
A Configurable Reference Modelling Language1

M. Rosemanna, W.M.P. van der Aalstb,a

a Centre for Information Technology Innovation, Faculty of Information Technology, Queensland

University of Technology, 126 Margaret Street, Brisbane Qld 4000, Australia,
phone: +61 7 3864 9473, fax +61 7 3864 9390, m.rosemann@qut.edu.au

b Faculty of Technology and Management, Eindhoven University of Technology, P.O. Box 513, NL-5600
MB, Eindhoven, The Netherlands, w.m.p.v.d.aalst@tm.tue.nl

Abstract

Enterprise Systems (ES) are comprehensive off-the-shelf packages that have to be

configured to suit the requirements of an organization. Most ES solutions provide

reference models that describe the functionality and structure of the system. However,

these models do not capture the potential configuration alternatives. This paper discusses

the shortcomings of current reference modelling languages using Event-driven Process

Chains (EPCs) as an example. We propose Configurable EPCs as an extended reference

modelling language which allows capturing the core configuration patterns. A

formalization of this language as well as examples for typical configurations are

provided. A program of further research including the identification of a comprehensive

list of configuration patterns, deriving possible notations for reference model

configurations and testing the quality of these proposed extensions in experiments and

focus groups is presented.

Keywords

Reference Model, Enterprise Systems, Configuration, Event-driven Process Chains

1 This research project is financially supported by SAP Corporate Research.

- 2 -

1 Introduction

Enterprise Systems (ES) offer business solutions for typical functional areas such as

procurement, materials management, production, sales and distribution, financial

accounting and human resource management [23, 30]. These functions are typically

individualised for countries and industries such as automotive, retailing, high-tech, etc.

Such off-the-shelf-solutions require configuration before they can be used in the

individual context of an organization.

As an approach to improve the understandability of these systems and to stress the

process-oriented nature of their solutions, ES vendors have developed application

reference models which describe the processes and structure of the system. Enterprise

Systems reference models exist in the form of function, data, system organization, object

and business process models, although the latter are by far the most popular type.

Current reference models, however, are based on conventional modelling languages that

have been developed for the design of enterprise-individual models. Thus, they are not

able to adequately depict possible system configurations. Even further, they don’t provide

decision support regarding the selection of relevant variants. Current application

reference models “just” depict the possible system capabilities and cannot sufficiently

guide the project team in the system configuration process.

This paper discusses the underlying research problem and proposes an extension of an

existing reference modelling language in order to capture the configuration potential of

Enterprise Systems. The paper is structured as follows. The next section provides an

overview about the characteristics of application reference models. The third section

outlines the research problem and the research methodology. Section four lists the

- 3 -

requirements for a configurable reference modelling technique. The fifth section

introduces the proposed Configurable Event-driven Process Chain (C-EPC) based on a

formalization of EPCs. This paper ends with a section on related work, a brief summary

and a discussion of the future work.

2 Reference Models

Reference models are generic conceptual models that formalize recommended practices

for a certain domain [16,18]. Often labelled with the term 'best practice' reference models

claim to capture reusable state-of-the-art practices [37,38]. Thus, a more realistic label

would be ‘better practice’ or often even ‘common practice’. The depicted domains can be

very different. They can range from selected functional areas such as accounting or

Customer Relationship Management to the scope of an entire industry sector, e.g. higher

education.

The main objective of reference models is to streamline the design of enterprise-

individual (particular) models by providing a generic solution. The application of

reference models is motivated by the ‘Design by Reuse’ paradigm. Reference models

accelerate the modelling process by providing a repository of potentially relevant

business processes and structures. These ideally ‘plug and play’ models are also called

Partial Enterprise Models in the terminology of the Generalised Enterprise Reference

Architecture and Methodology (GERAM) [7].

With the increased popularity of business modelling, a wide and quite heterogenous range

of purposes can motivate the use of a reference model. The list of purposes includes

software development, software selection, configuration of Enterprise Systems, workflow

management, documentation and improvement of business processes, education, user

- 4 -

training, auditing, certification, benchmarking, and knowledge management to name the

most popular purposes.

Reference models can be differentiated along the following main criteria

• Scope of the model (e.g., functional areas covered)

• granularity of the model (e.g., number of levels of decomposition detail)

• views (e.g., process, data, objects, organization) that are depicted in the model

• degree of integration between the views

• purposes supported

• user groups addressed

• internal or external (commercial) use

• availability of the model (e.g., paper, tool-based, Web-based)

• availability of further textual explanation of the model

• explicit inclusion of alternative business scenarios

• existence of guidelines on how to use these models

• availability of relevant quantitative benchmarking data

A further and more comprehensive differentiation based upon the domain that underlies

the reference model can be found in [32].

The term reference model is also used for models describing the structure and

functionality of business applications including Enterprise Systems [11]. In these cases, a

reference model can be interpreted as a structured semi-formal description of a particular

application. Application reference models correspond to an existing off-the-shelf-solution

that supports the functionality and structure described in the model. These models include

more software-related constraints than industry reference models and are typically on a

lower level of abstraction. Thus, they can be used for a better understanding and

evaluation of the appropriateness of the software. Furthermore, they aim to facilitate the

implementation of the software and can be used for related end user training [6,19,31].

- 5 -

As application reference models reflect the comprehensiveness of these applications, they

tend to be more complex than industry reference models. One of the most comprehensive

models is the SAP reference model [11]. Its data model includes more than 4000 entity

types and the reference process models cover more than 1000 business processes and

inter-organizational business scenarios. Most of the other market leading ES vendors

have an approach towards such reference models. An overview of the Baan reference

model, for example, is provided in [39]. See also [17] for reference models in Intentia.

Foundational conceptual work for the SAP reference model had been conducted by

SAP AG and the IDS Scheer AG in a collaborative research project in the years 1990-

1992 [22]. One aim of this project was to develop a modelling language that depicts SAP-

supported processes in a reasonably intuitive language. The outcome of this project was

the process modelling language Event-driven Process Chains (EPCs) [22, 36], which has

been used for the design of the reference process models in SAP. EPCs also became the

core modelling language in the Architecture of Integrated Information Systems (ARIS)

[36]. It is now one of the most popular reference modelling languages and has also been

used for the design of many SAP-independent reference models (e.g., ARIS-based

reference model for Siebel CRM solution developed by ACQRA or industry models for

banking, retail, insurance, telecommunication, etc.).

- 6 -

3 Research Problem and Research Methodology

The existence of reference models highlights a difference from the traditional software

development process. Instead of starting from scratch and continuously adding

functionality, ES solutions require a continuous narrowing down of the scope of the

system. This process starts with the “big picture”, which is then reduced to the relevant

part. Reference models can be used as a description of this big picture. It is necessary to

select the necessary functions and to decide during the configuration process between

alternatives (e.g., reporting in financial accounting or controlling).

Although Enterprise Systems reference models have contributed significantly to the

understandability of the software functionality, they still have main shortcomings. These

shortcomings can be differentiated for the two main stakeholders, the model users and the

model designers.

The reference model lifecycle is initiated by the reference model designers, i.e. the

Enterprise Systems vendor. During the design phase available individual conceptual

models are evaluated, selected and consolidated.2 Such a reference model will typically

not only include one proposed alternative, but a range of often mutually exclusive

alternatives. This might be because the depicted scenarios cover different industries or

different countries. At this stage, for example, SAP maintains 23 alternative industry

2 An organization might also declare the internal best practice in one subsidiary etc. as the internal

benchmark. Thus, an existing conceptual model can have the status of a reference model. This practice can,

for example, be observed in global organizations that roll-out the business blueprint of one location to all

their subsidiaries worldwide. These models are also called prototypical models [7]. They do not require

configurations and are not within the scope of this paper.

solutions. However, the current use of traditional modelling languages does not support a

consolidation of these models. Figure 1 demonstrates this problem in a simple example. It

shows the consolidation of corresponding reference models from two different industries.

The XOR split in this case represents a decision point that is of relevance during the so-

called configuration time. A model in this phase cannot necessarily be executed. It rather

captures different alternatives for a domain and has to be configured before it can serve as

the actual build time model for individual process instances.

