
Design and implementation of the YAWL system

W.M.P. van der Aalst1,2, L. Aldred2, M. Dumas2, and A.H.M. ter Hofstede2

1 Department of Technology Management, Eindhoven University of Technology, The
Netherlands

w.m.p.v.d.aalst@tm.tue.nl
2 Centre for IT Innovation, Queensland University of Technology, Australia

{l.aldred,m.dumas,a.terhofstede}@qut.edu.au

Abstract. This paper describes the implementation of a system supporting YAWL
(Yet Another Workflow Language). YAWL is based on a rigorous analysis of
existing workflow management systems and related standards using a compre-
hensive set of workflow patterns. This analysis shows that contemporary work-
flow systems, relevant standards (e.g. XPDL, BPML, BPEL4WS), and theoreti-
cal models such as Petri nets have problems supporting essential patterns. This
inspired the development of YAWL by taking Petri nets as a starting point and in-
troducing mechanisms that provide direct support for the workflow patterns iden-
tified. As a proof of concept we have developed a workflow management system
supporting YAWL. In this paper, we present the architecture and functionality of
the system and zoom into the control-flow, data, and operational perspectives.

1 Introduction

In the area of workflow one is confronted with a plethora of products (commercial, free
and open source) supporting languages that differ significantly in terms of concepts,
constructs, and their semantics. One of the contributing factors to this problem is the
lack of a commonly agreed upon formal foundation for workflow languages. Standard-
ization efforts, e.g. XPDL [19] proposed by the WfMC, have essentially failed to gain
universal acceptance and have not in any case provided such a formal basis for work-
flow specification. The lack of well-grounded standards in this area has induced several
issues, including minimal support for migration of workflow specifications, potential
for errors in specifications due to ambiguities, and lack of a reference framework for
comparing the relative expressive power of different languages (though some work in
this area is reported in [13]).

The workflow patterns initiative [4] aims at establishing a more structured approach
to the issue of the specification of control flow dependencies in workflow languages.
Based on an analysis of existing workflow management systems and applications, this
initiative identified a collection of patterns corresponding to typical control flow de-
pendencies encountered in workflow specifications, and documented ways of capturing
these dependencies in existing workflow languages. These patterns have been used as a
benchmark for comparing process definition languages and in tendering processes for
evaluating workflow offerings. See http://www.workflowpatterns.com for
extensive documentation, flash animations of each pattern, and evaluations of standards
and systems.

While workflow patterns provide a pragmatic approach to control flow specification
in workflows, Petri nets provide a more theoretical approach. Petri nets form a model
for concurrency with a formal foundation, an associated graphical representation, and
a collection of analysis techniques. These features, together with their direct support
for the notion of state (required in some of the workflow patterns), make them attrac-
tive as a foundation for control flow specification in workflows. However, even though
Petri nets (including higher-order Petri nets such as Colored Petri nets [12]) support a
number of the identified patterns, they do not provide direct support for the cancellation
patterns (in particular the cancellation of a whole case or a region), the synchronizing
merge pattern (where all active threads need to be merged, and branches which cannot
become active need to be ignored), and patterns dealing with multiple active instances
of the same activity in the same case [2]. This realization motivated the development
of YAWL [3] (Yet Another Workflow Language) which combines the insights gained
from the workflow patterns with the benefits of Petri nets. It should be noted though
that YAWL is not simply a set of macros defined on top of Petri nets. Its semantics is
not defined in terms of Petri nets but rather in terms of a transition system.

As a language for the specification of control flow in workflows, YAWL has the ben-
efit of being highly expressive and suitable, in the sense that it provides direct support
for all the workflow patterns (except implicit termination), while the reviewed work-
flow languages provide direct support for only a subset of them. In addition, YAWL
has a formal semantics and offers graphical representations for many of its concepts.
The expressive power and formal semantics of YAWL make it an attractive candidate
to be used as an intermediate language to support translations of workflows specified in
different languages.

When YAWL was first proposed no implementation was available. Recently, im-
plementation efforts have resulted in a first version of a prototype supporting YAWL.
With respect to the various perspectives from which workflows can be considered (e.g.
control-flow, data, resource, and operational [11]), YAWL initially focused exclusively
on the control flow perspective. Since then, a novel approach for dealing with the data
perspective has been designed and incorporated into the prototype. In addition, an ap-
proach has been designed (although not yet implemented) to deal with the operational
perspective on the basis of a service-oriented architecture.

This paper discusses salient aspects and issues related to the design and implemen-
tation of the YAWL system, including the proposed extensions for dealing with the data
and operational perspectives. In short, the main contributions of the paper are:

– A discussion of the implementation of the control flow perspective of YAWL;
– A discussion of the data perspective of YAWL and its implementation;
– A discussion of a proposal for the incorporation of the operational perspective into

YAWL through the use of a service-oriented architecture.

The remainder of the paper is organized as follows. After a brief overview of re-
lated work we introduce the YAWL language. Section 4 describes the architecture of
the YAWL system and motivates design decisions. Section 5 discusses the control-flow,
data, and operational perspectives in more detail. Section 6 briefly discusses an exam-
ple. Section 7 concludes the paper.

