A Configurable Reference M odelling Languagem

M. Rosemann® W.M.P. van der Aalst®?

Centre for Information Technology Innovation, Faculty of Information Technology, Queensland
University of Technology, 126 Margaret Street, Brisbane Qld 4000, Australia,

phone: +61 7 3864 9473, fax +61 7 3864 9390, m.rosemann@qut.edu.au

Faculty of Technology and Management, Eindhoven University of Technology, P.O. Box 513, NL-5600
MB, Eindhoven, The Netherlands, w.m.p.v.d.aalst@tm.tue.nl

Abstract

Enterprise Systems (ES) are comprehensive off-the-shelf packages that have to be
configured to suit the requirements of an organization. Most ES solutions provide
reference models that describe the functionality and structure of the system. However,
these models do not capture the potential configuration alternatives. This paper discusses
the shortcomings of current reference modelling languages using Event-driven Process
Chains (EPCs) as an example. We propose Configurable EPCs as an extended reference
modelling language which allows capturing the core configuration patterns. A
formalization of this language as well as examples for typical configurations are
provided. A program of further research including the identification of a comprehensive
list of configuration patterns, deriving possible notations for reference model
configurations and testing the quality of these proposed extensions in experiments and

focus groups is presented.

Keywords

Reference Model, Enterprise Systems, Configuration, Event-driven Process Chains

! This research project is financially supported by SAP Corporate Research.

1 Introduction

Enterprise Systems (ES) offer business solutions for typical functional areas such as
procurement, materials management, production, sales and distribution, financial
accounting and human resource management [23, 30]. These functions are typically
individualised for countries and industries such as automotive, retailing, high-tech, etc.
Such off-the-shelf-solutions require configuration before they can be used in the
individual context of an organization.

As an approach to improve the understandability of these systems and to stress the
process-oriented nature of their solutions, ES vendors have devel oped application
reference models which describe the processes and structure of the system. Enterprise
Systems reference models exist in the form of function, data, system organization, object
and business process models, although the latter are by far the most popular type.
Current reference models, however, are based on conventional modelling languages that
have been developed for the design of enterprise-individual models. Thus, they are not
able to adequately depict possible system configurations. Even further, they don’t provide
decision support regarding the selection of relevant variants. Current application
reference models “just” depict the possible system capabilities and cannot sufficiently
guide the project team in the system configuration process.

This paper discusses the underlying research problem and proposes an extension of an
existing reference modelling language in order to capture the configuration potential of
Enterprise Systems. The paper is structured as follows. The next section provides an
overview about the characteristics of application reference models. The third section

outlines the research problem and the research methodology. Section four lists the

requirements for a configurable reference modelling technique. The fifth section
introduces the proposed Configurable Event-driven Process Chain (C-EPC) based on a
formalization of EPCs. This paper ends with a section on related work, a brief summary

and a discussion of the future work.

2 Reference M odels

Reference models are generic conceptual models that formalize recommended practices
for a certain domain [16,18]. Often labelled with the term 'best practice' reference models
claim to capture reusable state-of-the-art practices [37,38]. Thus, amore redlistic label
would be *better practice’ or often even ‘ common practice’. The depicted domains can be
very different. They can range from selected functional areas such as accounting or
Customer Relationship Management to the scope of an entire industry sector, e.g. higher

education.

The main objective of reference models is to streamline the design of enterprise-
individual (particular) models by providing a generic solution. The application of
reference models is motivated by the * Design by Reuse' paradigm. Reference models
accelerate the modelling process by providing arepository of potentially relevant
business processes and structures. These ideally ‘ plug and play’ models are also called
Partial Enterprise Models in the terminology of the Generalised Enterprise Reference

Architecture and Methodology (GERAM) [7].

With the increased popularity of business modelling, a wide and quite heterogenous range
of purposes can motivate the use of areference model. Thelist of purposes includes
software development, software selection, configuration of Enterprise Systems, workflow
management, documentation and improvement of business processes, education, user

-3-

training, auditing, certification, benchmarking, and knowledge management to name the
most popular purposes.

Reference models can be differentiated along the following main criteria

» Scope of the model (e.g., functional areas covered)

e granularity of the model (e.g., number of levels of decomposition detail)

* views(e.g., process, data, objects, organization) that are depicted in the model
» degree of integration between the views

e purposes supported

e user groups addressed

e interna or external (commercial) use

« availability of the model (e.g., paper, tool-based, Web-based)

» avallability of further textual explanation of the model

e explicitinclusion of aternative business scenarios

» existence of guidelines on how to use these models

* availability of relevant quantitative benchmarking data

A further and more comprehensive differentiation based upon the domain that underlies

the reference model can be found in [32].

The term reference model is also used for models describing the structure and
functionality of business applications including Enterprise Systems [11]. In these cases, a
reference model can be interpreted as a structured semi-formal description of a particular
application. Application reference models correspond to an existing off-the-shelf-solution
that supports the functionality and structure described in the model. These models include
more software-related constraints than industry reference models and are typically on a
lower level of abstraction. Thus, they can be used for a better understanding and
evaluation of the appropriateness of the software. Furthermore, they aim to facilitate the

implementation of the software and can be used for related end user training [6,19,31].

-4-

As application reference models reflect the comprehensiveness of these applications, they
tend to be more complex than industry reference models. One of the most comprehensive
modelsisthe SAP reference model [11]. Its data model includes more than 4000 entity
types and the reference process models cover more than 1000 business processes and
inter-organizational business scenarios. Most of the other market leading ES vendors
have an approach towards such reference models. An overview of the Baan reference

model, for example, is provided in [39]. See dso [17] for reference models in Intentia.

Foundational conceptual work for the SAP reference model had been conducted by

SAP AG and the IDS Scheer AG in a collaborative research project in the years 1990-
1992 [22]. One aim of this project was to develop a modelling language that depicts SAP-
supported processes in a reasonably intuitive language. The outcome of this project was
the process model ling language Event-driven Process Chains (EPCs) [22, 36], which has
been used for the design of the reference process modelsin SAP. EPCs aso became the
core modelling language in the Architecture of Integrated Information Systems (ARIS)
[36]. It isnow one of the most popular reference modelling languages and has also been
used for the design of many SAP-independent reference models (e.g., ARIS-based
reference model for Siebel CRM solution developed by ACQRA or industry models for

banking, retail, insurance, telecommunication, etc.).

3 Resear ch Problem and Resear ch M ethodology

The existence of reference models highlights a difference from the traditional software
development process. Instead of starting from scratch and continuously adding
functionality, ES solutions require a continuous narrowing down of the scope of the
system. This process starts with the “big picture”, which is then reduced to the relevant
part. Reference models can be used as a description of this big picture. It is necessary to
select the necessary functions and to decide during the configuration process between
alternatives (e.g., reporting in financial accounting or controlling).

Although Enterprise Systems reference models have contributed significantly to the
understandability of the software functionality, they still have main shortcomings. These
shortcomings can be differentiated for the two main stakeholders, the model users and the
model designers.