F

T

c

n

im

a

su

th

a

- 7 -

ig. 1: Configuration time, build time and run time

he lack of the required expressiveness of current reference modelling languages for

onfiguration time is for two reasons also a serious issue for model users. First, it does

ot become obvious what configuration alternatives exist during the system

plementation phase. Second, the models do not provide any decision support in the

ctual selection of an alternative. Current reference models show what processes are

pported in general, but not what might be a recommended alternative. They represent

e entire functionality from the viewpoint that the complete system is used and look like

n ordinary build time model. However, only a subset is typically used within an

A

B

C

Oil & Gas

A

B

D

Chemical
Industry

A

B

C D

XOR

Combined
Reference Model

A

B

D

A3

B3

D3

A2

B2

D2

A1

B1

D1

Derived
Enterprise Model

Derived
Instances

configuration time build time run timebuild time

- 8 -

individual organization. Figure 2 provides a related example for the customer master data

entry process in SAP R/3.

Fig. 2: Individualisation of a SAP reference model

The main objective of this paper is to present a configurable reference modelling

language. This research is embedded in a more comprehensive research project with the

following three phases, of which each has its own challenges.

1) The first task was the identification and classification of configuration patterns. A

configuration pattern describes a distinguishable configuration case. Based on the

work that has been conducted on workflow patterns [4], we derived a set of

configuration patterns that classify alternative configuration scenarios. As far as

possible, examples from the SAP reference model have been assigned to each

configuration pattern. The SAP reference model has been used because of its

maturity, its worldwide use and its availability to the researchers.

Conditions processing
(Purchasing)

Specify address of
cust omer

Address is specif ied

I nt erest calculat ion is
specif ied

Plant processing

Maint ain account ing
informat ion

Sold- to part y t o be
created

Cust omer is also vendor

Planning group is
specif ied

Cust omer-mat erial- inf o
processing [standard]

Maint ain account cont rol

Maintain sales data

Ship- to part y t o be
creat ed

Trading par t ner is
specif ied

Clear ing bet ween
cust omer / vendor

specif ied f or aut omat ic
payment s

Basic dat a processing for
legal cont rols [st andard]

Managem ent of physical
samples

Payer t o be creat ed

Specify company code

Company code is
specif ied

Bank det ails are
specif ied

Possible payment
met hods are specif ied

Cust omer volume rebat e
agreement processing

[normal]

Cust omer mast er record
is t o be creat ed

Specify payment
t ransact ion dat a

Manual sample release

Det ermine cust omer
f unction

I nvoice recipient is t o be
creat ed

Account group with
internal number

assignment det ermined

Def ine customer number

Cust omer number is
det ermined

Payment card dat a is
maint ained

Sales area data are
maint ained

Maint ain payment
informat ion

Alternative payer
specific t o company

code specif ied

Creat e cust omer

Cust omer mast er record
is created

Mat er ial listing/exclusion
[st andar d]

Sales personnel is
processed

Specify account group

Maintain cont rol dat a

Sample receiver t o be
creat ed

Account group with
ext ernal number

assignment det ermined

Alternative payer f or
cust omer specif ied

Line it em set tlement is
specified

Product allocat ion [standard]

Specify alt ernat ive payer

Maint ain messages

Decent ralized processing
required

Cust omer t o be creat ed
f or st at istical purposes

Alter native payer f or
it em allowed

Payment block is
specified

Basic dat a processing f or
legal cont rols [st andard]

Maintain par t ner
f unct ions

Check if decent ralized
handling is desired

Cust omer is assor t ment
cust omer

Maint ain market ing data

Marketing data are
maintained

Dunning procedure is
specified

Sales deal processing
[st andard]

Decent ralized processing
not required

Maintain dunning dat a

Cust omer is one- t ime
cust omer

Det ermine f oreign t rade
dat a

Foreign t rade dat a
det ermined

Dunning block is
specified

Cust omer hierarchy
processing [standard]

Creat e unloading point

Maintain
cor respondence

Correspondence is
maint ained

Sales summary
processing [st andard]

Creat e receiving point

Receiving point has been
created

Assign receiving point t o
an unloading point

Cust omer unloading pnt s
have been maint ained

Maintain credit
management data

Credit management dat a
det ermined

Bat ch search st rat egy
processing [standard]

Creat e depar tm ent

Depart ment has been
creat ed

Assign depar t ment t o a
receiving point

Classif icat ion [classif icat ion
syst em] [st andar d]

Maint ain cont act
persons

Cont act person dat a are
maintained

Plant processing Sales Personnel
master processing

(Tacit) depends on
f amiliar it y wit h cust omers

and int eract ion with cust omers

Payment card
Set up

Condit ions pr ocessing
(Pur chasing)

Specif y addr ess of
cust omer

Address is specif ied

I nter est calculat ion is
specif ied

Plant pr ocessing

Maint ain account ing
inf or mat ion

Sold- t o par t y t o be
creat ed

Cust omer is also vendor

Planning gr oup is
specif ied

Cust omer - mater ial- info
pr ocessing [st andard]

Maint ain account cont r ol

Maint ain sales dat a

Ship- t o par t y t o be
cr eat ed

Tr ading part ner is
specif ied

Clear ing between
cust omer / vendor

specif ied f or aut omatic
payment s

Basic data pr ocessing f or
legal cont r ols [standard]

Management of physical
samples

Payer to be cr eat ed

Specif y company code

Company code is
specif ied

Bank det ails are
specif ied

Possible payment
met hods ar e specif ied

Cust omer volume r ebate
agr eement pr ocessing

[nor mal]

Cust omer master r ecor d
is t o be cr eat ed

Specif y payment
t ransaction dat a

Manual sample release

Det er mine cust omer
f unct ion

I nvoice r ecipient is t o be
cr eat ed

Account group wit h
int er nal number

assignment det erm ined

Define cust omer number

Cust omer number is
det erm ined

Payment car d dat a is
maintained

Sales ar ea dat a ar e
maintained

Maint ain payment
inf or mat ion

Alt er nat ive payer
specif ic t o company

code specif ied

Cr eat e cust omer

Cust omer mast er r ecor d
is cr eat ed

Mat er ial list ing/ exclusion
[st andar d]

Sales per sonnel is
pr ocessed

Specif y account gr oup

Maint ain cont rol dat a

Sample r eceiver t o be
cr eat ed

Account gr oup wit h
ext er nal number

assignment det er mined

Alt er native payer f or
customer specif ied

Line it em set t lement is
specif ied

Pr oduct allocat ion [st andar d]

Specif y alter nat ive payer

Maint ain messages

Decent r alized pr ocessing
r equir ed

Cust omer t o be cr eated
f or st at ist ical pur poses

Alt er nat ive payer f or
it em allowed

Payment block is
specif ied

Basic dat a pr ocessing f or
legal cont r ols [standar d]

Maint ain par t ner
f unct ions

Check if decentr alized
handling is desir ed

Cust omer is assort ment
cust omer

Maint ain mar ket ing dat a

Mar keting dat a ar e
maint ained

Dunning pr ocedur e is
specif ied

Sales deal pr ocessing
[standar d]

Decentr alized pr ocessing
not r equired

Maint ain dunning dat a

Cust omer is one- t ime
cust omer

Det er m ine f oreign t rade
dat a

For eign t r ade data
det erm ined

Dunning block is
specif ied

Cust omer hier ar chy
pr ocessing [st andard]

Cr eat e unloading point

Maint ain
cor r espondence

Cor respondence is
maint ained

Sales summar y
pr ocessing [standard]

Cr eat e r eceiving point

Receiving point has been
cr eat ed

Assign receiving point t o
an unloading point

Cust omer unloading pnts
have been maintained

Maint ain cr edit
management dat a

Cr edit management dat a
det er mined

Bat ch search st r at egy
pr ocessing [standar d]

Creat e depar t ment

Depart ment has been
cr eat ed

Assign depar t ment to a
r eceiving point

Classif ication [classif icat ion
syst em] [st andar d]

Maint ain cont act
per sons

Cont act person dat a
maint ained

Plant processing Sales Per sonnel
mast er pr ocessing

- 9 -

2) The next step has been the development and formalization of a reference

modelling language, which supports the specification of these configuration

patterns. This task has been constrained by the desire to rather extend current

reference modelling languages than to develop an entire new language. This has

been motivated by the significant development efforts that have been invested in

reference models already. We selected Event-driven Process Chains as the starting

point for our research due to the popularity of this language for the design of

reference models.