2 Related work

YAWL [3] is based on a line of research grounded in Petri net theory [1, 13] and the 20
workflow patterns documented in [4]. In previous publications we have evaluated con-
temporary systems, languages, and standards using these patterns. An analysis of 13
commercial workflow offerings can be found in [4] while an analysis of 10 workflow
languages proposed by the academic community is described in [3]. Commercial sys-
tems that have been evaluated include Ley COSA , Filenet’s Visual Workflow, SUN’s
Forté Conductor, Lotus Domino Workflow, IBM MQSeries/Workflow, Staffware, Verve
Workflow, Fujitsu’s I-Flow, TIBCO InConcert, HP Changengine, SAP R/3 Workflow,
Eastman, and FLOWer. Examples of academic prototypes that have been evaluated us-
ing the patterns are Meteor, Mobile [11], ADEPTflex [17], OPENflow, Mentor [20],
and WASA [18]. For an analysis of UML activity diagrams in terms of (some of) the
patterns, we refer to [8]. BPEL4WS, a proposed standard for web service composition,
has been analyzed in [21]. Analyses of BPMI’s BPML [5] and WfMC’s XPDL [19] us-
ing the patterns are also available via http://www.workflowpatterns.com. In
total, more than 30 languages/systems have been evaluated and these evaluations have
driven the development of the YAWL language. Given that this paper focuses on the
design and implementation of the YAWL system, we will not discuss these previous
evaluations, referring the reader to the above citations.

As an open source workflow system, YAWL joins the ranks of a significant number
of previous initiatives: 18 open source workflow systems are reported in [16]. Again, the
distinctive feature of YAWL with respect to these systems is in the combination of its
expressive power, formal foundation, and support for graphical design, complemented
by its novel approach to deal with the data and the operational perspective of workflow
by leveraging emerging XML and Web services technologies.

3 YAWL language

Before describing the architecture and implementation of the YAWL system, we in-
troduce the distinguishing features of YAWL. As indicated in the introduction, YAWL
is based on Petri nets. However, to overcome the limitations of Petri nets, YAWL has
been extended with features to facilitate patterns involving multiple instances, advanced
synchronization patterns, and cancellation patterns. Moreover, YAWL allows for hier-
archical decomposition and handles arbitrarily complex data.

Figure 1 shows the modeling elements of YAWL. At the syntactic level, YAWL
extends the class of workflow nets described in [1] with multiple instances, composite
tasks, OR-joins, removal of tokens, and directly connected transitions. YAWL, although
being inspired by Petri nets, is a completely new language with its own semantics and
specifically designed for workflow specification.

A workflow specification in YAWL is a set of process definitions which form a hi-
erarchy. Tasks1 are either atomic tasks or composite tasks. Each composite task refers

1 We use the term task rather than activity to remain consistent with earlier work on workflow
nets [1].

to a process definition at a lower level in the hierarchy (also referred to as its decompo-
sition). Atomic tasks form the leaves of the graph-like structure. There is one process
definition without a composite task referring to it. This process definition is named
the top level workflow and forms the root of the graph-like structure representing the
hierarchy of process definitions.

Condition

Input condition

Output condition

Atomic task

AND-split task

XOR-split task

Composite task

Multiple instances
of an atomic task

Multiple instances
of a composite task

OR-split task

AND-join task

XOR-join task

OR-join task

... remove tokens

Fig. 1. Symbols used in YAWL.

Each process definition consists of tasks (whether composite or atomic) and condi-
tions which can be interpreted as places. Each process definition has one unique input
condition and one unique output condition (see Figure 1). In contrast to Petri nets, it
is possible to connect ‘transition-like objects’ like composite and atomic tasks directly
to each other without using a ‘place-like object’ (i.e., conditions) in-between. For the
semantics this construct can be interpreted as a hidden condition, i.e., an implicit con-
dition is added for every direct connection.

Both composite tasks and atomic tasks can have multiple instances as indicated
in Figure 1. We adopt the notation described in [1] for AND/XOR-splits/joins as also
shown in Figure 1. Moreover, we introduce OR-splits and OR-joins corresponding re-
spectively to Pattern 6 (Multi choice) and Pattern 7 (Synchronizing merge) defined in
[4]. Finally, Figure 1 shows that YAWL provides a notation for removing tokens from
a specified region denoted by dashed rounded rectangles and lines. The enabling of the
task that will perform the cancellation may or may not depend on the tokens within the
region to be “canceled”. In any case, the moment this task completes, all tokens in this
region are removed. This notation allows for various cancellation patterns.

register

(a) After registering the request for a trip, a flight, a hotel, and/or a car
are booked followed by a payment.

flight

hotel

car

pay

register do_itinerary_
segment

pay

register_itinerary_
segment

flight

hotel prepare_payment_
information

car

(b) A trip may consist of several legs. The sub-process is
instantiated for each leg.

register do_itinerary_
segment

pay

cancel

(c) Again the sub-process is instantiated for each leg but now it is
possible to cancel the whole trip by removing tokens from the region
indicated.

booking_in_
progress

Fig. 2. Three YAWL specifications.

To illustrate YAWL we use the three examples shown in Figure 2. The first ex-
ample (a) illustrates that YAWL allows for the modeling of advanced synchronization
patterns. Task register is an ‘OR-split’ (Pattern 6: Multi-choice) and task pay is an
‘OR-join’ (Pattern 7: Synchronizing merge). This implies that every registration step
is followed by a set of booking tasks flight, hotel, and/or car. It is possible that all
three booking tasks are executed but it is also possible that only one or two booking
tasks are executed. The YAWL OR-join synchronizes only if necessary, i.e., it will syn-
chronize only the booking tasks that were actually selected. Note that the majority of
systems do not support the Synchronizing merge (i.e., Pattern 7). A few systems support
it (e.g., IBM’s MQSeries Workflow, Lotus Domino Workflow, and Eastman Workflow)
but restrict its application. For example, in order to simplify the implementation of the
OR-join, MQSeries Workflow [10] does not support loops.2

Figure 2(a) does not show the data aspect. The YAWL specification for this example
has 10 variables ranging from the name of the customer to flight details. For the routing
of the case there are three Boolean variables want flight, want hotel, and want car.
They select which of the booking tasks need to be executed.

