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Abstract. The deployment of Workflow Management systems is a time-
consuming and error-prone task. A possible solution is process min-
ing, which automatically extracts workflow models from event-data logs.
However, the current research in process mining still has problems in
mining some common constructs in workflow models. Among these con-
structs are short loops, which are loops of length one and two. For in-
stance, the α-algorithm was proven to mine sound Structured Workflow
nets without short loops. In this paper, we present a new algorithm (the
α+-algorithm) that can handle short loops, and we prove that it correctly
mines all sound Structured Workflow nets. The α+-algorithm is based
on the α-algorithm and is implemented in the EMiT tool.
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1 Introduction

Every company wants to produce more in less time. One way to accomplish this
is having a well-defined business process model that reflects the dependencies
among tasks and also tasks that can be processed in parallel. Workflow man-
agement(WFM) systems offer the functionality to design and enact operational
processes.
In an ideal situation, well-defined business processes should be designed be-

fore enactment is possible and, redesigned whenever changes happen. However,
in practice a lot of time is spent on modelling business processes while the re-
sulting workflow models are typically still error prone, because knowledge about
the whole process is scattered among employees and paper procedures.
To avoid the above mentioned difficulties, instead of starting with a process

design, our process mining starts by gathering information about the processes as
they take place. We assume that the event data log contains enough information
to correctly extract the workflow model. Any information system using transac-
tional systems such as ERP (Enterprise Resource Planning), CRM (Customer
Relationship Management), B2B (Business to Business), SCM (Supply Chain
Management) and WFM systems will offer this information in some form. Note
that we do not assume that the presence of a WFM system. The only assumption
we make is that it is possible to collect a process log that records the order in
which the events take place.
To illustrate the principle of process mining, we consider the process log

shown in Table 1. This log contains information about five cases (i.e., process



instances) and six tasks (A..F). Based on the information shown in Table 1 and
by making some assumptions about the completeness of the log (i.e., if a task can
follow another task, there is a log trace to show this) we can deduce for example
the process model shown in Figure 1. The model is represented in terms of a
Petri net [31]. After executing A, tasks B and C are in parallel. Note that for this
example we assume that two tasks are in parallel if they appear in any order.
By distinguishing between start events and end events for tasks it is possible
to explicitly detect parallelism. Instead of starting with A the process can also
start with E. Task E is always followed by task F. Table 1 contains the minimal
information we assume to be present.

A
B

C
D

E F

Fig. 1. A process model corresponding to the process log.

For this simple example, it is quite easy to case identifier task identifier
case 1 task A
case 2 task A
case 3 task A
case 3 task B
case 1 task B
case 1 task C
case 2 task C
case 4 task A
case 2 task B
case 2 task D
case 5 task E
case 4 task C
case 1 task D
case 3 task C
case 3 task D
case 4 task B
case 5 task F
case 4 task D

Table 1. A process log.

construct a process model that is able to regen-
erate the process log. For larger process models
this is much more difficult. For example, if the
model exhibits alternative and parallel routing,
then the process log will typically not contain all
possible combinations. Moreover, certain paths
through the process model may have a low prob-
ability and therefore remain undetected. Noisy
data (i.e., logs containing exceptions) can fur-
ther complicate matters. These are just some of
the problems that we need to face in process
mining research. A lot of work is done to de-
velop more mining algorithms that can be used
in practice. In this paper a formal approach is
presented. We assume perfect information: (i)
the log must be complete (i.e., if a task can fol-
low another task directly, the log contains an ex-
ample of this behavior) and (ii) the log is noise
free (i.e., everything that is registered in the log
is correct). This is not a real limitation because
we are primarily interested in formal properties
of our algorithms.
Process mining can be viewed as a three-phase process: pre-processing, pro-

cessing and post-processing. In the pre-processing phase, based on the assump-
tion that the input log contains enough information, the ordering relations be-



tween tasks are inferred. The processing phase corresponds to the execution
of the mining algorithm, given the log and the ordering relations as input. In
our case, the mining algorithm is the α-algorithm. During post-processing, the
discovered model (in our case a Petri-net) can be fine-tuned and a graphical
representation can be build.
The focus of most research in the domain of process mining is on mining

heuristics based on ordering relations of the events in the process log (cf. Sec-
tion 5). Considerable work has been done on heuristics to mine event-data logs
to produce a process model that can support the workflow design process. How-
ever, all the existing heuristic-based mining algorithms have their limitations
[26]. Typically, more advanced process constructs are difficult to handle for ex-
isting mining algorithms. Some of these problematic constructs are common in
workflows and, therefore, need to be addressed to enable application in practice.
Among these constructs are short loops (see Figure 2) .
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Fig. 2. Example of a sound SWF-net the α-algorithm cannot correctly mine.