3) The proposed configurable reference modelling language and the corresponding

notation will be tested in two ways. First, experiments with post-graduate students

will be conducted. The selected group of students will be familiar with SAP,

process modelling and reference modelling. Second, focus groups with SAP

application consultants who are using the SAP reference model in their consulting

practice will be conducted.

This paper reports on the second phase, i.e. the proposed configurable reference

modelling language. This language is only focused on the so called essential

configurations, i.e. the system variability as it is visible and relevant to the project team,

and not the technical configurations, which subsume aspects related to the technical

realisation [20].

- 10 -

4 Requirements for a configurable reference modelling technique

Reference modelling languages obviously have to be configurable. This means that they

should not only capture decisions on an instance level, but also on a type level. Unlike

decisions on an instance level, i.e. at runtime, decisions on a type level, i.e. at

configuration time, have an impact on the model and its actual structure. Such

configuration decisions have to be clearly differentiated from runtime decisions and can

be highlighted as variation points in a model [20]. A variation point captures a decision

point together with the related possible choices. Furthermore, a configurable reference

modelling language has to consider the following requirements.

a) The language has to support configurations regarding entire processes, functions,

control flow and data.

b) It should be possible to differentiate configuration decisions into mandatory and

optional decisions. Mandatory decisions have to be made before the very first

instance can be derived from this model. The decision could be not to use a

certain variant. Optional decisions can initially be neglected. It should be possible

to maintain defaults for optional configuration decisions. This allows the

instantiation of the model even without explicitly making all possible decisions. It

also allows confronting the project team only with the important configuration

decisions.

c) Configuration should be differentiated into global and local decisions. Global

decisions are based on the general context and can be made without studying the

individual process model. Such context information includes industry, country,

size etc. The relevant context factors have to be maintained for every variation

- 11 -

point. As soon as information regarding the relevant context has been provided, a

first (hidden or background) configuration of the reference model can take place.

Local configurations require an explicit study of the relevant process model. In

these cases the decision maker has to consider the available individual choices

and make a trade-off decision.

d) Configuration decisions should also be differentiated into critical and non-critical

decisions. Critical decisions have significant impact on the use of the system, can

often not be re-done and should be made by the project team. Non-critical

decisions are of minor importance, can be changed over time and can be made by

individual team members.

e) Configuration decisions can have interrelationships. Any pre-requisites for a

configuration decision should be clearly highlighted. This can include other

decisions, which have to be made before. Moreover, any impact of one decision

on other decisions has to be depicted. This means, a logical order between

configuration decisions has to be considered. This includes interrelationships

within one model, between two process models but also interrelationships

between a reference process model and a related reference data model [33].

f) Configuration decisions can be made on different levels. For example, a first

configuration of the SAP reference model might be an individualization for an

entire global organization. The next level of configuration can be made for a

certain country or business unit.

g) Variation points should refer to further related information within the Enterprise

System. This can include the system online help and the system configuration

- 12 -

module, i.e. in SAP the Implementation Guide. Such information can provide

valuable support for the decision maker.

h) The entire configuration process should also be guided by recommendations or

configuration guidelines. Such information could come as benchmarking data

from the outside of the system if a critical mass of system users is willing to

provide the required data. It can include information such as the processing time

of a given process path, the number of times a decision has been made in the same

industry or the required investments and implementation time for a certain

configuration.

i) Enterprise System reference models are already very comprehensive. Any further

extension of these modelling languages has to carefully consider the impact on the

perceived model complexity.

The following section introduces configurable Event-driven Process Chains as an

approach to capture variation points in a reference process model. At the end of the next

section we will reflect on the requirements identified.

5 Configurable Event-driven Process Chains (C-EPCs)

Before introducing Configurable Event-driven Process Chains (C-EPCs), we first

formalize the notion of the classical Event-driven Process Chain. Then C-EPCs are

introduced and formalized followed by a definition of their semantics and a discussion on

partially configured C-EPCs. The section is concluded by some reflections on the

requirements stated in the previous section.

- 13 -

5.1 Formalization of EPCs

Not every diagram composed of events, functions and connectors is a correct Event-

driven Process Chain. For example, it is not allowed to connect two events to each other

[22]. Unfortunately, a formal syntax for Event-driven Process Chains is missing. In this

section, we give a formal definition of an Event-driven Process Chain. This definition is

based on the restrictions described in [22] and imposed by tools such as ARIS and

SAP R/3. This way we are able to specify the requirements an Event-driven Process

Chain should satisfy.

Definition 1 [Event-driven Process Chain (1)] An Event-driven Process Chain is a five-

tuple (E,F,C,l,A):

- E is a finite (non-empty) set of events,
- F is a finite (non-empty) set of functions,
- C is a finite set of logical connectors,
- l ∈ C → { ∧ , XOR, ∨ } is a function which maps each connector onto a
connector type,
- A ⊆ (E ×F) ∪ (F ×E) ∪ (E ×C) ∪ (C ×E) ∪ (F ×C) ∪ (C ×F) ∪ (C ×C) is a set of
arcs.

An event-driven process chain is composed of three types of nodes: events (E), functions

(F) and connectors (C). The type of each connector is given by the function l: l(c) is the

type (∧ , XOR, or ∨) of a connector c ∈ C. Relation A specifies the set of arcs connecting

functions, events and connectors. Definition 1 shows that it is not allowed to have an arc

connecting two functions or two events. There are many more requirements an Event-

driven Process Chain should satisfy, e.g., only connectors are allowed to branch, there is

at least one start event, there is at least one final event, and there are several limitations

with respect to the use of connectors. To formalize these requirements we need to define

some additional concepts and introduce some notations.

- 14 -

Definition 2 [Directed path, elementary path] Let EPC be an Event-driven Process
Chain. A directed path p from a node n1 to a node nk is a sequence 〈n1, n2, …, nk 〉 such
that 〈ni,ni+1 〉 ∈ A for 1 ≤ i ≤ k−1.

The definition of directed path will be used to limit the set of routing constructs that may

be used. It also allows for the definition of CEF (the set of connectors on a path from an

event to a function) and CFE (the set of connectors on a path from a function to an event).

CEF and CFE partition the set of connectors C. Based on the function l we also partition C

into C∧ , C∨ , and CXOR. The sets CJ and CS are used to classify connectors into join

connectors and split connectors.

Definition 3 [N, C∧ , C∨ , CXOR, • , CJ, CS, CEF, CFE] Let EPC=(E, F, C , l, A) be an Event-
driven Process Chain.

- N = E ∪ F ∪ C is the set of nodes of EPC.
- C∧ = { c ∈ C | l(c) = ∧ }
- C∨ = { c ∈ C | l(c) = ∨ }
- CXOR = { c ∈ C | l(c) = XOR }
- For n ∈ N:
 •n = { m | (m,n) ∈ A } is the set of input nodes, and
 n • = { m | (n,m) ∈ A } is the set of output nodes.
- CJ = { c ∈ C | |•c| ≥ 2 } is the set of join connectors.
- CS = { c ∈ C | |c•| ≥ 2 } is the set of split connectors.
- CEF ⊆ C such that c ∈ CEF if and only if there is a path p = 〈n1, n2, …, nk−1, nk 〉
such that n1 ∈ E, n2, …,nk−1 ∈ C, nk ∈ F, and c ∈ { n2, …, nk−1 }.
- CFE ⊆ C such that c ∈ CFE if and only if there is a path p = 〈n1, n2, …, nk−1, nk 〉
such that n1 ∈ F, n2, …,nk−1 ∈ C, nk ∈ E, and c ∈ { n2, …, nk−1 }.
- CEE ⊆ C such that c ∈ CEE if and only if there is a path p = 〈n1, n2, …, nk−1, nk 〉
such that n1 ∈ E, n2, …,nk−1 ∈ C, nk ∈ E, and c ∈ { n2, …, nk−1 }.
- CFF ⊆ C such that c ∈ CFF if and only if there is a path p = 〈n1, n2, …, nk−1, nk 〉
such that n1 ∈ F, n2, …,nk−1 ∈ C, nk ∈ F, and c ∈ { n2, …, nk−1 }.

These notations allow for the completion of the definition of an Event-driven Process

Chain.