Figure 2(b) illustrates another YAWL specification. In contrast to the first exam-
ple a trip may include multiple stops, i.e., an itinerary may include multiple segments.
For example, a trip may go from Amsterdam to Singapore, from Singapore to Bris-
bane, from Brisbane to Los Angeles, and finally from Los Angeles to Amsterdam and
thus entail four itinerary segments. Each segment may include a flight (most likely)
but may also include a hotel booking or a car booking (at the destination). Figure 2(b)
shows that multiple segments are modeled by multiple instances of the composite task
do itinerary segment. This composite task is linked to the process definition also shown
in Figure 2(b). In the case of multiple instances it is possible to specify upper and lower
bounds for the number of instances. It is also possible to specify a threshold for com-
pletion that is lower than the actual number of instances, i.e., the construct completes
before all of its instances complete. In the example at hand this does not make sense
since each segment must be booked. Another setting is available to indicate whether
an instance can be added while executing other instances. In this example this would
mean that while booking segments, a new segment is defined and added to the itinerary.
In the specification corresponding to Figure 2(b) we assume the multiple instances to
be ‘static’, i.e., after completing task register the number of instances is fixed. Again,
the diagram does not show the data aspect. There are similar variables as in the first
example. However, a complicating factor is that each of the instances will use private
data which needs to be aggregated. We return to this in Section 5.2. For the moment, it
suffices to see that YAWL indeed supports the patterns dealing with multiple instances
(Patterns 12-15). Note that only few systems support multiple instances. FLOWer [6] is
one of the few systems directly supporting multiple instances.

Finally we consider the YAWL specification illustrated in Figure 2(c). Again com-
posite task do itinerary segment is decomposed into the process definition shown in
Figure 2(b). Now it is however possible to withdraw bookings by executing task can-
cel. Task cancel is enabled if there is a token in booking in progress. If the environment
decides to execute cancel, everything inside the region indicated by the dashed rectan-

2 Instead of loops, MQSeries Workflow supports blocks with exit condition.

gle will be removed. In this way, YAWL provides direct support for the cancellation
patterns (Patterns 19 and 20). Note that support for these patterns is typically miss-
ing or very limited in existing systems (e.g. Staffware has a cancellation concept but a
cancellation can only refer to a single task and not to an arbitrary set of tasks).

In this section we illustrated some of the features of the YAWL language. The lan-
guage has an XML syntax and is specified in terms of an XML schema. See http:
//www.citi.qut.edu.au/yawl/ for the XML syntax of the language. In Sec-
tion 5 we will show some fragments of the language. However, before going into detail,
we first present the ‘bigger picture’ by describing the YAWL architecture.

4 YAWL architecture

To support the YAWL language introduced in the previous section, we have developed
a system using state-of-the-art technology. In this section, we describe the overall ar-
chitecture of this system, which is depicted in Figure 3. Workflow specifications are
designed using the YAWL designer and deployed into the YAWL engine which, after
performing all necessary verifications and task registrations, stores these specifications
in the YAWL repository, which manages a collection of “runable” workflow specifica-
tions. Once successfully deployed, workflow specifications can be instantiated through
the YAWL engine, leading to workflow instances (also called cases). The engine han-
dles the execution of these cases, i.e. based on the state of a case and its specification,
the engine determines which events it should offer to the environment.

The environment of a YAWL system is composed of so-called YAWL services. In-
spired by the “web services” paradigm, end-users, applications, and organizations are
all abstracted as services in YAWL. Figure 3 shows four YAWL services: (1) YAWL
worklist handler, (2) YAWL web services broker, (3) YAWL interoperability broker, and
(4) custom YAWL services. The YAWL worklist handler corresponds to the classical
worklist handler (also named “inbox”) present in most workflow management systems.
It is the component used to assign work to users of the system. Through the worklist
handler users can accept work items and signal their completion. In traditional workflow
systems, the worklist handler is embedded in the workflow engine. In YAWL however,
it is considered to be a service decoupled from the engine. The YAWL web services
broker is the glue between the engine and other web services. Note that it is unlikely
that web services will be able to directly connect to the YAWL engine, since they will
typically be designed for more general purposes than just interacting with a workflow
engine. Similarly, it is desirable not to adapt the interface of the engine to suit spe-
cific services, otherwise, this interface will need to cater for an undetermined number
of message types. Accordingly, the YAWL web services broker acts as a mediator be-
tween the YAWL engine and external web services that may be invoked by the engine
to delegate tasks (e.g. delegating a “payment” task to an online payment service). The
YAWL interoperability broker is a service designed to interconnect different workflow
engines. For example, a task in one system could be subcontracted to another system
where the task corresponds to a whole process. To illustrate that there is not a fixed set
of YAWL services we included a custom YAWL service. A custom service connects the
engine with an entity in the environment of the system. For example, a custom YAWL

YAWL
engine

YAWL
designer

YAWL
manager�

YAWL
repository

YAWL
worklist
handler

YAWL
webservice

broker

YAWL
services

�
YAWL
interop
broker

custom
YAWL
service

web
service

web
service

other
engine

web service interface

�
servlets/jsp

database

browser

workflow
specifications

case data

A

B

Fig. 3. YAWL architecture.

service could offer communication with mobile phones, printers, assembly robots, etc.
Note that it is also possible that there are multiple services of the same type, e.g. multi-
ple worklist handlers, web services brokers, and interoperability brokers. For example,
there may exist multiple implementations of worklist handlers (e.g., customized for a
specific application domain or organization) and the same worklist handler may be in-
stantiated multiple times (e.g., one worklist handler per geographical region).