The main aim of our research is to extend the class of nets we can correctly
mine. The α-algorithm is proved to correctly mine sound SWF-nets without
short loops [6]. In this paper we prove that it is possible to correctly mine all
nets in the class of sound SWF-nets. The new mining algorithm is called α+ and
is based on the α-algorithm.
The remainder of this paper is organized as follows. Section 2 describes the

α-algorithm and its supporting definitions. Section 3 presents the new approach
to tackle length-two loops using the α-algorithm. Section 4 shows how to extend
the approach in Section 3 to mine also length-one loops. Section 5 discusses how
to extend the α+-algorithm to mine nets beyond the class of sound SWF-nets.
Section 6 discusses related works. Section 7 has the conclusions.

2 Preliminaries

This section contains the main definitions used in the α-algorithm that are also
relevant to the α+-algorithm. The detailed explanation about the α-algorithm
and Structured Workflow Nets (SWF-nets) is in [6].
The rest of this section is as follows. Subsection 2.1 introduces standard

Petri-net notations. Subsection 2.2 defines the class of WF-nets. Subsection 2.3
explains the α-algorithm.



2.1 Petri Nets

We use a variant of the classic Petri-net model, namely Place/Transition nets.
For an elaborate introduction to Petri nets, the reader is referred to [12, 29, 31].

Definition 2.1. (P/T-nets)1 An Place/Transition net, or simply P/T-net, is
a tuple (P, T, F ) where:

1. P is a finite set of places,
2. T is a finite set of transitions such that P ∩ T = ∅, and
3. F ⊆ (P × T ) ∪ (T × P ) is a set of directed arcs, called the flow relation.

A marked P/T-net is a pair (N, s), where N = (P, T, F ) is a P/T-net and where
s is a bag over P denoting the marking of the net. The set of all marked P/T-nets
is denoted N .
A marking is a bag over the set of places P , i.e., it is a function from P to

the natural numbers. We use square brackets for the enumeration of a bag, e.g.,
[a2, b, c3] denotes the bag with two a-s, one b, and three c-s. The sum of two bags
(X + Y ), the difference (X − Y ), the presence of an element in a bag (a ∈ X),
and the notion of subbags (X ≤ Y ) are defined in a straightforward way and
they can handle a mixture of sets and bags.
Let N = (P, T, F ) be a P/T-net. Elements of P ∪T are called nodes. A node

x is an input node of another node y iff there is a directed arc from x to y (i.e.,
xFy). Node x is an output node of y iff yFx. For any x ∈ P ∪T , N• x = {y | yFx}
and xN•= {y | xFy}; the superscript N may be omitted if clear from the context.
Figure 1 shows a P/T-net consisting of 7 places and 6 transitions. Transition

A has one input place and two output places. Transition A is an AND-split.
Transition D has two input places and one output place. Transition D is an
AND-join. The black dot in the input place of A and E represents a token.
This token denotes the initial marking. The dynamic behavior of such a marked
P/T-net is defined by a firing rule.

Definition 2.2. (Firing rule) Let (N = (P, T, F ), s) be a marked P/T-net.
Transition t ∈ T is enabled, denoted (N, s)[t〉, iff •t ≤ s. The firing rule [ 〉 ⊆
N ×T ×N is the smallest relation satisfying for any (N = (P, T, F ), s) ∈ N and
any t ∈ T , (N, s)[t〉 ⇒ (N, s) [t〉 (N, s− •t+ t•).
In the marking shown in Figure 1 (i.e., one token in the source place), transitions
A and E are enabled. Although both are enabled only one can fire. If transition
A fires, a token is removed from its input place and tokens are put in its output
places. In the resulting marking, two transitions are enabled: B and C. Note
that the firing of B and C are independent.

Definition 2.3. (Reachable markings) Let (N, s0) be a marked P/T-net in
N . A marking s is reachable from the initial marking s0 iff there exists a sequence
1 In the literature, the class of Petri nets introduced in Definition 2.1 is sometimes
referred to as the class of (unlabeled) ordinary P/T-nets to distinguish it from the
class of Petri nets that allows more than one arc between a place and a transition.



of enabled transitions whose firing leads from s0 to s. The set of reachable
markings of (N, s0) is denoted [N, s0〉.