Definition 4 [Event-driven Process Chain (2)] An Event-driven Process Chain EPC =
(E,F,C,l,A) satisfies the following requirements:

- 15 -

- The sets E, F, and C are pairwise disjoint, i.e., E ∩F = ∅ , E ∩C = ∅ , and F
∩C = ∅ .
- For each e ∈ E: |•e| ≤ 1 and |e•| ≤ 1.
- There is at least one event e ∈ E such that |•e| = 0 (i.e. a start event).
- There is at least one event e ∈ E such that |e•| = 0 (i.e. a final event).
- For each f ∈ F: |•f| = 1 and |f•| = 1.
- For each c ∈ C: |•c| ≥ 1 and |c•| ≥ 1.
- CJ and CS partition C, i.e., CJ ∩CS = ∅ and CJ ∪ CS = C.
- CEE and CFF are empty, i.e., CEE = ∅ are CFF = ∅ .
- CEF and CFE partition C, i.e., CEF ∩CFE = ∅ and CEF ∪ CFE = C.

The first requirement states that each component has a unique identifier (name). Note that

connector names are omitted in the diagram of an Event-driven Process Chain. The other

requirements correspond to restrictions on the relation A. Events cannot have multiple

input arcs and there is at least one start event and one final event. Each function has

exactly one input arc and one output arc. A connector c is either a join connector (|c•| = 1

and |•c| ≥ 2) or a split connector (|•c| = 1 and |c•| ≥ 2). The last requirement states that a

connector c is either on a path from an event to a function or on a path from a function to

an event. In the remainder of this paper we assume all Event-driven Process Chains to be

syntactically correct.

Note that {CJ, CS}, {CEF, CFE}, and {C∧ , CXOR, C∨ } partition C, i.e., CJ and CS are disjoint

and C = CJ ∪ CS, CEF and CFE are disjoint and C = CEF ∪ CFE, and C∧ , CXOR and C∨ are

pair-wise disjoint and C = C∧ ∪ CXOR ∪ C∨ . In principle there are 2 × 2 × 3 = 12 kinds of

connectors! In [22] two of these 12 constructs are not allowed: a split connector of type

CEF cannot be of type XOR or ∨ , i.e., CS ∩CEF ∩CXOR = ∅ and CS ∩CEF ∩C∨ = ∅ . As a

result of this restriction, there are no choices between functions sharing the same input

event. A choice is resolved after the execution of a function, not before. In the

formalization of EPCs, we will not impose this restriction and consider CS ∩CEF ∩CXOR

- 16 -

= ∅ and CS ∩CEF ∩C∨ = ∅ as a guideline rather than a requirement. The semantics of

EPCs have often been debated in literature. Here we do not contribute to this discussion

but simply refer to [1,3,14,24,28,34].

5.2 Configurable EPCs

This section introduces the notion of a configurable Event-driven Process Chain C-EPC.

In a C-EPC functions and connectors can be configurable. Configurable functions may be

included (ON), skipped (OFF) or conditionally skipped (OPT). Configurable connectors

may be restricted at configuration time, e.g., a configurable connector of type ∨ may be

mapped onto a ∧ connector. Local configuration choices like skipping a function may be

limited by configuration requirements. For example, if one configurable connector c of

type ∨ is mapped onto ∧ connector, then another configurable function f needs to be

included. This configuration requirement may be denoted by the logical expression

c=∧ ⇒ f=ON. To guide the configuration process there is also a partial order suggesting

the order of configuration. Moreover, besides the configuration requirements there may

also be configuration guidelines. One can think of configuration requirements as hard

constraints and interpret configuration guidelines as soft constraints.

Definition 5 [Configurable Event-driven Process Chain] A Configurable Event-driven
Process Chain (C-EPC) is a ten-tuple (E,F,C,l,A,FC,CC,OC,RC,GC):

- E, F, C, l, and A are as specified in Definition 1 satisfying the constraints
mentioned in Definition 4,
- FC ⊆ F is the set of configurable functions,
- CC ⊆ C is the set of configurable connectors,
- OC ⊆ (FC ∪ CC) ×(FC ∪ CC) is a partial order over the configurable nodes
suggesting the order of configuration,
- RC is a set of configuration requirements, and
- GC is a set of configuration guidelines.

- 17 -

Both RC and GC are sets of logical expressions where the atomic statements bind the
configurable nodes to concrete values, e.g., "c=XOR" and "f=ON" where c is a
configurable connector and f is a configurable function.

Configurable nodes are denoted by thick circles (for configurable connectors) or thick

rectangles (for configurable functions). Configuration requirements are denoted by dotted

lines connecting the configurable nodes the logical expression refers to and configuration

guidelines are denoted by dashed lines connecting the configurable nodes the logical

expression refers to (see Figure 3). The partial order of configurable nodes OC is not

shown in the example of Figure 3.

A configurable function may be configured as included (ON), skipped (OFF) or

conditionally skipped (OPT). Configurable connectors are mapped onto a concrete choice

for the split or join considered. Clearly, a configurable connector of type ∧ may not be

mapped onto a concrete connector of type ∨ . The concrete connector should always

represent a behaviour allowed by the configurable connector, i.e., the configuration

process only restricts the possible execution sequences. In case of a configurable

connector of type XOR or ∨ , also only one of the options may be selected, e.g., if a split

connector c has an output function f, then c=SEQf denotes that function f is always

selected.

In Figure 3 there are three configurable functions: A, E, and F. Each of these three

functions can be configured as included (ON), skipped (OFF) or conditionally skipped

(OPT). The other three functions cannot be configured, i.e., are always “ON”. There are

four connectors and only the XOR connector is configurable. The configurable XOR

connector can be set to XOR (i.e., a choice at runtime), or select one of the two paths

(i.e., at configuration time the left-hand side or right-hand side is selected). Figure 3 also

shows a requirement and a guideline. The requirement states that if A is configured as

OFF, the path starting with event 3 should no be selected. The guideline states that if E is

configured as ON, then F should also be configured as ON (and visa versa).

Fig. 3: Exa

Figure 4 s

can be de
- 18 -

mple for a C-EPC

hows a C-EPC with a simple XOR-join as well as the two possible variants that

rived from this model. This example is an extract from the SAP Reference

1

A

XOR

3

D

4

E

6 7

5

F

8

AND

B

AND

2

AND

C
Requirement 1

A=OFF ⇒
XOR1 ≠ SEQ3

XOR1

Guideline 1
E=ON ⇔ F=ON

normal connector

configurable
connector

normal function

configurable function

requirement

guideline

Model Purchasing, version 4.6c. It shows without the details of requirements and

guidelines that a scheduling agreement is an additional option to the classical purchase

order. Before formalizing the notion of a configuration we first define ≤ C.

Fig.

orde

The

giv

to x
- 19 -

 4: Example for a configurable EPC with a XOR-join (SA – scheduling agreement, PO – purchase

r)

 partial order ≤ C is used to specify which concrete connector type may be used for a

en connector type, i.e., x ≤ C y if and only if a connector of type y may be configured

 (e.g., ∧ ≤ C ∨ but not ∨ ≤ C ∧).

Requisition
released
for SA

Scheduling
Agreement

Delivery

Purchase
requisition

released for
PO

Purchase
order

Processing

SA release
created

Purchase
order

created

Release of
purchase

order

Purchasing
document
released

XOR

Transmission
of SA

Purchase
order

Processing

Purchasing
order

transmitted

Requisition
released
for SA

Scheduling
Agreement

Delivery

Purchase
requisition

released for
PO

Purchase
order

Processing

SA release
created

Purchase
order

created

Release of
purchase

order

Purchasing
document
released

XOR

Transmissio
n of SA

Purchase
order

Processing

Purchasing
order

transmitted

Purchase
requisition

released for
PO

Purchase
order

Processing

Purchase
order

created

Release of
purchase

order

Purchasing
document
released

Purchase
order

Processing

Purchasing
order

transmitted

C-EPC Variant 1 Variant 2

- 20 -

Definition 6 [≤ C, CT, CTS] ≤ C defines a partial order on CT = { ∧ , XOR, ∨ } ∪ CTS
where CTS={ SEQn | n ∈ E ∪ F ∪ C}. ≤ C = { (∧ ,∧), (XOR,XOR), (∨ ,∨), (XOR,∨), (∧ ,∨) }
∪ { (n,XOR) | n ∈ CTS} ∪ { (n,∨) | n ∈ CTS} ∪ { (n,n) | n ∈ CTS}.