Workflow specifications are managed by the YAWL repository and workflow in-
stances (i.e. cases) are managed by the YAWL engine. Clearly, there is also a need for
a management tool that can be used to control workflow instances manually (e.g. delet-
ing a workflow instance or a workflow specification), providing information about the
state of running workflow instances, and details or aggregated data about completed
instances. This is the role of the YAWL manager.

Figure 3 also shows the various interfaces of YAWL. The YAWL engine has two
classes of interfaces: (A) interfaces capturing the interactions between the YAWL de-
signer and the YAWL manager on the one hand, and the YAWL engine on the other; and
(B) interfaces capturing the interactions between the YAWL services and the YAWL en-
gine. Interface class (A) corresponds to Interface 1 (Process Definition tools) and Inter-
face 5 (Administration and Monitoring tools) of the reference model of the Workflow
Management Coalition (WfMC) [15]. Interface class (B) corresponds to WfMC’s In-
terface 2-3 (Workflow Client Applications and Invoked Applications), and Interface

4 (Workflow Interoperability). Both interfaces (A and B) are implemented using a
REST based architectural style [9]. For our purposes the advantages of REST over
SOAP+WSDL include speed, scalability, security, and tool support. Users interact with
the YAWL system through a Web browser, i.e. both the YAWL manager and the YAWL
worklist handler offer HTML front-ends.

When considering the YAWL architecture there is one fundamental difference with
respect to existing workflow management systems: The YAWL engine deals with control-
flow and data but not explicitly with users. In addition, the engine abstracts from differ-
ences between users, applications, organizations, etc. To achieve this, the YAWL system
leverages principles from service-oriented architectures: external entities either offer
services or require services. In a traditional workflow management system, the engine
takes care of the ‘What’, ‘When’, ‘How’, and ‘By whom’. In YAWL, the engine takes
care of the ‘What’ and ‘When’ while the YAWL services take care of the ‘How’ and
‘By whom’. By separating these concerns it is possible to implement a highly efficient
engine while allowing for customized functionality. For example, it is possible to build
worklist handlers supporting specific organizations or domains, e.g., processes where a
team of professionals work on the same activity at the same time. It should be noted that
the architecture of YAWL is similar to the architecture envisioned in the context of web
service composition languages like BPEL4WS, WSCI, BPML, etc. However, these lan-
guages typically only consider control routing and data transformations, while YAWL
is not limited to these aspects and also addresses issues such as work distribution and
management.

Implementation notes. Although the current implementation of YAWL is complete in
the sense that it is able to run workflow instances, it does not provide all the compo-
nents and functionality described in Figure 3. The YAWL engine is fully implemented.
The YAWL designer is under development and at present only supports the specifica-
tion of control-flow perspective. The YAWL manager has not been implemented yet.
Of the YAWL services only the YAWL worklist handler is realized, to the extent that
it supports multiple users. Development is planned for an organizational model which
integrates with the worklist handler. The implementation has been done in Java and uses
XML-based standards such as XPath, XQuery, and XML Schema. The designer is im-
plemented using Jgraph: an open source graphical library (http://www.jgraph.
com). The YAWL engine relies on JDom (http://www.jdom.org) for evaluat-
ing XPath expressions, Saxon (http://saxon.sourceforge.net) for XQuery
support, and Xerces (http://xml.apache.org/xerces-j) for XML schema
support.

5 YAWL perspectives

This section discusses three key perspectives: (1) the control-flow perspective, (2) the
data perspective, and (3) the operational perspective. The first two perspectives are fully
implemented and are supported by the YAWL engine. The operational perspective cor-
responds to the YAWL services identified in the previous section and is only partly
realized.

5.1 Control-flow perspective

The control-flow perspective of YAWL focuses on the ordering of tasks. The building
blocks offered by YAWL have been briefly discussed in Section 3 and are depicted in
Figure 1. There are three features offered by YAWL not present in most workflow lan-
guages: (1) the OR-join task, (2) multiple instances of a task (atomic or composite),
and (3) the “remove tokens” task (i.e., cancellation of a region). Therefore, we focus
on these three. Let us first focus on the realization of the OR-join. Listing 1 shows the
definition of task register in Figure 2(a). The name element provides the name of the
task, the three flowsInto elements correspond to the three outgoing arcs, the join ele-
ment shows that the task is an AND-join3, the split element shows that the task is an
OR-split, the startingMappings element lists the input to the task, the completedMap-
pings element lists the output of the task, and the decomposesTo element refers to the
actual definition of the task (which we call its “decomposition”). Note that each task
element refers to a decomposition element. The decomposition element can define the
implementation of an atomic task or a composite task. Multiple task elements can refer
to the same decomposition element to allow for reuse. Listing 2 shows the task element
for the corresponding OR-join. Although from a syntactical point of view the OR-join
is easy to realize, it is far from trivial to realize the corresponding functionality. In the
classical XOR-join the flow continues after the first input. In the classical AND-join the
flow waits for all inputs. The complicating factor is that the OR-join sometimes has to
synchronize and sometimes not (or only partially). In the example shown in Figure 2(a)
it is fairly easy to see when to synchronize, e.g., simply count the number of bookings
enabled and then count back to zero for every booking that is completed. However, in
a general sense this strategy does not work, because there can be multiple splits (of all
types) ultimately linking to an OR-join. The semantics adopted by YAWL is that an
OR-join waits until no more inputs can arrive at the join. To make sure that the seman-
tics are well defined, i.e., have a fix-point, we exclude other OR-joins as indicated in
[3]. See [14] for a more elaborate discussion on the topic. As far as we know, YAWL is
the first engine implementing this strategy without adding additional constraints such as
excluding loops, etc. From a performance point of view, the OR-join is quite expensive
(the system needs to calculate all possible futures from the current state). To improve
performance, the OR-join condition could be evaluated only if strictly necessary.