The reference modé lifecycleisinitiated by the reference model designers, i.e. the
Enterprise Systems vendor. During the design phase available individual conceptual

model s are evaluated, selected and consoli dated.EI

Such areference model will typically
not only include one proposed alternative, but arange of often mutually exclusive
alternatives. This might be because the depicted scenarios cover different industries or

different countries. At this stage, for example, SAP maintains 23 alternative industry

2 An organization might also declare the internal best practice in one subsidiary etc. as the internal
benchmark. Thus, an existing conceptual model can have the status of a reference model. This practice can,
for example, be observed in global organizations that roll-out the business blueprint of one location to all
their subsidiaries worldwide. These models are also called prototypical models [7]. They do not require

configurations and are not within the scope of this paper.

solutions. However, the current use of traditional modelling languages does not support a
consolidation of these models. Figure 1 demonstrates this problem in asimple example. It
shows the consolidation of corresponding reference models from two different industries.
The XOR split in this case represents a decision point that is of relevance during the so-
called configuration time. A model in this phase cannot necessarily be executed. It rather
captures different alternatives for adomain and has to be configured before it can serve as

the actual build time model for individual process instances.

Combined Derived Derived

) Reference Model Enterprise Model Instances
] Chemical
Oil & Gas

~$ 8-

build time confiquration time build time run time

Fig. 1: Configuration time, build time and run time

The lack of the required expressiveness of current reference modelling languages for
configuration timeis for two reasons also a serious issue for model users. First, it does
not become obvious what configuration aternatives exist during the system
implementation phase. Second, the models do not provide any decision support in the
actual selection of an alternative. Current reference models show what processes are
supported in general, but not what might be a recommended alternative. They represent
the entire functionality from the viewpoint that the complete system is used and look like

an ordinary build time model. However, only a subset is typically used within an

individual organization. Figure 2 provides arelated example for the customer master data

entry processin SAP R/3.

k.
|~ T”!”Js”“\ T |
i i
+ 2,
>

| @3

| F- <1

} ®_.*®

‘ N S
= &= =

- T T R s]

50 D D oo O s D

| A R A A S T T 1T T T
S0 & B & & B 5 8 SEEE

Fig. 2: Individualisation of a SAP reference model

The main objective of this paper isto present a configurable reference modelling

language. This research is embedded in a more comprehensive research project with the

following three phases, of which each hasits own challenges.

1) The first task was the identification and classification of configuration patterns. A
configuration pattern describes a distinguishable configuration case. Based on the
work that has been conducted on workflow patterns [4], we derived a set of
configuration patterns that classify aternative configuration scenarios. Asfar as
possible, examples from the SAP reference model have been assigned to each
configuration pattern. The SAP reference model has been used because of its

maturity, its worldwide use and its availability to the researchers.

2)

3)

The next step has been the development and formalization of a reference
modelling language, which supports the specification of these configuration
patterns. Thistask has been constrained by the desire to rather extend current
reference modelling languages than to develop an entire new language. This has
been motivated by the significant development efforts that have been invested in
reference models already. We selected Event-driven Process Chains as the starting
point for our research due to the popularity of thislanguage for the design of
reference models.

The proposed configurable reference modelling language and the corresponding
notation will be tested in two ways. First, experiments with post-graduate students
will be conducted. The selected group of students will be familiar with SAP,
process modelling and reference modelling. Second, focus groups with SAP
application consultants who are using the SAP reference model in their consulting

practice will be conducted.

This paper reports on the second phasg, i.e. the proposed configurable reference

modelling language. This languageis only focused on the so called essential

configurations, i.e. the system variability asit is visible and relevant to the project team,

and not the technical configurations, which subsume aspects related to the technical

realisation [20].

4

Requirementsfor a configurable reference modelling technique

Reference modelling languages obviously have to be configurable. This means that they

should not only capture decisions on an instance level, but also on atype level. Unlike

decisions on an instance level, i.e. at runtime, decisions on atypelevel, i.e. a

configuration time, have an impact on the model and its actual structure. Such

configuration decisions have to be clearly differentiated from runtime decisions and can

be highlighted as variation points in amodel [20]. A variation point captures a decision

point together with the related possible choices. Furthermore, a configurable reference

modelling language has to consider the following requirements.

a)

b)

The language has to support configurations regarding entire processes, functions,
control flow and data.

It should be possible to differentiate configuration decisions into mandatory and
optional decisions. Mandatory decisions have to be made before the very first
Instance can be derived from this model. The decision could be not to use a
certain variant. Optional decisions can initially be neglected. It should be possible
to maintain defaults for optional configuration decisions. This allows the
instantiation of the model even without explicitly making all possible decisions. It
also allows confronting the project team only with the important configuration
decisions.

Configuration should be differentiated into global and local decisions. Global
decisions are based on the general context and can be made without studying the
individual process model. Such context information includes industry, country,

size etc. The relevant context factors have to be maintained for every variation

-10-

d)

f)

9)

point. As soon as information regarding the relevant context has been provided, a
first (hidden or background) configuration of the reference model can take place.
Local configurations require an explicit study of the relevant process model. In
these cases the decision maker hasto consider the available individual choices
and make a trade-off decision.

Configuration decisions should also be differentiated into critical and non-critical
decisions. Critical decisions have significant impact on the use of the system, can
often not be re-done and should be made by the project team. Non-critical
decisions are of minor importance, can be changed over time and can be made by
individual team members.

Configuration decisions can have interrelationships. Any pre-requisites for a
configuration decision should be clearly highlighted. This can include other
decisions, which have to be made before. Moreover, any impact of one decision
on other decisions has to be depicted. This means, alogical order between
configuration decisions has to be considered. This includes interrelationships
within one model, between two process models but also interrelationships
between areference process model and arelated reference data model [33].
Configuration decisions can be made on different levels. For example, afirst
configuration of the SAP reference model might be an individualization for an
entire global organization. The next level of configuration can be made for a
certain country or business unit.

Variation points should refer to further related information within the Enterprise

System. This can include the system online help and the system configuration

-11-

h)

module, i.e. in SAP the Implementation Guide. Such information can provide
valuable support for the decision maker.

The entire configuration process should also be guided by recommendations or
configuration guidelines. Such information could come as benchmarking data
from the outside of the system if a critical mass of system usersiswilling to
provide the required data. It can include information such as the processing time
of agiven process path, the number of times a decision has been made in the same
industry or the required investments and implementation time for a certain
configuration.

Enterprise System reference models are already very comprehensive. Any further
extension of these modelling languages has to carefully consider the impact on the

perceived model complexity.

The following section introduces configurable Event-driven Process Chains as an

approach to capture variation pointsin areference process model. At the end of the next

section we will reflect on the requirements identified.

5

Configurable Event-driven Process Chains (C-EPCs)

Before introducing Configurable Event-driven Process Chains (C-EPCs), we first

formalize the notion of the classical Event-driven Process Chain. Then C-EPCs are

introduced and formalized followed by a definition of their semantics and a discussion on

partially configured C-EPCs. The section is concluded by some reflections on the

requirements stated in the previous section.

-12 -

5.1 Formalization of EPCs

Not every diagram composed of events, functions and connectorsis a correct Event-
driven Process Chain. For example, it is nhot alowed to connect two events to each other
[22]. Unfortunately, aformal syntax for Event-driven Process Chainsis missing. In this
section, we give aformal definition of an Event-driven Process Chain. This definition is
based on the restrictions described in [22] and imposed by tools such as ARIS and

SAP R/3. Thisway we are able to specify the requirements an Event-driven Process

Chain should satisfy.