Note that ≤ C = { (n,n) | n ∈ CT} ∪ (XOR,∨)∪ (∧ ,∨) ∪ { (n1,n2) | n1 ∈ CTS ∧ n2 ∈
{XOR,∨ }}.

This partial order is motivated by the fact that the configurable connector has to subsume

the behaviour of the concrete connector. Table 1 illustrates the configuration rules for

connectors. This table only describes the overall constraints. Each row corresponds to a

configurable connector type (ORC, XORC, ANDC), e.g., an ORC may be mapped onto an

OR (∨), XOR, AND (∧), or SEQ (SEQn for some node n).

 OR XOR AND SEQ

ORC X X X X

XORC X X

ANDC X

Table 1: Constraints for the configuration of connectors

A configuration maps all configurable nodes onto concrete values like ON, OFF, and

OPT for functions and ∧ , XOR, ∨ , and SEQn for connectors.

Definition 7 [Configuration] Let CEPC=(E,F,C,l,A,FC,CC,OC,RC,GC) be a C-EPC. lC ∈
(FC → { ON, OFF, OPT }) ∪ (CC → CT) is a configuration of CEPC if for each c ∈ CC:

- lC(c) ≤ C l(c)
- if lC(c) ∈ CTS and c ∈ CJ, then there exists an n ∈ •c such that lC(c) = SEQn,
- if lC(c) ∈ CTS and c ∈ CS, then there exists an n ∈ c• such that lC(c) = SEQn,

Function lC maps configurable functions onto values like ON, OFF, and OPT, i.e., lC(f) ∈

{ON, OFF, OPT} for f∈ FC. Configurable connectors are mapped onto the set CT, i.e.,

lC(c) ∈ CT for c∈ CC. Clearly this mapping should be consistent with Table 1 and the

- 21 -

partial order ≤ C. Moreover, if lC(c) = SEQn, then n should be in the preset (for a join

connector) or postset (for a split connector) of c.

Figure 5 shows two EPCs resulting from a configuration. Consider the C-EPC shown in

Figure 3(a), i.e., the EPC in the left hand side. If we use the configuration

{(A,OFF),(XOR1,SEQAND3),(E,ON),(F,ON)}, we obtain this EPC. Note that because

function A is not needed, the AND-split and AND-join also were removed. Functions E

and F are both ON thus satisfying the guideline. The requirement shown in Figure 3 is

also satisfied. Since A is skipped, the configurable XOR-split XOR1 could not be set to

SEQ3 without violating this requirement. Figure 3(b), i.e., the EPC in the right hand side,

results from the configuration {(A,ON),(XOR1,SEQ3),(E,OFF),(F,OFF)}. This

configuration specifies that function A is always used and the configurable XOR-split is

set to take only the left path involving function D. The setting of the two remaining

configurable functions (E and F) is not relevant since they are not reachable because of

the configuration of the XOR-split.

- 22 -

Fig. 5: Two configurations of the C-EPC shown in Figure 3

The example in Figure 6 shows that optional functions might lead to problems. The left-

hand side of this figure shows a C-EPC with a configurable function A. The right-hand

side shows possible configurations. In the left-most variant lC(A)=ON (Variant 1) and A

is simply included. For Variant 2 lC(A)=OFF and the function is skipped and the two

events are merged. In case lC(A)=OPT two variants are possible. The first one (left)

simply inserts an OR-split and an OR-join connector to bypass A. This solution however

violates the guideline/rule that an event should not be followed by an OR-split, cf.

Section 5.1 and [22]. One way to solve this is to add an additional function Z and an

additional events (1a) as shown in the right-most variant in Figure 6. The complication of

this last construct is that configurations like lC(A)=OPT should be augmented with an

1

4

E

7

5

F

8

B

2

A N D

C

1

A

3

D

6

A N D

B

A N D

2

C

(a) (b)

additional decision function Z. We will not enforce this but envision some post

processing where fragments involving an event followed by an OR-split are refined as

shown in Figure 6. We will not add this refinement to the formalizations given in this

section.

F

A

st

m

X

st
- 23 -

ig. 6: Example for a configuration with additional elements

s indicated before, RC and GC are sets of logical expressions where the atomic

atements bind the configurable nodes to concrete values. Configurable functions are

apped onto the set {ON, OFF, OPT } and configurable connectors are mapped onto {∧ ,

OR, ∨ } ∪ { SEQn | n ∈ E ∪ F ∪ C}. Examples illustrating the syntax of these atomic

atements are “c=XOR” and “f=ON”. These statements correspond to respectively

1

A

2

B

3

XOR

C-EPC Variant 1
(A= ON)

Variant 2
(A= OFF)

Variant 3
with additional function Z

1

A

2

B

3

1 / 2

B

3

1

A

2

B

3

XOR

1a

Z

1

A

2

B

3

XOR

XOR

Variant 3
(A = OPT)

skipA

- 24 -

lC(c)=XOR and lC(f)=ON for some configurable connector c and some configurable

function f. Suppose that c1,c2 ∈ CC and f1,f2 ∈ FC. Examples of hard/soft constraints (i.e.,

requirements in RC or guidelines in GC) are: (1) c1=∧⇔ f1=ON ∧ f2=ON, (2) f1=ON

∨ f2=ON, and (3) c1=∧ ⇒ c2=∧ . Note that in Figure 3 already a requirement (A=OFF⇒

XOR1 ≠ SEQ1) and a guideline (E=ON ⇔ F=ON) have been given.

Configurations may have guidelines and/or requirements that are conflicting, e.g., in

Figure 3 we can add the following two requirements A=OFF ⇔ E=ON and A=OFF

⇔ F=OFF. Clearly there requirements are conflicting with the original guideline. If there

are no conflicting requirements the model is valid. If, in addition, the guidelines are not

conflicting, the configuration is suitable.

Definition 8 [Valid/suitable configuration] Let CEPC=(E,F,C,l,A,FC,CC, OC,RC,GC) be a
C-EPC and lC a configuration of CEPC. lC is a valid configuration if it satisfies all
configuration requirements, i.e., it satisfies all logical expressions in RC. lC is a suitable
configuration if it is valid and it satisfies all configuration guidelines, i.e., it satisfies all
logical expressions in RC and GC.

- 25 -

Fig. 7: Examples for invalid configurations

A configuration is valid if it satisfies all requirements. Figure 7 shows some examples for

invalid configurations. This is only possible if the C-EPC is valid as indicated in the

following definition.

Definition 9 [Satisfiable] Let CEPC=(E,F,C,l,A,FC,CC,OC,RC,GC) be a C-EPC. CEPC is
satisfiable if and only if there is valid configuration.

Give the fact that all requirements and guidelines are logical expressions it is fairly easy

to provide tool support to guide the designer towards a valid configuration.

5.3 Semantics of configurations

In examples we already showed that a configuration corresponds to a concrete EPC. Now

we provide an algorithm to construct an EPC based on a C-EPC and a configuration.

Note that a C-EPC defines a space of concrete EPCs. Each valid configuration maps a C-

1

A

XOR

2

B

4

C

3 5

1

A

AND

2

B

4

C

3 5

1

A

2

D

3

1

A

4

C-EPC invalid variant
(wrong connector)

invalid variant
(new function, D)

invalid variant
(missing function)

- 26 -

EPC onto a concrete EPC. The function β maps a C-EPC and its configuration onto a

concrete EPC β(CEPC,lC).