The marked P/T-net shown in Figure 1 has 6 reachable markings. Sometimes it
is convenient to know the sequence of transitions that are fired in order to reach
some given marking. This paper uses the following notations for sequences. Let
A be some alphabet of identifiers. A sequence of length n, for some natural
number n ∈ IN, over alphabet A is a function σ : {0, . . . , n − 1} → A. The
sequence of length zero is called the empty sequence and written ε. For the sake
of readability, a sequence of positive length is usually written by juxtaposing the
function values: For example, a sequence σ = {(0, a), (1, a), (2, b)}, for a, b ∈ A,
is written aab. The set of all sequences of arbitrary length over alphabet A is
written A∗.

Definition 2.4. (Firing sequence) Let (N, s0) withN = (P, T, F ) be a marked
P/T net. A sequence σ ∈ T ∗ is called a firing sequence of (N, s0) if and only if,
for some natural number n ∈ IN, there exist markings s1, . . . , sn and transitions
t1, . . . , tn ∈ T such that σ = t1 . . . tn and, for all i with 0 ≤ i < n, (N, si)[ti+1〉
and si+1 = si − •ti+1 + ti+1•. (Note that n = 0 implies that σ = ε and that
ε is a firing sequence of (N, s0).) Sequence σ is said to be enabled in marking
s0, denoted (N, s0)[σ〉. Firing the sequence σ results in a marking sn, denoted
(N, s0) [σ〉 (N, sn).

Definition 2.5. (Connectedness) A net N = (P, T, F ) is weakly connected,
or simply connected, iff, for every two nodes x and y in P ∪ T , x(F ∪ F−1)∗y,
where R−1 is the inverse and R∗ the reflexive and transitive closure of a relation
R. Net N is strongly connected iff, for every two nodes x and y, xF ∗y.

We assume that all nets are weakly connected and have at least two nodes. The
P/T-net shown in Figure 1 is connected but not strongly connected.

Definition 2.6. (Boundedness, safeness) A marked net (N = (P, T, F ), s)
is bounded iff the set of reachable markings [N, s〉 is finite. It is safe iff, for any
s′ ∈ [N, s〉 and any p ∈ P , s′(p) ≤ 1. Note that safeness implies boundedness.

The marked P/T-net shown in Figure 1 is safe (and therefore also bounded)
because none of the 6 reachable states puts more than one token in a place.

Definition 2.7. (Dead transitions, liveness) Let (N = (P, T, F ), s) be a
marked P/T-net. A transition t ∈ T is dead in (N, s) iff there is no reachable
marking s′ ∈ [N, s〉 such that (N, s′)[t〉. (N, s) is live iff, for every reachable
marking s′ ∈ [N, s〉 and t ∈ T , there is a reachable marking s′′ ∈ [N, s′〉 such
that (N, s′′)[t〉. Note that liveness implies the absence of dead transitions.

None of the transitions in the marked P/T-net shown in Figure 1 is dead. How-
ever, the marked P/T-net is not live since it is not possible to enable each
transition continuously.



2.2 Workflow Nets

Most workflow systems offer standard building blocks such as the AND-split,
AND-join, OR-split, and OR-join [4, 14, 21, 23]. These are used to model sequen-
tial, conditional, parallel and iterative routing (WFMC [14]). Clearly, a Petri
net can be used to specify the routing of cases. Tasks are modeled by transi-
tions and causal dependencies are modeled by places and arcs. In fact, a place
corresponds to a condition which can be used as pre- and/or post-condition
for tasks. An AND-split corresponds to a transition with two or more output
places, and an AND-join corresponds to a transition with two or more input
places. OR-splits/OR-joins correspond to places with multiple outgoing/ingoing
arcs. Given the close relation between tasks and transitions we use the terms
interchangeably.
A Petri net which models the control-flow dimension of a workflow, is called a

WorkFlow net (WF-net). It should be noted that a WF-net specifies the dynamic
behavior of a single case in isolation.

Definition 2.8. (Workflow nets) Let N = (P, T, F ) be a P/T-net and t̄ a
fresh identifier not in P ∪ T . N is a workflow net (WF-net) iff:
1. object creation: P contains an input place i such that •i = ∅,
2. object completion: P contains an output place o such that o• = ∅,
3. connectedness: N̄ = (P, T ∪ {t̄}, F ∪ {(o, t̄), (t̄, i)}) is strongly connected,
The P/T-net shown in Figure 1 is a WF-net. Note that although the net is
not strongly connected, the short-circuited net with transition t̄ is strongly con-
nected. Even if a net meets all the syntactical requirements stated in Defini-
tion 2.8, the corresponding process may exhibit errors such as deadlocks, tasks
which can never become active, livelocks, garbage being left in the process after
termination, etc. Therefore, we define the following correctness criterion.