Definition 1 [Event-driven Process Chain (1)] An Event-driven Process Chainisa five-
tuple (E,F,C,,A):

- E isafinite (non-empty) set of events,

- F isafinite (non-empty) set of functions,

- Cisafinite set of logical connectors,

-1 [7C - { [XOR, [} isa function which maps each connector onto a
connector type,

- A J(E xF) [(F xE) [XE xC) [(C xE) [(F xC) [J(C xF) [(C xC) is a set of
arcs.

An event-driven process chain is composed of three types of nodes: events (E), functions
(F) and connectors (C). The type of each connector is given by the function I: I(c) isthe
type (4] XOR, or /j of a connector ¢ /7C. Relation A specifies the set of arcs connecting
functions, events and connectors. Definition 1 showsthat it is not allowed to have an arc
connecting two functions or two events. There are many more requirements an Event-
driven Process Chain should satisfy, e.g., only connectors are allowed to branch, thereis
at least one start event, thereis at least one final event, and there are severa limitations
with respect to the use of connectors. To formalize these requirements we need to define

some additional concepts and introduce some notations.

-13-

Definition 2 [Directed path, elementary path] Let EPC be an Event-driven Process
Chain. A directed path p from a node n; to a node ng is a sequence (hy, ny, ..., Nk) such
that (h;,ni+1) JAfor 1 <i <k-1.

The definition of directed path will be used to limit the set of routing constructs that may
be used. It also allows for the definition of Cgr (the set of connectors on a path from an
event to afunction) and Cre (the set of connectors on a path from a function to an event).
Cer and Cge partition the set of connectors C. Based on the function | we also partition C
into C5 C; and Cxor. The sets C; and Cs are used to classify connectorsinto join

connectors and split connectors.

Definition 3 [N, Cr Crh Cxor, *, Cj, Cs, Cgr, CFE] Let EPC=(E, F, C, |, A) be an Event-
driven Process Chain.

-N = E [/F [/Cisthe set of nodes of EPC.
-Cp={clC /I(= 1}
-Cpo={cC [l()= 1}
-Cxor={c JC /I(c) = XOR}
- For n [/N:
en={m /(mn) [JA} isthe set of input nodes, and
ne={m /(nm) [7A} isthe set of output nodes.
-Cy={c/JC [Jc/>2} isthe set of join connectors.
-Cs={cJC [/ ¢/ 22} isthe set of split connectors.
- Cegr [JCsuch that ¢ /7Cg if and only if thereisa path p= (hy, ny, ..., Nk-1, Nk)
suchthat n; Z7E, ny, ...,k Z7C, ng [7F,and ¢ [7{ ny, ..., k4 }.
- Cre [JCsuch that ¢ /7Cgg if and only if thereisa pathp = (hy, Ny, ..., Nk, Nk)
suchthat ny Z7F, ny, ...,k 7C, ng JE,and ¢ [7{ ny, ..., Nk }.
- Cge [/Csuchthat ¢ /7Cge if and only if thereisa path p= (hy, ny, ..., Nk-1, Nk)
suchthat n; Z7E, ny, ...,nk-1 Z7C, ng [JE,and ¢ [7{ ny, ..., N4 }.
- Cer [JCsuch that ¢ [7Cgr if and only if thereisa pathp = (hy, Ny, ..., Nk, Nk)
suchthat n; Z7F, ny, ...,k JC, ng JF,and ¢ [7{ ny, ..., Nk }.

These notations alow for the completion of the definition of an Event-driven Process

Chain.

Definition 4 [Event-driven Process Chain (2)] An Event-driven Process Chain EPC =
(E,F,C,l,A) satisfies the following requirements:

-14-

- ThesetsE, F, and C are pairwise digoint, i.e., E nF = /[J,E nC= [J,and F

nC=1].

- For eache [JE: /fee/<1and ¢/ <1.

- Thereisat least one event e //E such that /ee/= O (i.e. a start event).

- Thereis at least one event e //E such that £¢/= 0 (i.e. afinal event).

- For eachf [JF: /sf/= 1and f¢/= 1.

- Foreachc [JC: fec/>1and t¢/ > 1.

- C;and Cgpartition C, i.e,, C; nCs= [Jand C; [ICs= C.

- Cee and Cgr areempty, i.e., Cege = [Jare Ceg = /7.

- Cer and Cre partition C i.e, Cer NCre= I and Cer LCre=C.
Thefirst requirement states that each component has a unique identifier (name). Note that
connector names are omitted in the diagram of an Event-driven Process Chain. The other
requirements correspond to restrictions on the relation A. Events cannot have multiple
input arcs and there is at least one start event and one final event. Each function has
exactly one input arc and one output arc. A connector c is either ajoin connector (£¢/= 1
and /ec/=>2) or asplit connector (/ec/= 1 and £/ =2). The last requirement states that a
connector c is either on a path from an event to a function or on a path from afunction to

an event. In the remainder of this paper we assume all Event-driven Process Chainsto be

syntactically correct.

Note that {C;, Cg}, {Cer, Cre}, and {C; Cxor, C} partition C, i.e., Cy and Csare digoint
and C = C; [/Cs, Cgr and Cre aredigoint and C = Cgr [/Crg, and C Cxor and Care
pair-wise digoint and C = C; L/Cxor [/Cp In principle there are 2 x 2 x 3 = 12 kinds of
connectors! In[22] two of these 12 constructs are not allowed: a split connector of type
Cegr cannot be of type XOR or /7i.e., Cs nCgr NCxor= [7and Cs nCgr NnCp= /7. Asa
result of thisrestriction, there are no choices between functions sharing the same input
event. A choice isresolved after the execution of afunction, not before. In the

formalization of EPCs, we will not impose this restriction and consider Cs nCgr nCxor

-15-

= [Jand Cs nCgr NCp= [J asaguideline rather than a requirement. The semantics of
EPCs have often been debated in literature. Here we do not contribute to this discussion

but ssmply refer to [1,3,14,24,28,34].
5.2 Configurable EPCs

This section introduces the notion of a configurable Event-driven Process Chain C-EPC.
In a C-EPC functions and connectors can be configurable. Configurable functions may be
included (ON), skipped (OFF) or conditionally skipped (OPT). Configurable connectors
may be restricted at configuration time, e.g., a configurable connector of type //may be
mapped onto a //connector. Local configuration choices like skipping a function may be
limited by configuration requirements. For example, if one configurable connector c of
type //is mapped onto //connector, then another configurable function f needs to be
included. This configuration requirement may be denoted by the logical expression

c= /= f=0N. To guide the configuration process thereis also a partial order suggesting
the order of configuration. Moreover, besides the configuration requirements there may
also be configuration guidelines. One can think of configuration requirements as hard

constraints and interpret configuration guidelines as soft constraints.

Definition 5 [Configurable Event-driven Process Chain] A Configurable Event-driven
Process Chain (C-EPC) is a ten-tuple (E,F,C,I, A, F°,C® 0% R°,G°):

-E, F, C, |, and A are as specified in Definition 1 satisfying the constraints
mentioned in Definition 4,

- F© [JF isthe set of configurable functions,

- C® JC isthe set of configurable connectors,

- O° [J(F® OC%) x (F JC%) isa partial order over the configurable nodes
suggesting the order of configuration,

- R®isa set of configuration requirements, and

- G%isa set of configuration guidelines.