Definition 10 [β] Let CEPC=(E,F,C,l,A,FC,CC,OC,RC,GC) be a C-EPC and lC a
configuration of CEPC. The corresponding EPC β(CEPC,lC) is constructed as follows:

1. EPC1=(E,F,C,l1,A1) with l1 = {(c,l(c)) | c ∈ C\CC} ∪ {(c,lC(c)) | c ∈ CC} and A1 = A

\({(c,n) ∈ CS × c• | ∃ n′ ∈ c• lC(c)=SEQn′ ∧ n ≠ n′} ∪ {(n,c) ∈ •c ×CJ | ∃ n′ ∈ •c

lC(c)=SEQn′ ∧ n ≠ n′}) is the EPC obtained by mapping the configurable connectors

onto their concrete type and removing arcs not involving the selected sequence.3

2. For each f ∈ FC such that lC(f) = OFF, rename the function to skipf to reflect that the

corresponding function is not executed. If • f ∪ f• ⊆ E, then merge input and output

event into one, i.e., EPC2=(E2,F2,C,l1,A2) with E2 = (E ∪ {e}) \(• f ∪ f•), F2 = F\{f},

and A2 = { (n1,n2) ∈ A | {n1,n2}∩(• f ∪ f•)=∅ } ∪ { (n1,e) | (e1 ∈ • f) ∧ (n1,e1) ∈ A} ∪ {

(e,n2) | (e2 ∈ f•) ∧ (e2,n2) ∈ A} where e is the new connector (no name clashes, i.e., e

∉ N) merging the old input and output connector. Repeat this for each f of this type

and let EPC2 be the resulting EPC.4

3. For each f ∈ FC such that lC(f) = OPT, add function skipf , a split connector splitf, and

a join connector joinf making f optional, i.e., EPC3=(E2,F3,C3,l3,A3) with F3

=F2∪ {skipf}, C3 = C∪ {splitf,joinf}, l3=l1∪ { (splitf,XOR),(joinf,XOR) }, A3 = { (n1,n2)

∈ A2 | f ∉ {n1,n2}} ∪ {(splitf,f),(splitf,skipf),(skipf,joinf),(f,joinf)} ∪ { (n,splitf) | (n,f) ∈

3 Note that such an EPC may not satisfy all the requirements stated in Definition 4.

4 Note that it is not always possible to remove functions that are connected to a connector since connectors
are either on a path from an event to a function or vice versa.

- 27 -

A2} ∪ { (joinf,n) | (f,n) ∈ A2}. Repeat this for each f of this type and let EPC3 be the

resulting EPC.

4. Remove all connectors with just one input and one output node, i.e.,

EPC4=(E2,F3,C4,l4,A4) with C4 = {c ∈ C3 | |c•| > 1 ∨ |•c| > 1}, l4 = {(c,x) ∈ l3 | c ∈

C4}, and A4 = { (n1,n2) ∈ A3 | {n1,n2}∩(C3\C4) = ∅ } ∪ {(n1,n2) | ∃ c ∈ C3\C4

{(n1,c),(c,n2)} ∈ A3}.

5. Remove all isolated nodes, i.e., nodes without input and output arcs.

6. Re-apply Step 2 of the algorithm, i.e., try to remove the remaining functions labelled

“skipf”.

7. Remove all nodes not on some path from a start event to a final event. Consider only

start and final events also present in original EPC, i.e., not the new start/final events

that may have been introduced in e.g. Step 1.

8. Re-apply Step 4 of the algorithm, i.e., remove connectors with just one input and one

output node that may have been introduced in Step 7. The resulting EPC is

β(CEPC,lC).

It is easy to verify that the examples given thus far are indeed consistent with the

algorithm. Although Definition 10 suggests that β(CEPC,lC) is indeed an EPC satisfying

the requirements mentioned before, this remains to be proven.

Theorem 1 [β(CEPC,lC) is an EPC] Let CEPC=(E,F,C,l,A,FC,CC,OC,RC,GC) be a C-
EPC and lC a configuration of CEPC. β(CEPC,lC) is an EPC satisfying all requirements
stated in Definition 4.

- 28 -

Proof.

EPC0=(E,F,C,l,A) satisfies all requirements by definition. Next we check how the

requirements are affected by the seven steps.

- The sets E, F, and C are pair-wise disjoint. Although not always stated explicitly we

assume no name clashes.

- For each e ∈ E: |•e| ≤ 1 and |e •| ≤ 1. Cardinality of number of input and output

nodes for events is not changed. Step 2 may merge two events but does not

jeopardize this requirement. All other steps can only reduce the number of

inputs/outputs.

- There is at least one event e ∈ E such that |•e| = 0 (i.e. a start event). Start events are

not removed.

- There is at least one event e ∈ E such that |e•| = 0 (i.e. a final event). Final events

remain final events.

- For each f ∈ F: |•f| = 1 and |f •| = 1. Functions may be removed but the cardinality of

number of input and output nodes for functions is not changed.

- For each c ∈ C: |•c| ≥ 1 and |c•| ≥ 1. Existing connectors and newly added connectors

(splitf, joinf) satisfy this requirement.

- CJ and CS partition C. This guaranteed by Step 4.

- CEF and CFE partition C. The nature of connectors is never changed.

A further example will now summarize the recommendations for a configurable reference

modelling language. The example is based on the reference model for invoice verification

as it can be found in the Enterprise System SAP R/3 Ver. 4.6c. Figure 8 shows the current

non-configurable reference model.

- 29 -

Fig. 8: SAP reference model for invoice verification, ver. 4.6c

Such a model can be perceived as a ‘Max-EPC’ as it includes all possible ways of invoice

verification supported by the SAP system. A more detailed analysis, however, shows that

this model includes many optional elements. The core of this process is the classical

invoice processing with reference to a purchase order, a delivery note or service entry

sheet and the actual invoice. This process is mandatory and all elements have to be

configured. Evaluated receipt settlement (ERS) is an option that allows to bypass the

entire classical invoice verification process. Based on long term contracts and a clear

specification of the goods, invoices are posted and released based on the arrival of goods

which conform in quantity and quality to the specifications of the purchase order or

Goods Receipt
Posted

Service
is accepted

Invoice
received

Release
Invoice

Invoice Processing
with Reference

Purchase
order

created

Evaluated
Receipt

Settlement
Invoicing Plan

Settlement

Payment
must

be effected

Goods Receipt
Posted

Purchase
order

created Goods Receipt
Posted

Purchase
order

created

Invoice
posted

contract. Thus, ERS is typically only a relevant option, if the company is of significant

size and the business relationship is based on a highly repetitive purchasing process based

on a long-term contract with a clear specification of the payment details. In a similar way,

invoice plan settlement is an optional function. In this case, invoices are consolidated in

an invoice plan and scheduled over a series of future dates independently of individual

procurement transactions and the actual receipt of goods and services. This is relevant for

regularly recurring procurement transactions (e.g. car leasing, subscriptions) (so called

periodic invoicing plan) and transactions that are subject to stage payments (e.g. a

building project) (so called partial invoicing plan). Invoicing plan settlement facilitates

the automatic creation and payment of invoices and uses functionality of the evaluated

receipt settlement solution [35]. Figure 9 shows the reference model in C-EPC notation

that can be derived from this description.

F

Goods Receipt
Posted

Service
is accepted

InvoicePurchase
- 30 -

ig. 9: SAP reference model for invoice verification, ver. 4.6c, in C-EPC notation

received

Release
Invoice

Invoice Processing
with Reference

order
created

Evaluated
Receipt

Settlement

Invoicing Plan
Settlement

Payment
must

be effected

Goods Receipt
Posted

Purchase
order

created Goods Receipt
Posted

Purchase
order

created

Invoice
posted

Guideline 1
ERS=ON, if

- long term contract
- goods and conditions

are specified

Requirement 1
IPS=ON ⇒

ERS=ON

- 31 -

5.4 Partially configured C-EPCs

Definition 7 assumes a complete configuration, i.e., lC is a complete function mapping

each configurable node onto a concrete value. However, the configuration process may

go through several stages and therefore we also add the notion of a partial configuration.

Definition 11 [Partial configuration] Let CEPC=(E,F,C,l,A,FC,CC,OC,RC,GC) be a C-
EPC. lC ∈ (FC→/ {ON, OFF, OPT }) ∪ (CC →/ CT)5 is a partial configuration of CEPC if
for each c ∈ CC ∩dom(lC):

- lC(c) ≤ C l(c)
- if lC(c) ∈ CTS and c ∈ CJ, then there exists an n ∈ •c such that lC(c) = SEQn,
- if lC(c) ∈ CTS and c ∈ CS, then there exists an n ∈ c • such that lC(c) = SEQn,

One can think of a C-EPC with a partial configuration as another C-EPC. Using an

algorithm similar to the one described in Definition 10, one can transform C-EPC with a

partial configuration into a new C-EPC. We omit details, but it is straightforward to

realize this using Definition 10. Simply consider the configurable nodes that are not

configured as unconfigurable nodes when applying the algorithm. Let β′ be the modified

algorithm which transforms a C-EPC with a partial configuration into a new C-EPC.

