees that related marked, labeled
P/T-nets always have the same termination options.

Branching bisimilarity is an equivalence relation onN , i.e.,∼ b is reflexive, symmet-
ric, and transitive. See [14] for more details and pointers to other notions of branching
bisimilarity.

To illustrate the relevance of branching bisimilarity as an equivalence notion we
use the three marked WF-nets shown in Figure 20. Each of the nets has the following
visible behavior: either the trace abce is realized or trace abde is realized. Therefore, it
is interesting to investigate whether the three marked WF-nets are branching bisimilar.
(N0; [i]) and (N1; [i]) are branching bisimilar. However, (N0; [i]) and (N2; [i]) are not,
i.e., although they are trace equivalent (N0; [i]) �∼b (N2; [i])! The reason is that in N0

the moment of choice between c and d is made after the execution of b while in N 2

the choice is made before the execution of b. This distinction is vital when dealing with
interorganizational workflows. Assume that b corresponds to sending an request to a
supplier and that c is executed in case of a positive response and that d is executed
in case of a negative response. In N0 the WF-net can handle both a positive response
(c) and a negative response (d) after sending the request (b). However, in N 2 the WF-
net can handle either the positive or the negative response, i.e., the choice between c

and d is made before the execution of b. Clearly, the latter WF-net is not acceptable,
since it assumes that before sending the request the answer of the supplier is already
known. This simple example shows that straightforward notions of equivalence such
as trace equivalence (after abstraction of internal steps) are not selective enough for
the problems addressed in this paper. Therefore, we use the more refined notion of
branching bisimilarity.

Definition 34 (Behavioral equivalence of WF-nets). For any two WF-nets N0 and
N1 inW , N0

∼= N1 if and only if (N0; [i])∼b (N1; [i]).

Consider the three nets shown in Figure 20: N0
∼= N1, N0 �∼= N2, and N1 �∼= N2.

41

i

a

o

b

c d

e

i

a

o

t

b

c d

e

t

i

a

o

t

b

c d

e

t

?

N1 N0 N2

Fig. 20. Three marked WF-nets: the first two are branching bisimilar and the third one is not
branching bisimilar to the other two.

42

B Inheritance preserving transformation rules

Without proof we summarize some of the results given in [7, 14, 15].

Theorem 7 (Projection-inheritance-preserving transformation rule PPS).
Let N0 = (P0; T0;M0; F0; `0) be a sound WF-net in W . If N = (P; T;M; F; `) is a
labeled P/T-net with place p ∈ P such that

1. p �∈ {i; o}, P0 ∩ P = {p}, T0 ∩ T = ∅,
2. (∀ t : t ∈ T : `(t) �∈ �(N0)),
3. (∀ t : t ∈ T ∧ p ∈ •t : `(t) �= �),
4. (N; [p]) is live and safe, and
5. N1 = N0 ∪N is well defined,

then N1 is a sound WF-net inW such that N1 ≤pp N0.

Note that PPS can be used to construct the subclass N2 in Figure 11 from the WF-net
N0 shown in the same figure.

Theorem 8 (Projection-inheritance-preserving transformation rule PJS).
Let N0 = (P0; T0;M0; F0; `0) be a sound WF-net in W . If N = (P; T;M; F; `) is a
labeled P/T-net with place p ∈ P and transition tp ∈ T such that

1. p �∈ {i; o}, P0 ∩ P = {p}, T0 ∩ T = {tp}, (tp; p) ∈ F0, and
N•tp = {p},

2. (∀ t : t ∈ T\T0 : `(t) �∈ �(N0)),
3. (N; [p]) is live and safe, and
4. N1 = (P0; T0;M0; F0\{(tp; p)}; `0) ∪ (P; T;M; F\{(p; tp)}; `) is well defined,

then N1 is a sound WF-net inW such that N1 ≤pj N0.

Transformation rule PJS can be used to construct N4 from N0 in Figure 11.

Theorem 9 (Projection-inheritance-preserving transformation rule PJ3S).
Let N0 = (P0; T0;M0; F0; `0) be a sound WF-net inW . Let N = (P; T;M; F; `) be a
labeled P/T-net. Assume that q ∈ U is a fresh identifier not appearing in P0∪T0∪P∪T .
If N contains a place p ∈ P and transitions ti; to ∈ T such that

1.
N•p = {to}, pN• = {ti},

2. P0 ∩ P = ∅, T0 ∩ T = {ti; to},
3. (∀ t : t ∈ T\T0 : `(t) �∈ �(N0)),
4. (N; [p]) is live and safe,
5. N1 = N0 ∪ (P\{p}; T; F\{(p; ti); (to; p)}; `) is well defined,
6. q is implicit in (N q

0 ; [i]) with Nq
0 = (P0 ∪ {q}; T0; F0 ∪ {(ti; q); (q; to)}; `0), and

7. N q
0 is a sound WF-net,

then N1 is a sound WF-net inW such that N1 ≤pj N0.

Transformation rule PJ3S can be used to construct subclass N3 from superclass N0 in
Figure 11.

Rule PPS can be used to insert a loop or iteration at any point in the process,
provided that the added part always returns to the initial state. Rule PJS can be used
to insert new methods by replacing a connection between a transition and a place by
an arbitrary complex subnet. Rule PJ3S can be used to add parallel behavior, i.e., new
methods which are executed in parallel with existing methods.

43