-16 -

Both R and G are sets of logical expressions where the atomic statements bind the
configurable nodes to concrete values, e.g., "c=XOR" and "f=ON" wherecisa
configurable connector and f is a configurable function.

Configurable nodes are denoted by thick circles (for configurable connectors) or thick
rectangles (for configurable functions). Configuration requirements are denoted by dotted
lines connecting the configurable nodes the logical expression refers to and configuration
guidelines are denoted by dashed lines connecting the configurable nodes the logical
expression refers to (see Figure 3). The partial order of configurable nodes OF is not

shown in the example of Figure 3.

A configurable function may be configured as included (ON), skipped (OFF) or
conditionally skipped (OPT). Configurable connectors are mapped onto a concrete choice
for the split or join considered. Clearly, a configurable connector of type /7/may not be
mapped onto a concrete connector of type /7 The concrete connector should always
represent a behaviour allowed by the configurable connector, i.e., the configuration
process only restricts the possible execution sequences. In case of a configurable
connector of type XOR or [J, aso only one of the options may be selected, e.g., if asplit
connector ¢ has an output function f, then c=SEQ; denotes that function f is always

selected.

In Figure 3 there are three configurable functions: A, E, and F. Each of these three
functions can be configured as included (ON), skipped (OFF) or conditionally skipped
(OPT). The other three functions cannot be configured, i.e., are dways “ON”. There are
four connectors and only the XOR connector is configurable. The configurable XOR

connector can be set to XOR (i.e., achoice at runtime), or select one of the two paths

-17 -

(i.e., at configuration time the left-hand side or right-hand side is selected). Figure 3 also
shows arequirement and a guideline. The requirement states that if A is configured as
OFF, the path starting with event 3 should no be selected. The guideline statesthat if E is

configured as ON, then F should also be configured as ON (and visa versa).

normal function

configurable function
AND

Requirement 1 normal connector
A=OFF = 5
XOR, #SEQ,

Guideline 1
E=ON - F=ON

A

configurable
connector

Fig. 3: Example for a C-EPC

Figure 4 shows a C-EPC with a ssmple XOR-join as well as the two possible variants that

can be derived from this model. This example is an extract from the SAP Reference

Model Purchasing, version 4.6c¢. It shows without the details of requirements and
guidelines that a scheduling agreement is an additional option to the classical purchase

order. Before formalizing the notion of a configuration we first define <.

equisitio urc f?.s Requisitio urc .at.s ure .at.s
released rTqu|5|(;<an released r(Tqumcﬁn r(Tqumcﬁn
for SA released for, for SA released for, released for,

Scheduling Purchase Scheduling Purchase Purchase
Agreement order Agreement order order
Delivery Processing Delivery Processing Processing
v A,
urchase urchase urchase
SA rel::adse order SA relfa:jse order order
create created Create created created
Release of Release of Release of
purchase purchase purchase
order order order
i urchasini urchasini
document document document
released released released

R

T . Purchase T . Purchase Purchase
ranosfrrsuzsmn order ransfmsl'so\sm order order
Processing no Processing Processing

(xR

Purchasinyg

Purchasinyg
order
ansmitted

Purchasiny
order
ansmitted

C-EPC Variant 1 Variant 2

Fig. 4: Example for a configurable EPC with a XOR-join (SA — scheduling agreement, PO — purchase

order)

The partia order <€ is used to specify which concrete connector type may be used for a
given connector type, i.e., x <y if and only if a connector of type y may be configured

tox (e.g., J<° Jbut not J<° [j.

-19-

Definition 6 [<€, CT, CTY =< defines a partial order on CT = { /J XOR, [} [CTS
where CTS={ SEQ, / n JE [F [IC}. <€ = { (), (XORXOR), (4, (XOR. [}, (4 }
[(nXOR) /nJCTS A (n,[J /nJCTS [K (n,n) / n/JCTS}.

Note that <€ = { (nn) / n OCT} OXOROL(LL T{ (nuno) / m OCTS [[
{XOR,/}}.

This partial order is motivated by the fact that the configurable connector has to subsume
the behaviour of the concrete connector. Table 1 illustrates the configuration rules for
connectors. This table only describes the overall constraints. Each row correspondsto a
configurable connector type (OR®, XOR®, ANDC), e.g., an OR® may be mapped onto an

OR (4, XOR, AND (2}, or SEQ (SEQn for some node n).

OR XOR AND SEQ
OR® X X X

XOR® X

AND® X

Table 1: Congtraints for the configuration of connectors

A configuration maps all configurable nodes onto concrete values like ON, OFF, and

OPT for functions and [J, XOR, [J, and SEQ, for connectors.

Definition 7 [Configuration] Let CEPC=(E,F,C,|,A,F®,C% 0% R",G% be a C-EPC. I [J
(F¢ - { ON, OFF, OPT}) [J(C® - CT)isa configuration of CEPC if for each ¢ /7C®:

-1%(c) = 1(c)

-if1°(c) JCTSand ¢ [7C;, then there exists an n /7 «c such that |°(c) = SEQ,,
-if1°(c) JCTSand ¢ [7Cs, then there existsan n /7c» such that 1°(c) = SEQp,

Function I1© maps configurable functions onto values like ON, OFF, and OPT, i.e., 1°(f) &
{ON, OFF, OPT} for f/7F. Configurable connectors are mapped onto the set CT, i.e.,

1°(c) LJCT for ¢/7C®. Clearly this mapping should be consistent with Table 1 and the

-20-

partial order <. Moreover, if 1°(c) = SEQy, then n should bein the preset (for ajoin

connector) or postset (for a split connector) of c.

Figure 5 shows two EPCs resulting from a configuration. Consider the C-EPC shown in
Figure 3(a), i.e., the EPC in the left hand side. If we use the configuration
{(A,OFF),(XOR,SEQanp3),(E,ON),(F,ON)}, we obtain this EPC. Note that because
function A is not needed, the AND-split and AND-join also were removed. Functions E
and F are both ON thus satisfying the guideline. The requirement shown in Figure 3 is
also satisfied. Since A is skipped, the configurable XOR-split XOR; could not be set to
SEQs without violating this requirement. Figure 3(b), i.e., the EPC in the right hand side,
results from the configuration {(A,ON),(XOR,SEQs),(E,OFF),(F,OFF)}. This
configuration specifies that function A is always used and the configurable XOR-split is
set to take only the left path involving function D. The setting of the two remaining
configurable functions (E and F) is not relevant since they are not reachabl e because of

the configuration of the XOR-split.