Without proof we give the following theorem.

Theorem 2 [β(CEPC,lC) is an EPC] Let CEPC1 be a C-EPC and lC a partial
configuration of CEPC. CEPC2=β′(CEPC1,lC) is the corresponding C-EPC.

- If CEPC2 is satisfiable, then CEPC1 is also satisfiable.
- If lC

2 is a valid (suitable) configuration of CEPC2, then lC
2 is also a valid

(suitable) configuration of CEPC1

The above allows us to indicate whether a partial configuration of a C-EPC is satisfiable.

5 Note that partial functions are denoted by A→/ B, i.e., a f∈ A→/ B is a function with a domain that is a

subset of A.

- 32 -

The concept of partial configured C-EPC opens up interesting possibilities. Consider for

example a configurable Enterprise System like SAP. There could be a top-level C-EPC

which indicates all possible configurations of SAP with respect to a given process. This

C-EPC could be partially configured per industry. (Recall that SAP has 23 alternative

industry solutions, as indicated in Section 3.) In other words, for each industry there are

partial configured C-EPCs. Such partial configured C-EPCs can be used as a starting

point within a given organization. For large organizations there may be different versions

of the same process, e.g., per country or per region. However, at the same time the

organization may want to enforce some unification. Therefore, the industry specific C-

EPC may be partially configured into an organization-specific C-EPC. The latter C-EPC

may be configured within specific parts of the organization (e.g., per region). This

example shows that it may be worthwhile to have (partially configured) C-EPCs at

different levels where at each level the lower level is a (partial) configuration of the upper

level. For example, there may be a C-EPC at the level of SAP (What can the system do?),

at the level of an industry (What configurations of SAP make sense for the automotive

industry?), and at the level of one organization (What configurations do we allow within

our organization?). Only the C-EPC at the organizational level is configured completely

to support a concrete process within some part of the organization (How do we do this

process within the Eindhoven branch of our organization?).

Apart from configuration at various levels there can always be the need for customization

(i.e., support processes that do not fit into the C-EPC). The latter should be avoided since

it is risky and costly. If customization is unavoidable, it may be interesting to use the

notions of inheritance described in [2,5]. These notions of inheritance can easily be

- 33 -

applied to EPCs and C-EPCs. The topic of customization is however out of the scope of

this paper.

5.5 Extensions

To conclude this section we reflect on the requirements given in Section 4 in the context

of the C-EPC language just defined.

a) The C-EPC language defined in this section mainly focuses on the process and

control-flow aspects. The data aspect and function aspect have not been addressed

explicitly. Note that functions can be configured but this only refers to their

presence rather than the functionality of these functions.

b) C-EPCs do not distinguish between mandatory and optional decisions. However,

it is fairly easy to add this functionality. It could be defined as an extension of the

partial order OC. It is also possible to extend the language with defaults for

optional configuration decisions.

c) C-EPCs do not differentiate between global and local decisions. Again it is fairly

easy to add this as an attribute to all configurable nodes. However, the real

challenge is to get this information.

d) Similarly remarks hold for the difference between critical and non-critical

decisions.

e) Configuration decisions can have interrelationships. This is partly covered by the

requirements (RC) and guidelines (GC) in a C-EPC. However, these are restricted

to interrelationships within one model and not for e.g. interrelationships between

- 34 -

two process models and interrelationships between a reference process model and

a related reference data model.

f) Configuration decisions can be made on different levels. This can be supported by

the partially configurable C-EPCs as discussed in the previous subsection.

g) In a C-EPC variation points do not refer to further related information within the

Enterprise System. However, this can be added easily.

h) The entire configuration process should also be guided by recommendations or

configuration guidelines. This is supported by the guidelines (GC) and the partial

order OC.

i) The last requirement refers to the impact of configuration extensions on the

perceived model complexity. The C-EPC is a natural extension of the standard

EPC and should not cause any problems for the typical user of a reference model.

The most complex parts are the interrelationships defined in the requirements (RC)

and guidelines (GC) in a C-EPC since these are expressed in logical expressions. It

may be worthwhile to think of more graphical notations for modelling typical

requirements like for example dependency constraints.

As indicated the C-EPC language defined in this paper covers many of the requirements

but not all. The language reported in this paper focuses on the core functionality of a

configurable reference modelling language based on EPCs.

6 Related Work

This area of research can be divided into requirements engineering for the development of

Enterprise Systems [10,12] and requirements engineering for the configuration of

- 35 -

Enterprise Systems. The latter one is the focus of this paper. Academic contributions in

this field are still the exception. As an example, Rolland and Prakesh [29] suggest a map

including ERP goals and objectives for the identification and evaluation of user needs.

Gulla and Brasethvik [19] introduce three process modelling tiers to manage the

complexity of process modelling in comprehensive ERP Systems projects. Their

functional tier dimension deals with the functionality of the Enterprise System. However,

they do not discuss how to differentiate reference models in this tier. Brehm et al. [9]

discuss alternative ways of configuring Enterprise Systems. However, they do not link

their work to reference models.

Related work has also been conducted in the area of variability management in software

families. Halmans and Pohl [20] discuss issues related to the communication of the

variability of a software-product family. They propose an extension to use case diagrams

based on cardinalities in order to explicitly depict variation points. They do not support

dependencies between variation points. Moreover, use case diagrams have not widely

been used for reference models. Halmans and Pohl [20] have been influenced by previous

work on representing variability in use case diagrams by Bertolino et al. [8], von der

Massen and Lichter [26], and John and Mutig [21]. Software product families have also

been investigated in from an architectural viewpoint. In fact, there have been several

workshops on software architectures for product families, cf. [25]. As an example

consider the work of Dolan et al. [15] on the role of the various stakeholders when it

comes to software product families.

- 36 -

7 Conclusion and Outlook

Reference models have been defined in this paper as reusable conceptual models that

depict recommended structures and processes. One main class of reference models are

application reference models that document the functionality of off-the-shelf-solutions.

Reference modelling languages face specific requirements regarding the configuration of

these models. However, current models such as the SAP reference models (and other

Enterprise Systems reference models) are designed using modelling languages that do not

cater for the needs of configuration. Thus, only limited opportunities exist to specify valid

configurations. This paper proposed extensions of a popular reference modelling

language that allow exactly this explicit specification of configurations in reference

process models. This language has been called Configurable Event-driven Process

Chains.

The current focus of our research is on developing a list of configuration patterns and

exploring alternative ways of modelling these patterns. The quality of our proposed

reference modelling language as well as its notations will be tested in experiments and

focus groups. This project is funded by SAP Corporate Research and it is the explicit aim

to develop an applicable language. As part of this research project, a related SAP-funded

empirical study on the actual modelling practice in Australia is currently conducted. This

study will give important insights into the problems with the existing reference models.

Furthermore, it is planned to extend this work to configurable collaborative business

scenario diagrams.

Another interesting question is: "Given a C-EPC and a partial configuration, is the partial

configuration satisfiable?". Related questions are: "If not satisfiable, why not?" or "If

- 37 -

satisfiable, which configurations are still possible?". Since the number of configurations

is finite, it is easy to provide automated support for addressing these questions. Moreover,

it would be interesting to link these questions to the dynamics of the resulting EPCs. It

may be the case that a partial configuration satisfiable in terms of the configuration

requirements but that the resulting EPCs will always deadlock.

A further area of research will be the inclusion of evidence-based research. This could

include access to relevant benchmarking information or typical configuration decisions

made in one industry sector. This could be visualised in the reference models using the

proposed configuration guidelines and would provide valuable guidance for the required

decisions.

- 38 -

8 References

[1] W.M.P. van der Aalst, Formalization and Verification of Event-driven Process
Chains, Information and Software Technology 41(10) (1999) 639-650.

[2] W.M.P. van der Aalst, T. Basten, Inheritance of Workflows: An Approach to
Tackling Problems Related to Change, Theoretical Computer Science, 270(1-2) (2002)
125-203.

[3] W.M.P. van der Aalst, J. Desel, E. Kindler, On the Semantics of EPCs: A Vicious
Circle. In M. Nüttgens and F.J. Rump, editors, Proceedings of the EPK 2002: Business
Process Management using EPCs, Trier, Germany, November 2002. Gesellschaft für
Informatik, Bonn, 71-80.