A second feature which distinguishes YAWL from many existing languages is the
ability to have multiple instances of atomic/composite tasks. Figure 2(b) shows an ex-
ample of this. The composite task do itinerary segment has additional elements to con-
trol the number of instances (minimum, maximum, threshold, and creation mode) and
elements to control the data flow. Again the syntax is fairly straightforward but the real-
ization in the YAWL engine is not. Note that multiple instances can be nested arbitrarily
deep and it becomes quite difficult to separate and synchronize instances.

A third feature worth noting is the cancellation of a region, i.e., removing tokens
from selected parts of the specification. In Figure 2(c) task cancel contains four re-
movesTokens elements to empty the part of the specification shown. The cancellation
functionality is easy to realize in the engine. The biggest challenge is to allow for an

3 This is not relevant in this example since there is only one incoming arc.

Listing 1

1 <task id="register">
2 <name>Collect information
3 from customer</name>
4 <flowsInto>
5 <nextElementRef
6 id="flight"/>
7 <predicate>
8 /data/want_flight
9 = ’true’

10 </predicate>
11 <isDefaultFlow/>
12 </flowsInto>
13 <flowsInto>
14 <nextElementRef id="hotel"/>
15 <predicate>/data/want_hotel = ’true’</predicate>
16 </flowsInto>
17 <flowsInto>
18 <nextElementRef id="car"/>
19 <predicate>/data/want_car = ’true’</predicate>
20 </flowsInto>
21 <join code="and"/>
22 <split code="or"/>
23 <startingMappings>
24 <mapping>
25 <expression query="/data/customer"/>
26 <mapsTo>customer</mapsTo>
27 </mapping>
28 </startingMappings>
29 <completedMappings>
30 <mapping>
31 <expression query="/data/customer"/>
32 <mapsTo>customer</mapsTo>
33 </mapping>
34 <mapping>
35 <expression query="/data/want_flight"/>
36 <mapsTo>want_flight</mapsTo>
37 </mapping>
38
39 </completedMappings>
40 <decomposesTo id="do_register"/>
41 </task>

Listing 2

1 <task id="pay">
2 <name>Settle payment</name>
3 <flowsInto>
4 <nextElementRef id="end"/>
5 </flowsInto>
6 <join code="or"/>
7 <split code="and"/>
8 <startingMappings>
9 ...

10 </startingMappings>
11 <decomposesTo id="pay"/>
12 </task>

easy way to indicate a region in the YAWL designer. At this point in time we are ex-
perimenting with various interaction mechanisms to allow for a generic yet intuitive
way to demarcate such regions. Condition booking in process in Figure 2(c) also illus-
trates that YAWL supports the Deferred choice pattern. Note that the decision to cancel
is made by the external entity executing task cancel, and not by the workflow engine.
In traditional workflow systems, such “deferred” or “environment-driven” choices are

not possible: all decisions are made by evaluating system data. YAWL’s XOR-split and
OR-split constructs operate likewise. The notion of deferred choice has been adopted
by new languages like BPEL (see pick construct in [7]) and BPML (see choice construct
in [5]).

5.2 Data perspective

Although the initial focus of YAWL was on control flow, it has been extended to offer
full support for the data perspective. It is possible to define data elements and use them
for conditional routing, for the creation of multiple instances, for exchanging informa-
tion with the environment, etc. Most of the existing workflow management systems
use a propriety language for dealing with data. YAWL is one of the few languages that
completely relies on XML-based standards like XPath and XQuery.

Listing 3

1 <rootNet id="make_trip">
2 <localVariable
3 name="customer">
4 <type>xs:string</type>
5 <initialValue>
6 Type name of customer
7 </initialValue>
8 </localVariable>
9 <localVariable name=

10 "payment_account_number">
11 <type>xs:string</type>
12 </localVariable>
13 ...
14 <localVariable name=
15 "want_flight">
16 <type>xs:boolean</type>
17 </localVariable>
18 <localVariable name=
19 "want_hotel">
20 <type>xs:boolean</type>
21 </localVariable>
22 <localVariable name=
23 "want_car">
24 <type>xs:boolean</type>
25 </localVariable>
26 <localVariable name=
27 "flightDetails">
28 <type>xs:string</type>
29 </localVariable>
30 ...