-21-

(a) (b)

(O

-

Fig. 5: Two configurations of the C-EPC shown in Figure 3

The examplein Figure 6 shows that optional functions might lead to problems. The | eft-
hand side of this figure shows a C-EPC with a configurable function A. The right-hand
side shows possible configurations. In the left-most variant 1°(A)=ON (Variant 1) and A
issimply included. For Variant 2 “(A)=OFF and the function is skipped and the two
events are merged. In case |“(A)=OPT two variants are possible. The first one (l&ft)
simply inserts an OR-split and an OR-join connector to bypass A. This solution however
violates the guideline/rule that an event should not be followed by an OR-split, cf.
Section 5.1 and [22]. One way to solve thisisto add an additional function Z and an
additional events (1a) as shown in the right-most variant in Figure 6. The complication of

this last construct is that configurations like 1°(A)=OPT should be augmented with an

-22-

additional decision function Z. We will not enforce this but envision some post
processing where fragments involving an event followed by an OR-split are refined as
shown in Figure 6. We will not add this refinement to the formalizations given in this

section.

Variant 1 Variant 2 Variant 3 Variant 3

C-EPC
(A= ON) (A= OFF) (A =0PT) with additional function Z

Fig. 6: Example for a configuration with additional elements

Asindicated before, R® and G© are sets of logical expressions where the atomic
statements bind the configurable nodes to concrete values. Configurable functions are
mapped onto the set { ON, OFF, OPT } and configurable connectors are mapped onto { [},
XOR, [} O{ SEQn | n JE [F [IC}. Examplesillustrating the syntax of these atomic

statements are “c=XOR” and “f=0ON". These statements correspond to respectively

-23-

1(c)=XOR and 1(f)=ON for some configurable connector ¢ and some configurable
function f. Suppose that ¢,,c, 7C® and f1,f> [7F°. Examples of hard/soft constraints (i.e.,
requirements in R° or guidelinesin G®) are: (1) c;=/% f;=ON /F,=ON, (2) f;=ON
[*,=0N, and (3) c;= /& c,=/I Note that in Figure 3 already arequirement (A=OFF=

XOR; #SEQ,) and aguideline (E=ON = F=ON) have been given.

Configurations may have guidelines and/or requirements that are conflicting, e.g., in
Figure 3 we can add the following two requirements A=OFF = E=ON and A=OFF

= F=OFF. Clearly there requirements are conflicting with the original guideline. If there
are no conflicting requirements the model isvalid. If, in addition, the guidelines are not

conflicting, the configuration is suitable.

Definition 8 [Valid/suitable configuration] Let CEPC= (E,F,C,|,A FC,C% O°R°,G") bea
C-EPC and I~ a configuration of CEPC. I~ isa valid configuration if it satisfies all
configuration requirements, i.e., it satisfies all logical expressionsin R. 1 isa suitable
configuration if itisvalid and it satisfies all configuration guidelines, i.e., it satisfies all
logical expressionsin R® and GC.

=24 -

%

0-0¢

o
O
N
Y
o
NN

2

@
@

\ 4 . . .
invalid variant invalid variant invalid variant

(wrong connector) (new function, D) (missing function)

C-EPC

Fig. 7: Examples for invalid configurations

A configuration isvalid if it satisfies all requirements. Figure 7 shows some examples for
invalid configurations. Thisis only possibleif the C-EPC isvalid as indicated in the

following definition.

Definition 9 [Satisfiable] Let CEPC=(E,F,C,l,A,F°,C,0%R°,G®) bea C-EPC. CEPC is
satisfiable if and only if there is valid configuration.

Givethe fact that all requirements and guidelines are logical expressionsit isfairly easy

to provide tool support to guide the designer towards a valid configuration.

5.3 Semanticsof configurations

In examples we aready showed that a configuration corresponds to a concrete EPC. Now
we provide an algorithm to construct an EPC based on a C-EPC and a configuration.

Note that a C-EPC defines a space of concrete EPCs. Each valid configuration maps a C-

-25-

EPC onto a concrete EPC. The function 3 maps a C-EPC and its configuration onto a

concrete EPC B(CEPC,|€).

Definition 10 [A Let CEPC=(E,F,C,|,AF®,C%,0%R",G%) bea C-EPC and I° a
configuration of CEPC. The corresponding EPC Z(CEPC,|) is constructed as follows:

1. EPCi=(E,F,C|1,A) with |y = {(c|(c)) / ¢ ZC\C®} A (c,°(c)) / ¢ OC} and As = A
\{(c,n) TCsx o | L e 19(€)=SEQn (M Zn} [A(N,C) [7°CXCy [[
1(c)=SEQ, [h #n?}) isthe EPC obtained by mapping the configurable connectors

onto their concrete type and removing arcs not involving the selected sequence.EI

2. For each f [7F° such that 1°(f) = OFF, rename the function to skip to reflect that the
corresponding function is not executed. If «f /f¢ /7E, then merge input and output
event into one, i.e., EPCo=(E,,F2,C,11,A2) with E; = (E L€}) \(of Lf°), Fo = F\{f},
and A = { (n,n) A [{n,na} n(ef LRe)= L7} LR (n,e) / (& L7 +f) Lner) DA} LR
(eny) / (ex [/fe) [{eyny) [/A} where eisthe new connector (no name clashes, i.e, e
/7N) merging the old input and output connector. Repeat this for each f of this type

and let EPC; be the resulting EPC.E|

3. For each f [7F° such that 1°(f) = OPT, add function skip; , a split connector split; and
ajoin connector joins making f optional, i.e., EPCs=(Ez,F3,Cs,l3,A3) with F3
=F /A skips}, C3 = CLAsplitsjoing, 15=11/K (split;, XOR),(join;, XOR) }, Az = { (ng,ny)

LA [T L{n,ng}} LA(splite.f).(splitr,skipy),(skiprjoin),(fjoing} LA (n,split) / (nf) I/

% Note that such an EPC may not satisfy all the requirements stated in Definition 4.

4 Notethat it is not always possible to remove functions that are connected to a connector since connectors
are either on a path from an event to a function or vice versa.

-26 -

Az} [(joing,n) / (f,n) [7Az}. Repeat thisfor each f of this type and let EPC;3 be the

resulting EPC.

. Remove all connectors with just one input and one output node, i.e.,
EPC4:(E2,F3,C4,|4,A4) with Cy= {C [JC3 /,b’/> 1 U/’C/> 1}, |4 = {(C,X) U|3 /C [7
Ca}, and Ay = { (n,n2) A [/ {n,n} n(Ca\Co) = L7} LA(M,N2) [L oeaca

{(n]_,C),(C,nz)} DAG}

. Remove all isolated nodes, i.e., nodes without input and output arcs.

. Re-apply Step 2 of the algorithm, i.e., try to remove the remaining functions labelled
“skipy” .

. Remove all nodes not on some path from a start event to a final event. Consider only
start and final events also present in original EPC, i.e., not the new start/final events

that may have been introduced in e.g. Sep 1.

. Re-apply Step 4 of the algorithm, i.e., remove connectors with just one input and one
output node that may have been introduced in Sep 7. Theresulting EPC is

B(CEPC,[).

It is easy to verify that the examples given thus far are indeed consistent with the

algorithm. Although Definition 10 suggests that Z(CEPC,I) isindeed an EPC satisfying

the requirements mentioned before, this remains to be proven.

Theorem 1 [CEPC,) isan EPC] Let CEPC=(E,F,C,|,AF®,C% 0% R°,G% beaC-
EPC and I a configuration of CEPC. ACEPC,|®) is an EPC satisfying all requirements
stated in Definition 4]

-27 -

Proof.