Definition 2.9. (Sound) Let N = (P, T, F ) be a WF-net with input place i
and output place o. N is sound iff:
1. safeness: (N, [i]) is safe,
2. proper completion: for any marking s ∈ [N, [i]〉, o ∈ s implies s = [o],
3. option to complete: for any marking s ∈ [N, [i]〉, [o] ∈ [N, s〉, and
4. absence of dead tasks: (N, [i]) contains no dead transitions.
The set of all sound WF-nets is denoted W.
The WF-net shown in Figure 1 is sound. Soundness can be verified using stan-
dard Petri-net-based analysis techniques. In fact soundness corresponds to live-
ness and safeness of the corresponding short-circuited net [1, 2, 4]. This way effi-
cient algorithms and tools can be applied. An example of a tool tailored towards
the analysis of WF-nets is Woflan [35].
Our process mining research aims at rediscovering WF-nets from event logs.

However, not all places in sound WF-nets can be detected. For example places
may be implicit which means that they do not affect the behavior of the process.
These places remain undetected. Therefore, we limit our investigation to WF-
nets without implicit places.



Definition 2.10. (Implicit place) Let N = (P, T, F ) be a P/T-net with initial
marking s. A place p ∈ P is called implicit in (N, s) if and only if, for all reachable
markings s′ ∈ [N, s〉 and transitions t ∈ p•, s′ ≥ •t \ {p} ⇒ s′ ≥ •t.
Figure 1 contains no implicit places. However, adding a place p connecting tran-
sition A and D yields an implicit place. No mining algorithm is able to detect
p since the addition of the place does not change the behavior of the net and
therefore is not visible in the log.

(i) (ii)

Fig. 3. Constructs not allowed in SWF-nets.

For process mining it is very important that the structure of the WF-net
clearly reflects its behavior. Therefore, we also rule out the constructs shown in
Figure 3. The left construct illustrates the constraint that choice and synchro-
nization should never meet. If two transitions share an input place, and therefore
“fight” for the same token, they should not require synchronization. This means
that choices (places with multiple output transitions) should not be mixed with
synchronizations. The right-hand construct in Figure 3 illustrates the constraint
that if there is a synchronization all preceding transitions should have fired, i.e.,
it is not allowed to have synchronizations directly preceded by an OR-join. WF-
nets which satisfy these requirements are named structured workflow nets and
are defined as:

Definition 2.11. (SWF-net) A WF-net N = (P, T, F ) is an SWF-net (Struc-
tured workflow net) if and only if:

1. For all p ∈ P and t ∈ T with (p, t) ∈ F : |p • | > 1 implies | • t| = 1.
2. For all p ∈ P and t ∈ T with (p, t) ∈ F : | • t| > 1 implies | • p| = 1.
3. There are no implicit places.

This paper introduces the α+-algorithm, which mines all SWF-nets. The α+-
algorithm is based on the α-algorithm, which correctly mines SWF-nets without
short loops. In our solution, we first tackle length-two loops (see Section 3) and
then also length-one loops (see Section 4). While tackling length-two loops only,
we do not allow the nets to have length-one loops. That is why we introduce the
definition of one-loop-free workflow nets.

Definition 2.12. (One-loop-free workflow nets) Let N = (P, T, F ) be a
workflow net. N is a one-loop-free workflow net if and only if for any t ∈ T ,
t • ∩ • t = ∅.



2.3 The α-Algorithm

Our start point to mine workflows is an event log. A log is a set of traces.
Workflow traces and logs are defined as:

Definition 2.13. (Workflow trace, Workflow log) Let T be a set of tasks.
σ ∈ T ∗ is a workflow trace and W ∈ P(T ∗) is a workflow log.2

From a worflow log, ordering relations between tasks can be inferred. In the
case of the α-algorithm, every two tasks in the workflow log must have one of
the following four ordering relations: >W (follows), →W (causal), ‖W (paral-
lel) and #W (unrelated). These ordering relations are extracted based on local
information in the log traces. The ordering relations are defined as:

Definition 2.14. (Log-based ordering relations) Let W be a workflow log
over T , i.e., W ∈ P(T ∗). Let a, b ∈ T :

– a >W b if and only if there is a trace σ = t1t2t3 . . . tn−1 and i ∈ {1, . . . , n−2}
such that σ ∈ W and ti = a and ti+1 = b,

– a →W b if and only if a >W b and b �>W a,
– a#W b if and only if a �>W b and b �>W a, and
– a‖W b if and only if a >W b and b >W a.