Listing 4

1 <decomposition id="do_register"
2 xsi:type=
3 "YAWLServiceClientType">
4 <inputParam name="customer">
5 <type>xs:string</type>
6 </inputParam>
7 <outputExpression query=
8 "/data/customer"/>
9 <outputExpression query=

10 "/data/start_date"/>
11 ...
12 <outputExpression query=
13 "/data/want_flight"/>
14 ...
15 <outputParam name=
16 "customer">
17 <type>xs:string</type>
18 </outputParam>
19 <outputParam name=
20 "start_date">
21 <type>xs:dateTime</type>
22 </outputParam>
23 ...
24 <outputParam name=
25 "want_flight">
26 <type>xs:boolean</type>
27 </outputParam>
28 ...
29 </decomposition>

Listing 3 shows the declaration of variables for the example shown in Figure 2(a).
Using the element localVariable it is possible to add typed variables to the top-level

workflow. For example, lines 2-7 define the variable for storing the name of the cus-
tomer. The type of this variable is string and an initial value is defined. Each decompo-
sition of a task into a workflow may also have localVariable elements. Variables at the
higher level can be passed onto the lower level. Listing 4 shows the decomposition of
task register referred to in Figure 2(a). As shown in lines 4-6 of Listing 4, there is an
input parameter named customer. Task register maps data residing at the higher level
onto this input parameter at the lower level (i.e., in the decomposition) as shown in lines
23-28 of Listing 1. After completing the task, data at the lower level is passed on to the
higher level. For example, lines 24-27 of Listing 4 declare the parameter want flight.
Lines 12-13 of Listing 4 are executed to produce a data result. After completing the
decomposition, this result is mapped onto the variable want flight at the higher level
(see lines 35-36 of Listing 1). Note that the expression shown in line 35 of Listing 1
and the expression shown in lines 12-13 of Listing 4 is an XQuery expression to access
a node. However, arbitrarily complex transformations are permitted here, using the full
expressive power of XQuery. Moreover, parameters may be optional or mandatory.

If a task is an OR-split or XOR-split, predicate elements are used to specify Boolean
expressions. Lines 7-10, line 15, and line 19 in Listing 1 specify the output conditions of
task register (one for each outgoing arc). In the case of an OR-split or XOR-split, there
is always a default indicated by the element isDefaultFlow (cf. line 11 in Listing 1).
If all predicates evaluate to false, this arc is chosen, thereby acting like an “otherwise”
branch. In the example of Figure 2(a), at least one of the three booking tasks should be
executed. To ensure this, a flight is booked if none of the predicates evaluates to true.
To allow the possibility that none of the three booking tasks is executed, one should add
an arc directly from task register to either pay or the output condition. This would then
be set to be the default arc. For an XOR-split each predicate needs to have an ordering
attribute that is used in case multiple predicates evaluate to true. If predicates are not
mutually exclusive, the one with the lowest number that evaluates to true is selected.

From the viewpoint of data, the handling of multiple instances is far from trivial.
Consider for example Figure 2(b), the subprocess is executed for each segment of the
itinerary and thus there is data for each segment (destination, start date, flight details,
etc.). The number of instances created but also the maximum, minimum, and threshold
may all depend on data. Data at the higher level needs to be split over the instances and
after completion of the instances aggregated to data elements at the higher level. Again
XQuery is used to map data from the higher level to the lower level and vice versa.

5.3 Operational perspective

As discussed in Section 4, the YAWL engine interacts with its environment by means
of a collection of “YAWL services”, which are responsible for handling the operational
and the resource perspectives of workflow specifications, as well as for supporting com-
munication between different YAWL engines. A deployment of the YAWL system is ex-
pected to include a number of pre-built YAWL services. The YAWL worklist handler,
web service broker, and interoperability broker mentioned in Section 4 are examples
of such pre-built services. Importantly, all YAWL services are required to implement a
common interface. This interface is REST based [9], hence it must be able to generate,
and interpret several classes of XML messages. This interface defines messages for:

– Atomic task decomposition management: registering and un-registering atomic task
decompositions into YAWL services.

– Atomic task instance management: creating task instances, notifying the start and
completion (whether successful or not) of task instances, canceling task instances,
and probing the status of a task instance.

– Workflow instance management: creating, monitoring, and interacting with work-
flow instances.

– YAWL services connection management: registering and un-registering YAWL ser-
vices, reporting and probing the availability of YAWL services.

When a new YAWL workflow specification is deployed, the YAWL engine registers
each of the atomic task decompositions included in this specification, with at least one
YAWL service. Each task decomposition indicates the YAWL service(s) with which it
has to be registered. In the setting of the travel preparation example, one possible sce-
nario is that the tasks register, flight, and hotel are to be registered with the worklist
service, while the task pay is to be registered with the YAWL web services broker (e.g.
the payment is handled by an external payment service). If these registrations are suc-
cessful, the YAWL engine is then able to create instances of these tasks. Unsuccessful
task registrations lead to errors and the YAWL engine reports back these errors to the
YAWL designer or the YAWL manager. The deployment of a workflow specification is
only considered to be successful if all the registrations of task decompositions in the
specification, are successful. Otherwise, the deployment is aborted and any registered
task decompositions are unregistered.

As a minimum, a task decomposition specifies the tasks input and output data types,
and an identifier stating which YAWL service to invoke. It may specify other informa-
tion depending on the nature of the YAWL service with which the task will be registered.
In the case of tasks that are registered with a worklist service, the task decomposition
must specify a query over an organizational model to extract which role(s) are able to
execute instances of this task. In the case of a web service broker, built to invoke web
services based on WSDL+SOAP, the task decomposition must include:

1. A WSDL interface and SOAP binding of the web service WS that the broker must
invoke when dispatching an instance of this task.

2. A mapping between the task management operations of the YAWL services inter-
face and the operations in the interface of WS. Using this information, the web ser-
vice broker can exploit the functionality provided by the Web Services Invocation
Framework (http://ws.apache.org/wsif) in order to interact with WS.

In the setting of the travel preparation workflow, and assuming that the task pay is
delegated to a payment service (say PS), the decomposition of this task must provide
the WSDL interface and binding for PS, and a table indicating that for example:

– Operation CreateTaskInstance of the common YAWL services interface is mapped
to operation InitiateOnlinePayment of PS.