EPCo=(E,F,C,,A) satisfies all requirements by definition. Next we check how the

requirements are affected by the seven steps.

- ThesasE, F, and C are pair-wise digoint. Although not always stated explicitly we
assume no name clashes.

- Foreache [JE: /ee/<1and f ¢/ < 1. Cardinality of number of input and output
nodes for eventsis not changed. Step 2 may merge two events but does not
jeopardize this requirement. All other steps can only reduce the number of
inputs/outputs.

- Thereisat least one event e //E such that /ee/= O (i.e. astart event). Start events are
not removed.

- Thereisat least one event e //E such that £¢/= 0 (i.e. afinal event). Final events
remain final events.

- Foreachf [JF: /f/= 1 and f ¢/ = 1. Functions may be removed but the cardinality of
number of input and output nodes for functionsis not changed.

- Foreachc [JC: Jec/>1 and £/ = 1. Existing connectors and newly added connectors
(splits, join) satisfy this requirement.

- Cjand Cgpartition C. This guaranteed by Step 4.

- Cgr and Cie partition C. The nature of connectorsis never changed.

A further example will now summarize the recommendations for a configurable reference
modelling language. The example is based on the reference model for invoice verification
asit can be found in the Enterprise System SAP R/3 Ver. 4.6¢. Figure 8 shows the current

non-configurable reference model.

-28 -

0ods Recei
Posted

Purchase é

Service
is accepted

) {

order
created

K

> Invoice
received

Purchase
order
created

E)

oods Recei

Posted

)

Evaluated
Receipt
Settlement

Ijvoice Processing
with Reference

Purchase
order
created

00

) ¢

Posted

ds Recei

)

Invoicing Plan
Settlement

Invoice
posted

Release
Invoice

Payment
must
be effected

Fig. 8: SAP reference model for invoice verification, ver. 4.6¢

Such amodel can be perceived asa‘Max-EPC’ asit includes all possible ways of invoice
verification supported by the SAP system. A more detailed analysis, however, shows that
this model includes many optional elements. The core of this processisthe classica
invoice processing with reference to a purchase order, a delivery note or service entry
sheet and the actual invoice. This process is mandatory and all elements have to be
configured. Evaluated receipt settlement (ERS) is an option that allows to bypass the
entire classical invoice verification process. Based on long term contracts and a clear
specification of the goods, invoices are posted and released based on the arrival of goods

which conform in quantity and quality to the specifications of the purchase order or

-29-

contract. Thus, ERSistypically only arelevant option, if the company is of significant
size and the business relationship is based on a highly repetitive purchasing process based
on along-term contract with a clear specification of the payment details. In asimilar way,
invoice plan settlement is an optional function. In this case, invoices are consolidated in
an invoice plan and scheduled over a series of future dates independently of individual
procurement transactions and the actual receipt of goods and services. Thisis relevant for
regularly recurring procurement transactions (e.g. car leasing, subscriptions) (so called
periodic invoicing plan) and transactions that are subject to stage payments (e.g. a
building project) (so called partial invoicing plan). Invoicing plan settlement facilitates
the automatic creation and payment of invoices and uses functionality of the evaluated
receipt settlement solution [35]. Figure 9 shows the reference model in C-EPC notation

that can be derived from this description.

oods Receipt Service
R Posted is accepted ivoice
e received
created
f/l\&/
W)l

Ptg;:dh;rse 0ods Receipt!
created gesed

Purchase 0ods Receipt
ooy Posted
created

Guideline 1 Wvoice Processin
ERS=ON, if with Reference
- long term Cont_riiCt S~ [Evalated Invoicing Plan
- goods and conditions Receipt R Settlement
are specified Settlement . —

- S
e .

- L ;
24 — Requirement 1

X B IPS=ON =
ERS=ON
posted
Invoice

Payment
must
be effected

Fig. 9: SAP reference model for invoice verification, ver. 4.6¢, in C-EPC notation

-30-

54 Partially configured C-EPCs

Definition 7 assumes a complete configuration, i.e., I is a complete function mapping
each configurable node onto a concrete value. However, the configuration process may

go through severa stages and therefore we also add the notion of a partial configuration.

Definition 11 [Partial configuration] Let CEPC=(E,F,C,|,A,F%,C%,0%,R°,G%) bea C-
EPC. 1® [7(F° £{ON, OFF, OPT}) [7(C® 4CT)%isapartial configuration of CEPC if
for each ¢ [7C® ndom(I°):

-1%(c) = 1(c)

-if1°(c) JCTSand ¢ [7C;, then there exists an n /7 «c such that |°(c) = SEQ,,

-if1°(c) JCTSand ¢ [7Cs, then there existsan n Jc such that 1°(c) = SEQ,

One can think of a C-EPC with a partia configuration as another C-EPC. Using an
algorithm similar to the one described in Definition 10, one can transform C-EPC with a
partial configuration into anew C-EPC. We omit details, but it is straightforward to
realize this using Definition 10. Simply consider the configurable nodes that are not
configured as unconfigurable nodes when applying the algorithm. Let 3’ be the modified

algorithm which transforms a C-EPC with a partia configuration into a new C-EPC.

Without proof we give the following theorem.

Theorem 2 [ACEPC,|) isan EPC] Let CEPC; bea C-EPC and | a partial
configuration of CEPC. CEPC,=3{CEPC,|°) is the corresponding C-EPC.

- If CEPC, is satisfiable, then CEPC; is also satisfiable.
- 1f1%, isa valid (suitable) configuration of CEPC,, then I, is also a valid
(suitable) configuration of CEPC,

The above alows us to indicate whether a partial configuration of a C-EPC is satisfiable.

® Note that partial functions are denoted by A4 B, i.e, af] AL B is afunction with a domain that is a
subset of A.

-31-

The concept of partial configured C-EPC opens up interesting possibilities. Consider for
example a configurable Enterprise System like SAP. There could be atop-level C-EPC
which indicates al possible configurations of SAP with respect to a given process. This
C-EPC could be partially configured per industry. (Recall that SAP has 23 aternative
industry solutions, asindicated in Section 3.) In other words, for each industry there are
partial configured C-EPCs. Such partial configured C-EPCs can be used as a starting
point within a given organization. For large organizations there may be different versions
of the same process, e.g., per country or per region. However, at the same time the
organization may want to enforce some unification. Therefore, the industry specific C-
EPC may be partialy configured into an organization-specific C-EPC. The latter C-EPC
may be configured within specific parts of the organization (e.g., per region). This
example shows that it may be worthwhile to have (partially configured) C-EPCs at
different levels where at each level the lower level isa (partial) configuration of the upper
level. For example, there may be a C-EPC at the level of SAP (What can the system do?),
at the level of anindustry (What configurations of SAP make sense for the automotive
industry?), and at the level of one organization (What configurations do we allow within
our organization?). Only the C-EPC at the organizational level is configured completely
to support a concrete process within some part of the organization (How do we do this

process within the Eindhoven branch of our organization?).

Apart from configuration at various levels there can always be the need for customization
(i.e., support processes that do not fit into the C-EPC). The latter should be avoided since
itisrisky and costly. If customization is unavoidable, it may be interesting to use the

notions of inheritance described in [2,5]. These notions of inheritance can easily be

-32-

applied to EPCs and C-EPCs. The topic of customization is however out of the scope of

this paper.