[4] W.M.P. van der Aalst, A.H.M. ter Hofstede, B. Kiepuszewski, A.P. Barros,
Workflow Patterns, Distributed and Parallel Databases 14(3) (2003) 5-51.

[5] T. Basten, W.M.P. van der Aalst, Inheritance of Behavior. Journal of Logic and
Algebraic Programming, 47(2) (2001) 47-145.

[6] J. Becker, M. Kugeler, M. Rosemann, eds., Process Management, Berlin et al., 2003.

[7] P. Bernus, GERAM: Generalised Enterprise Reference Architecture and
Methodology, version 1.6.3, March 1999.

[8] A. Bertolino, A. Mantechi, S. Gnesi, G. Lamir, A. Maccari, Use Case Description of
Requirements for Product Lines. Proceedings of the International Workshop on
Requirements Engineering for Product Lines 2002 - REPL ’02. Technical Report: ALR-
2002-033, AVAYA labs. 2002.

[9] L. Brehm, A. Heinzl, M.L. Markus, 2000, Tailoring ERP Systems: A Spectrum of
Choices and their Implications, Proceedings of the 34th Hawaii International Conference
on System Sciences. Maui, Hawaii, 3-6 January 2000.

[10] S. Brinkkemper, Requirements Engineering for ERP: Requirements Management
for the Development of Packaged Software, Proceedings of the 4th International
Symposium on Requirements Engineering. Limerick, Ireland, 7-11 June 1999.

[11] T. Curran, G. Keller, SAP R/3 Business Blueprint: Understanding the Business
Process Reference Model, Upper Saddle River, 1997.

[12] M. Daneva, Practical Reuse Measurement in ERP Requirements Engineering,
Proceedings of the 12th International Conference CAiSE 2000, eds., B. Wangler and
L. Bergman. Stockholm, Sweden, June 5-9, Lecture Notes in Computer Science 1789,
2000, 309-324.

[14] J. Dehnert, P. Rittgen, Relaxed Soundness of Business Processes, In K.R. Dittrich,
A. Geppert, and M.C. Norrie, editors, Proceedings of the 13th International Conference on
Advanced Information Systems Engineering (CAiSE 2001), volume 2068 of Lecture
Notes in Computer Science, Springer-Verlag, Berlin, 2001, 157-170.

[15] T. Dolan, R. Weterings, J.C. Wortmann, Stakeholder-Centric Assessment of
Product Family Architecture: Practical Guidelines for Information System

http://www.informatik.uni-trier.de/~ley/db/journals/lncs.html

- 39 -

Interoperability and Extensibility, In International Workshop on Software Architectures
for Product Families (IW-SAPF-3), volume 1951 of Lecture Notes in Computer Science,
Springer Verlag, 2000, 225-245.

[16] P. Fettke, P. Loos, Classification of reference models - a methodology and its
application. Information Systems and e-Business Management, 2003, 1(1) 35-53.

[17] T. Forsberg, G. Roenne, J. Vikstroem, Process Modeling in ERP Projects – a
discussion of potential benefits. Intentia R&D 2002.

[18] U. Frank, Conceptual Modelling as the Core of the Information Systems Discipline
- Perspectives and Epistemological Challenges, Proceedings of the America Conference
on Information Systems – AMCIS ’99, Milwaukee, 1999, 695-698.

[19] J. A. Gulla, T. Brasethvik, On the Challenges of Business Modeling in Large Scale
Reengineering Projects,. Proceedings of the 4th International Conference on
Requirements Engineering, Schaumburg, Ill., 19-23 June 2000, 17-26.

[20] G. Halmans, K. Pohl, Communicating the variability of a software-product family to
customers. Software and Systems Modeling, 2(1) 2003 15-36.

[21] I. John, D. Mutig, Tailoring Use Cases for Product Line Modeling. Proceedings of
the International Workshop on Requirements Engineering for Product Lines 2002 - REPL
’02. Technical Report: ALR-2002-033, AVAYA labs 2002.

[22] G. Keller, M. Nüttgens, A.W. Scheer, Semantische Processmodellierung auf der
Grundlage Ereignisgesteuerter Prozessketten (EPK), Veröffentlichungen des Instituts für
Wirtschaftsinformatik, Heft 89 (in German), University of Saarland, Saarbrücken, 1992.

[23] H. Klaus, M. Rosemann, G.G. Gable, What is ERP?, Information System Frontiers
(2000) 2 (2) 141-162.

[24] P. Langner, C. Schneider, J. Wehler, Petri Net Based Certification of Event driven
Process Chains. In J. Desel and M. Silva, editors, Application and Theory of Petri Nets
1998, volume 1420 of Lecture Notes in Computer Science, Springer-Verlag, Berlin,
1998, 286-305.

[25] F. van der Linden, eds., International Workshop on Software Architectures for
Product Families (IW-SAPF-3), volume 1951 of Lecture Notes in Computer Science,
Berlin 2000.

[26] T. von der Massen, H. Lichter, Modeling Variability by UML Use Case Diagrams.
Proceedings of the International Workshop on Requirements Engineering for Product
Lines 2002 - REPL ’02. Technical Report: ALR-2002-033, AVAYA labs. 2002.

[27] V.B. Misic, J.L. Zhao, Evaluating the Quality of Reference Models, in A.H.F.
Laender, S.W. Liddle, V.C.Storey, eds., in Proceedings of the 19th International
Conference on Conceptual Modeling. Salt Lake CIt, Utah, USA, 9-12 October 2000.
Lecture Notes in Computer Science 1920, 484-498.

[28] P. Rittgen, Modified EPCs and their Formal Semantics. Technical Report 99/19,
University of Koblenz-Landau, Koblenz, Germany, 1999.

[29] C. Rolland, N. Prakash, Bridging the Gap between Organisational Needs and ERP

http://www.informatik.uni-trier.de/~ley/db/journals/lncs.html

- 40 -

Functionality, Requirements Engineering, 5 (3) (2000) 180-193.

[30] M. Rosemann, ERP software: characteristics and consequences, in J. Pries-Heje
et al., eds., in Proceedings of the 7th European Conference on Information Systems, 23-25
June 1999, Copenhagen.

[31] M. Rosemann, Using Reference Models within the Enterprise Resource Planning
Lifecycle. Australian Accounting Review, 10(3) 2000 19-30.

[32] M. Rosemann, Application Reference Models and Building Blocks for Management
and Control (ERP Systems). in: Handbook on Enterprise Architecture. P. Bernus,
L. Nemes, G. Schmidt, eds., Springer-Verlag: Berlin et al., 2003, 595-616.

[33] M. Rosemann, G. Shanks, Extension and Configuration of Reference Models for
Enterprise Resource Planning Systems. Proceedings of the 12th Australasian Conference
on Information Systems - ACIS 2001, G. Finnie, D. Cecez-Kecmanovic, B. Lo, eds.,
Coffs Harbour, 4-7 December 2001, 537-546.

[34] F. Rump, Geschäftsprozessmanagement auf der Basis Ereignisgesteuerter
Prozessketten. Reihe Wirtschaftsinformatik, Teubner Verlag, Germany, 1999.

[35] SAP AG, Online Help – SAP Release 4.6c (help.sap.com). Material No. 50045631,
2003.

[36] A.-W. Scheer, ARIS – Business Process Modelling. 3rd ed., Berlin et al., 2000.

[37] L. Silverston, The Data Model Resource Book, Volume 1, A Library of Universal
Data Models for All Enterprises, revised edition, 2001.

[38] L. Silverston, The Data Model Resource Book, Volume 2, A Library of Data
Models for Specific Industries, revised edition, 2001.

[39] M. Verbeek, On Tools & Models, in: Dynamic Enterprise Innovation. Establishing
Continuous Improvement in Business. 3rd ed., R. van Es, ed., Baan Business Innovation
1998.

	5.2 Configurable EPCs
	5.3	Semantics of configurations
	Such a model can be perceived as a ‘Max-EPC’ as it includes all possible ways of invoice verification supported by the SAP system. A more detailed analysis, however, shows that this model includes many optional elements. The core of this process is the c
	5.4	Partially configured C-EPCs
	Extensions