– Operation OnlinePaymentInitiated of PS maps to operation TaskStarted of the YAWL
services interface.

– Operation OnlinePaymentCompleted of PS maps to operation TaskCompleted of
the YAWL services interface.

– Operation CancelTask of the common YAWL services interface maps to operation
CancelPayment of PS.

These mappings should also specify how the input data of one operation maps to
the input data of the other operation, and same for the output data.

To be registered with a YAWL interoperability broker service, a task decomposition
TD must specify: (i) the identifier of the YAWL engine to which instances of this task
will be delegated; (ii) the name of the YAWL specification to be instantiated when an
instance of the task is created; (iii) a mapping between the input data of the CreateTask-
Instance operation and the input data of the process to be instantiated; and (iv) a similar
mapping for the output data. When an instance of TD is created, the interoperability
broker creates an instance of the designated process in a possibly remote YAWL engine
(using the workflow instance management operations of the YAWL services interfaces).
When this workflow instance completes, the interoperability broker collects the output
data, converts them using the mapping given when the task decomposition was regis-
tered, and returns them to the YAWL engine that triggered the instantiation of TD. Note
that this process interoperability model assumes that no communication occurs between
the creation and completion of a process instance. It is envisaged that the YAWL system
will be extended to support communication between running process instances.

6 Example and on-line demonstration

This section illustrates the current implementation of YAWL using a small example that
can be downloaded and run from the YAWL site http://www.citi.qut.edu.
au/yawl/. Figure 4 shows the life-cycle of a musician from the viewpoint of a record
company. The goal of this playful example is not to show a realistic business scenario
but an easy to understand example showing the main concepts. The top-level process
starts with a choice between doing an audition or first learning to play an instrument
(Pattern 4: Exclusive choice). The musician can learn multiple instruments in parallel
(Pattern 15: Multiple instances without a priori runtime knowledge) followed by the
decision to join a band or to go solo (Pattern 16: Deferred choice). In both cases, mul-
tiple songs may be written (again Pattern 15) and/or a live performance is given after
which the musician gets a contract (Pattern 6: Multi-choice/Pattern 7: Synchronizing
merge). The audition can fail and, if so, the musician tries again or continues learning
to play instruments (Pattern 5: Simple merge/Pattern 16: Deferred choice/Pattern 10:
Arbitrary cycles). Eventually the musician ends up making a record. This is modeled
by a composite task (Make Record) containing a multiple instance task for recording
songs and a loop if re-recording is necessary (see lower-level process in Figure 4). The
subprocess uses Pattern 5: Simple merge, Pattern 16: Deferred choice, and Pattern 15:
Multiple instances without a priori runtime knowledge. After completing the subprocess
a sequence is executed, in parallel with a choice being made, followed by a synchroniza-
tion (Pattern 2: Parallel split/Pattern 16: Deferred choice/Pattern 1: Sequence/Pattern 7:
Synchronizing merge) thus completing the YAWL specification.

In top

Decide
to make
music

Do
audition

Learn to
play

instrument

[1, 4, 3, d]

Join
band

Decide
to go
solo

Write
song

[1, 10,10, d]

Initial live
performance

Get
recording
contract

Make
Record

Rehearse
tour

Do tour

Out
top

Choose
path

Develop
as artist

Develop
bad

habits

Audition
passed

Audition
failed

Do
everything

you are told

In Make
Record

Choose
songs Send recording

to marketing
dept

Record
song

[1, 5, 3, d]

Done

Out
Make

Record

Deferred
Choice

Multiple Instances without
apriori runtime knowledge.

Synchronising merge

Cycles

Parallel split

Simple merge Exclusive choice

Sequence

Fig. 4. Example of a YAWL process.

Figure 4 does not show the data perspective (which is specified separately). The
data perspective of this workflow specification states that musicians have a name, songs
have a title, etc. Additionally, in the case of the composite task Make Record, the data
perspective specifies the effective parameters that will be passed to the lower level pro-
cess (e.g. an expression for retrieving the actual name and other properties of a given
song).

Figure 5 shows some screenshots of the tool while executing several instances of
the YAWL specification of Figure 4. The worklist of ‘Wil van der Aalst’ is shown in
the bottom window. The left window shows the current YAWL manager containing the
active workflows, active cases, and users. The right window shows an interface to enter
data. This is still rather primitive. Future versions of YAWL are expected to support
interactive forms.

7 Conclusion

In this paper we presented the design and implementation of the YAWL system. The
YAWL system fully supports the YAWL language which is based on an analysis of
more than 30 workflow systems, languages and standards. The expressiveness of YAWL
leads to challenging implementation problems such as dealing with multiple instances,
advanced synchronization mechanisms, and cancellation capabilities. We consider the
current version of YAWL as a proof of concept for the language introduced in [3]. In
our opinion any proposed language should be supported by at least a running prototype

Fig. 5. Screenshots of the current YAWL manager, worklist handler, and a data entry form.

in addition to a formal definition [3]. Too many standards and languages have been
proposed which turn out to have semantic problems.

At this point in time we are implementing the architecture shown in Figure 3. As
indicated in Section 4, the current version of the implementation provides the basic
functionality of a workflow system, but not all the components of the architecture have
been realized. One of the most challenging issues is to fine-tune the definition of the
interactions between the engine and the YAWL services. Other directions for future
effort include testing the language and system against complex application scenarios
and studying the possibility of using YAWL as an intermediate language to facilitate
the development of mappings between various business process execution languages.

Both the executable and sources of YAWL can be downloaded from http://
www.citi.qut.edu.au/yawl. YAWL is an open source initiative and therefore
welcomes contributions from third parties which could range from dedicated YAWL
services to alternative graphical editors or even alternative implementations of the en-
gine itself.