5.5

Extensions

To conclude this section we reflect on the requirements given in Section 4 in the context

of the C-EPC language just defined.

a)

b)

d)

The C-EPC language defined in this section mainly focuses on the process and
control-flow aspects. The data aspect and function aspect have not been addressed
explicitly. Note that functions can be configured but this only refersto their
presence rather than the functionality of these functions.

C-EPCs do not distinguish between mandatory and optional decisions. However,
itisfairly easy to add this functionality. It could be defined as an extension of the
partial order OF. It is aso possible to extend the language with defaults for
optional configuration decisions.

C-EPCsdo not differentiate between global and local decisions. Againitisfairly
easy to add this as an attribute to all configurable nodes. However, the redl
challengeisto get thisinformation.

Similarly remarks hold for the difference between critical and non-critical
decisions.

Configuration decisions can have interrelationships. Thisis partly covered by the
requirements (R%) and guidelines (G®) in a C-EPC. However, these are restricted

to interrel ationships within one model and not for e.g. interrel ationships between

-33-

f)

9)

h)

two process models and interrel ationships between a reference process model and
arelated reference data model.

Configuration decisions can be made on different levels. This can be supported by
the partially configurable C-EPCs as discussed in the previous subsection.

In a C-EPC variation points do not refer to further related information within the
Enterprise System. However, this can be added easily.

The entire configuration process should also be guided by recommendations or
configuration guidelines. This is supported by the guidelines (G®) and the partial
order O°.

The last requirement refers to the impact of configuration extensions on the
perceived model complexity. The C-EPC is a natural extension of the standard
EPC and should not cause any problems for the typical user of areference model.
The most complex parts are the interrel ationships defined in the requirements (R°)
and guidelines (G°) in a C-EPC since these are expressed in logical expressions. It
may be worthwhile to think of more graphical notations for modelling typical

requirements like for example dependency constraints.

As indicated the C-EPC language defined in this paper covers many of the requirements

but not all. The language reported in this paper focuses on the core functionality of a

configurable reference modelling language based on EPCs.

6

Related Work

This area of research can be divided into requirements engineering for the devel opment of

Enterprise Systems [10,12] and requirements engineering for the configuration of

-34-

Enterprise Systems. The latter one is the focus of this paper. Academic contributionsin
thisfield are still the exception. As an example, Rolland and Prakesh [29] suggest a map
including ERP goals and objectives for the identification and evaluation of user needs.
Gullaand Brasethvik [19] introduce three process modelling tiers to manage the
complexity of process modelling in comprehensive ERP Systems projects. Their
functional tier dimension deals with the functionality of the Enterprise System. However,
they do not discuss how to differentiate reference modelsin thistier. Brehm et al. [9]
discuss alternative ways of configuring Enterprise Systems. However, they do not link

their work to reference models.

Related work has also been conducted in the area of variability management in software
families. Halmans and Pohl [20] discuss issues related to the communication of the
variability of a software-product family. They propose an extension to use case diagrams
based on cardinalitiesin order to explicitly depict variation points. They do not support
dependencies between variation points. Moreover, use case diagrams have not widely
been used for reference models. Halmans and Pohl [20] have been influenced by previous
work on representing variability in use case diagrams by Bertolino et al. [8], von der
Massen and Lichter [26], and John and Mutig [21]. Software product families have also
been investigated in from an architectural viewpoint. In fact, there have been several
workshops on software architectures for product families, cf. [25]. As an example
consider the work of Dolan et a. [15] on the role of the various stakeholders when it

comes to software product families.

-35-

7 Conclusion and Outlook

Reference model s have been defined in this paper as reusable conceptual models that
depict recommended structures and processes. One main class of reference models are
application reference models that document the functionality of off-the-shelf-solutions.
Reference modelling languages face specific requirements regarding the configuration of
these models. However, current models such as the SAP reference models (and other
Enterprise Systems reference models) are designed using modelling languages that do not
cater for the needs of configuration. Thus, only limited opportunities exist to specify valid
configurations. This paper proposed extensions of a popular reference modelling
language that allow exactly this explicit specification of configurationsin reference
process models. This language has been called Configurable Event-driven Process

Chains.

The current focus of our research is on developing alist of configuration patterns and
exploring alternative ways of modelling these patterns. The quality of our proposed
reference modelling language as well asits notations will be tested in experiments and
focus groups. This project isfunded by SAP Corporate Research and it isthe explicit aim
to develop an applicable language. As part of this research project, arelated SAP-funded
empirical study on the actual modelling practice in Australiais currently conducted. This
study will give important insights into the problems with the existing reference models.
Furthermore, it is planned to extend this work to configurable collaborative business

scenario diagrams.

Another interesting question is. "Given a C-EPC and a partial configuration, is the partial

configuration satisfiable?'. Related questions are: "If not satisfiable, why not?' or "If

-36-

satisfiable, which configurations are still possible?". Since the number of configurations
isfinite, it is easy to provide automated support for addressing these questions. Moreover,
it would be interesting to link these questions to the dynamics of the resulting EPCs. It
may be the case that a partial configuration satisfiable in terms of the configuration

requirements but that the resulting EPCs will always deadlock.

A further area of research will be the inclusion of evidence-based research. This could
include access to relevant benchmarking information or typical configuration decisions
made in one industry sector. This could be visualised in the reference models using the
proposed configuration guidelines and would provide valuable guidance for the required

decisions.

-37-

8 References

[1] W.M.P. van der Aalst, Formalization and Verification of Event-driven Process
Chains, Information and Software Technology 41(10) (1999) 639-650.

[2] W.M.P.vander Aalst, T. Basten, Inheritance of Workflows: An Approach to
Tackling Problems Related to Change, Theoretical Computer Science, 270(1-2) (2002)
125-203.

[3] W.M.P. van der Aalst, J. Desdl, E. Kindler, On the Semantics of EPCs: A Vicious
Circle. In M. Nttgens and F.J. Rump, editors, Proceedings of the EPK 2002: Business
Process Management using EPCs, Trier, Germany, November 2002. Gesellschaft fir
Informatik, Bonn, 71-80.

[4] W.M.P. van der Aalst, A.H.M. ter Hofstede, B. Kiepuszewski, A.P. Barros,
Workflow Patterns, Distributed and Parallel Databases 14(3) (2003) 5-51.

[5] T.Basten, W.M.P. van der Aalst, Inheritance of Behavior. Journal of Logic and
Algebraic Programming, 47(2) (2001) 47-145.

[6] J. Becker, M. Kugeler, M. Rosemann, eds., Process Management, Berlin et al., 2003.

[7] P.Bernus, GERAM: Generalised Enterprise Reference Architecture and
Methodology, version 1.6.3, March 1999.

[8] A.Bertolino, A. Mantechi, S. Gnesi, G. Lamir, A. Maccari, Use Case Description of
Requirements for Product Lines. Proceedings of the International Workshop on
Requirements Engineering for Product Lines 2002 - REPL '02. Technical Report: ALR-
2002-033, AVAYA labs. 2002.