Acknowledgments. The authors wish to thank Lindsay Bradford, David Edmond, Nick
Russell, Eric Verbeek, and Moe Wynn for their contributions to the YAWL effort. This
work is partly funded by an ARC Discovery Grant “Expressiveness Comparison and
Interchange Facilitation between Business Process Execution Languages”.

References

1. W.M.P. van der Aalst. The Application of Petri Nets to Workflow Management. The Journal
of Circuits, Systems and Computers, 8(1):21–66, 1998.

2. W.M.P. van der Aalst and A.H.M. ter Hofstede. Workflow Patterns: On the Expressive Power
of (Petri-net-based) Workflow Languages. In K. Jensen, editor, Proceedings of the Fourth
Workshop on the Practical Use of Coloured Petri Nets and CPN Tools (CPN 2002), volume
560 of DAIMI, pages 1–20, Aarhus, Denmark, August 2002. University of Aarhus.

3. W.M.P. van der Aalst and A.H.M. ter Hofstede. YAWL: Yet Another Workflow Language.
Accepted for publication in Information Systems, and also available as QUT Technical report,
FIT-TR-2003-04, Queensland University of Technology, Brisbane, 2003.

4. W.M.P. van der Aalst, A.H.M. ter Hofstede, B. Kiepuszewski, and A.P. Barros. Workflow
Patterns. Distributed and Parallel Databases, 14(1):5–51, 2003.

5. A. Arkin et al. Business Process Modeling Language (BPML), Version 1.0, 2002.
6. Pallas Athena. Flower User Manual. Pallas Athena BV, Apeldoorn, The Netherlands, 2002.
7. F. Curbera, Y. Goland, J. Klein, F. Leymann, D. Roller, S. Thatte, and S. Weerawarana.

Business Process Execution Language for Web Services, Version 1.0. Standards proposal
by BEA Systems, International Business Machines Corporation, and Microsoft Corporation,
2002.

8. M. Dumas and A.H.M. ter Hofstede. UML activity diagrams as a workflow specification
language. In M. Gogolla and C. Kobryn, editors, Proc. of the 4th Int. Conference on the Uni-
fied Modeling Language (UML01), volume 2185 of LNCS, pages 76–90, Toronto, Canada,
October 2001. Springer Verlag.

9. R. Fielding. Architectural Styles and the Design of Network-based Software Architectures.
PhD thesis, University of Califormia, Irvine, USA, 2000.

10. IBM. IBM MQSeries Workflow - Getting Started With Buildtime. IBM Deutschland En-
twicklung GmbH, Boeblingen, Germany, 1999.

11. S. Jablonski and C. Bussler. Workflow Management: Modeling Concepts, Architecture, and
Implementation. International Thomson Computer Press, London, UK, 1996.

12. K. Jensen. Coloured Petri Nets. Basic Concepts, Analysis Methods and Practical Use.
EATCS monographs on Theoretical Computer Science. Springer-Verlag, Berlin, 1992.

13. B. Kiepuszewski, A.H.M. ter Hofstede, and W.M.P. van der Aalst. Fundamentals of Control
Flow in Workflows. Acta Informatica, 39(3):143–209, 2003.

14. E. Kindler. On the Semantics of EPCs: A Framework for Resolving the Vicious Circle (Ex-
tended Abstract). In M. Nüttgens and F.J. Rump, editors, Proceedings of the GI-Workshop
EPK 2003: Business Process Management using EPCs, pages 7–18, Bamberg, Germany,
October 2003. Gesellschaft für Informatik, Bonn.

15. P. Lawrence, editor. Workflow Handbook 1997, Workflow Management Coalition. John
Wiley and Sons, New York, 1997.

16. Open Source Workflow Engines Written in Java (maintained by Carlos E. Perez).
http://www.manageability.org/blog/stuff/workflow in java.

17. M. Reichert and P. Dadam. ADEPTflex: Supporting Dynamic Changes of Workflow without
Loosing Control. Journal of Intelligent Information Systems, 10(2):93–129, 1998.

18. G. Vossen and M. Weske. The WASA2 Object-Oriented Workflow Management System. In
A. Delis, C. Faloutsos, and S. Ghandeharizadeh, editors, SIGMOD 1999, Proceedings ACM
SIGMOD International Conference on Management of Data, June 1-3, 1999, Philadelphia,
Pennsylvania, USA, pages 587–589. ACM Press, 1999.

19. WFMC. Workflow Management Coalition Workflow Standard: Workflow Process Defini-
tion Interface – XML Process Definition Language (XPDL) (WFMC-TC-1025). Technical
report, Workflow Management Coalition, Lighthouse Point, Florida, USA, 2002.

20. D. Wodtke, J. Weissenfels, G. Weikum, and A.K. Dittrich. The Mentor Project: Steps To-
ward Enterprise-Wide Workflow Management. In Proceedings of the Twelfth International
Conference on Data Engineering, February 26 - March 1, 1996, New Orleans, Louisiana.
IEEE Computer Society, 1996.

21. P. Wohed, W.M.P. van der Aalst, M. Dumas, and A.H.M. ter Hofstede. Analysis of Web
Services Composition Languages: The Case of BPEL4WS. In I.Y. Song, S.W. Liddle, T.W.
Ling, and P. Scheuermann, editors, 22nd International Conference on Conceptual Modeling
(ER 2003), volume 2813 of Lecture Notes in Computer Science, pages 200–215. Springer-
Verlag, Berlin, 2003.