[9] L.Brehm, A. Heinzl, M.L. Markus, 2000, Tailoring ERP Systems. A Spectrum of
Choices and their Implications, Proceedings of the 34™ Hawaii International Conference
on System Sciences. Maui, Hawaii, 3-6 January 2000.

[10] S. Brinkkemper, Requirements Engineering for ERP: Requirements Management
for the Development of Packaged Software, Proceedings of the 4™ International
Symposium on Requirements Engineering. Limerick, Ireland, 7-11 June 1999.

[11] T. Curran, G. Keller, SAP R/3 Business Blueprint: Understanding the Business
Process Reference Model, Upper Saddle River, 1997.

[12] M. Daneva, Practica Reuse Measurement in ERP Requirements Engineering,
Proceedings of the 12" International Conference CAiSE 2000, eds., B. Wangler and
L. Bergman. Stockholm, Sweden, June 5-9, [Lecture Notes in Computer Science|1789,
2000, 309-324.

[14] J. Dehnert, P. Rittgen, Relaxed Soundness of Business Processes, In K.R. Dittrich,
A. Geppert, and M.C. Norrie, editors, Proceedings of the 13" International Conference on
Advanced Information Systems Engineering (CAiSE 2001), volume 2068 of Lecture
Notes in Computer Science, Springer-Verlag, Berlin, 2001, 157-170.

[15] T. Dolan, R. Weterings, J.C. Wortmann, Stakeholder-Centric Assessment of
Product Family Architecture: Practical Guidelines for Information System

-38-

http://www.informatik.uni-trier.de/~ley/db/journals/lncs.html

Interoperability and Extensibility, In International Workshop on Software Architectures
for Product Families (IW-SAPF-3), volume 1951 of Lecture Notesin Computer Science,
Springer Verlag, 2000, 225-245.

[16] P. Fettke, P. Loos, Classification of reference models - a methodology and its
application. Information Systems and e-Business Management, 2003, 1(1) 35-53.

[17] T. Forsberg, G. Roenne, J. Vikstroem, Process Modeling in ERP Projects—a
discussion of potential benefits. Intentia R& D 2002.

[18] U. Frank, Conceptual Modelling as the Core of the Information Systems Discipline
- Perspectives and Epistemol ogical Challenges, Proceedings of the America Conference
on Information Systems— AMCIS’ 99, Milwaukee, 1999, 695-698.

[19] J. A. Gulla, T. Brasethvik, On the Challenges of Business Modeling in Large Scale
Reengineering Projects,. Proceedings of the 4™ International Conference on
Requirements Engineering, Schaumburg, IlI., 19-23 June 2000, 17-26.

[20] G. Hamans, K. Pohl, Communicating the variability of a software-product family to
customers. Software and Systems Modeling, 2(1) 2003 15-36.

[21] I. John, D. Mutig, Tailoring Use Cases for Product Line Modeling. Proceedings of
the International Workshop on Requirements Engineering for Product Lines 2002 - REPL
'02. Technical Report: ALR-2002-033, AVAY A labs 2002.

[22] G. Kdler, M. Nuttgens, A.W. Scheer, Semantische Processmodellierung auf der
Grundlage Ereignisgesteuerter Prozessketten (EPK), Verdffentlichungen des Instituts fur
Wirtschaftsinformatik, Heft 89 (in German), University of Saarland, Saarbriicken, 1992.

[23] H. Klaus, M. Rosemann, G.G. Gable, What is ERP?, Information System Frontiers
(2000) 2 (2) 141-162.

[24] P. Langner, C. Schneider, J. Wehler, Petri Net Based Certification of Event driven
Process Chains. In J. Desel and M. Silva, editors, Application and Theory of Petri Nets
1998, volume 1420 of Lecture Notesin Computer Science, Springer-Verlag, Berlin,
1998, 286-305.

[25] F.van der Linden, eds., International Workshop on Software Architectures for
Product Families (IW-SAPF-3), volume 1951 of Lecture Notesin Computer Science,
Berlin 2000.

[26] T.von der Massen, H. Lichter, Modeling Variability by UML Use Case Diagrams.
Proceedings of the International Workshop on Requirements Engineering for Product
Lines 2002 - REPL '02. Technical Report: ALR-2002-033, AVAY A labs. 2002.

[27] V.B. Misic, J.L. Zhao, Evaluating the Quality of Reference Models, in A.H.F.
Laender, SW. Liddle, V.C.Storey, eds., in Proceedings of the 19" International
Conference on Conceptual Modeling. Salt Lake ClIt, Utah, USA, 9-12 October 2000.
L ecture Notes in Computer Scienced 1920, 484-498.

[28] P. Rittgen, Modified EPCs and their Formal Semantics. Technical Report 99/19,
University of Koblenz-Landau, Koblenz, Germany, 1999.

[29] C. Rolland, N. Prakash, Bridging the Gap between Organisational Needs and ERP

-39-

http://www.informatik.uni-trier.de/~ley/db/journals/lncs.html

Functionality, Requirements Engineering, 5 (3) (2000) 180-193.

[30] M. Rosemann, ERP software: characteristics and consequences, in J. Pries-Hegje
et al., eds., in Proceedings of the 7" European Conference on Information Systems, 23-25
June 1999, Copenhagen.

[31] M. Rosemann, Using Reference Models within the Enterprise Resource Planning
Lifecycle. Australian Accounting Review, 10(3) 2000 19-30.

[32] M. Rosemann, Application Reference Models and Building Blocks for Management
and Control (ERP Systems). in: Handbook on Enterprise Architecture. P. Bernus,
L. Nemes, G. Schmidt, eds., Springer-Verlag: Berlin et a., 2003, 595-616.

[33] M. Rosemann, G. Shanks, Extension and Configuration of Reference Models for
Enterprise Resource Planning Systems. Proceedings of the 12th Australasian Conference
on Information Systems - ACIS 2001, G. Finnie, D. Cecez-Kecmanovic, B. Lo, eds,,
Coffs Harbour, 4-7 December 2001, 537-546.

[34] F. Rump, Geschéftsprozessmanagement auf der Basis Erei gnisgesteuerter
Prozessketten. Rethe Wirtschaftsinformatik, Teubner Verlag, Germany, 1999.

[35] SAPAG, Online Help — SAP Release 4.6¢ (help.sap.com). Material No. 50045631,
2003.

[36] A.-W. Scheer, ARIS — Business Process Modelling. 3" ed., Berlin et al., 2000.

[37] L. Silverston, The DataModel Resource Book, Volume 1, A Library of Universal
Data Modelsfor All Enterprises, revised edition, 2001.

[38] L. Silverston, The DataModel Resource Book, Volume 2, A Library of Data
Models for Specific Industries, revised edition, 2001.

[39] M. Verbeek, On Tools & Models, in: Dynamic Enterprise Innovation. Establishing
Continuous Improvement in Business. 3" ed., R. van Es, ed., Baan Business Innovation
1998.

- 40 -

	5.2 Configurable EPCs
	5.3	Semantics of configurations
	Such a model can be perceived as a ‘Max-EPC’ as it includes all possible ways of invoice verification supported by the SAP system. A more detailed analysis, however, shows that this model includes many optional elements. The core of this process is the c
	5.4	Partially configured C-EPCs
	Extensions