To ensure the workflow log contains the minimal amount of information neces-
sary to mine the workflow, the notion of log completeness is defined as:

Definition 2.15. (Complete workflow log) Let N = (P, T, F ) be a sound
WF-net, i.e., N ∈ W. W is a workflow log of N if and only if W ∈ P(T ∗) and
every trace σ ∈ W is a firing sequence of N starting in state [i] and ending in
state [o], i.e., (N, [i])[σ〉(N, [o]). W is a complete workflow log of N if and only
if (1) for any workflow log W ′ of N : >W ′⊆>W , and (2) for any t ∈ T there is a
σ ∈ W such that t occurs in σ.

For Figure 1, a possible complete workflow log W is: abcd, acbd and ef. From
this complete log, the following ordering relations are inferred:

– (follows) a >W b, a >W c, b >W c, b >W d, c >W b, c >W d and e >W f .
– (causal) a →W b, a →W c, b →W d, c →W d and e →W f .
– (parallel) b‖W c and c‖W b.

Note that there are no unrelated transitions for the net in Figure 1.
Now we can give the formal definition of the α-algorithm followed by a more

intuitive explanation.

Definition 2.16. (Mining algorithm α) Let W be a workflow log over T .
The α(W ) is defined as follows.

1. TW = {t ∈ T | ∃σ∈W t ∈ σ},
2. TI = {t ∈ T | ∃σ∈W t = first(σ)},
2 T ∗ is the set of all sequences that are composed of zero of more tasks from T . P(T ∗)
is the powerset of T ∗, i.e., W ⊆ T ∗.



3. TO = {t ∈ T | ∃σ∈W t = last(σ)},
4. XW = {(A,B) |A ⊆ TW ∧B ⊆ TW ∧ ∀a∈A∀b∈Ba →W b ∧ ∀a1,a2∈Aa1#W a2 ∧

∀b1,b2∈Bb1#W b2},
5. YW = {(A,B) ∈ XW | ∀(A′,B′)∈XW

A ⊆ A′ ∧B ⊆ B′ =⇒ (A,B) = (A′, B′)},
6. PW = {p(A,B) | (A,B) ∈ YW } ∪ {iW , oW },
7. FW = {(a, p(A,B)) | (A,B) ∈ YW ∧ a ∈ A} ∪ {(p(A,B), b) | (A,B) ∈

YW ∧ b ∈ B} ∪ {(iW , t) | t ∈ TI} ∪ {(t, oW ) | t ∈ TO}, and
8. α(W ) = (PW , TW , FW ).

The α-algorithm works as follows. First, it examines the log traces and (Step 1)
creates the set of transitions (TW ) in the workflow, (Step 2) the set of output
transitions (TI) of the source place , and (Step 3) the set of the input transitions
(TO) of the sink place3. In steps 4 and 5, the α-algorithm creates sets (XW and
YW , respectively) used to define the places of the discovered workflow net. In
Step 4, the α-algorithm discovers which transitions are causally related. Thus,
for each tuple (A,B) in XW , each transition in set A causally relates to all
transitions in set B, and no transitions within A (or B) follow each other in
some firing sequence. These constraints to the elements in sets A and B allow
the correct mining of AND-split/join and OR-split/join constructs. Note that
the OR-split/join requires the fusion of places. In Step 5, the α-algorithm refines
set XW by taking only the largest elements with respect to set inclusion. In fact,
Step 5 establishes the exact amount of places the discovered net has (excluding
the source place iW and the sink place oW ). The places are created in Step 6 and
connected to their respective input/output transitions in Step 7. The discovered
workflow net is returned in Step 8.
Finally, we define what it means for a WF-net to be rediscovered.

Definition 2.17. (Ability to rediscover) Let N = (P, T, F ) be a sound WF-
net, i.e., N ∈ W, and let α be a mining algorithm which maps workflow logs of
N onto sound WF-nets, i.e., α : P(T ∗) → W. If for any complete workflow log
W of N the mining algorithm returns N (modulo renaming of places), then α is
able to rediscover N .

Note that no mining algorithm is able to find names of places. Therefore, we
ignore place names, i.e., α is able to rediscover N if and only if α(W ) = N
modulo renaming of places.

3 Length-Two Loops

In this section we first show why a new notion of log completeness is necessary to
capture length-two loops in SWF-nets and why the α-algorithm does not capture
length-two loops in SWF-nets (even if the new notion of log completeness is
used). Then a new definition of ordering relations is given, and finally we prove
that this new definition of ordering relations is sufficient to tackle length-two
loops with the α-algorithm.
3 In a workflow net, the source place i has no input transitions and the sink place o
has no output transitions.



3.1 New Notion of Log Completeness

Log completeness as defined in Definition 2.15 is insufficient to detect length-two
loops in SWF-nets. As an example, consider the SWF-net in Figure 2 (left-hand
side). This net can have the complete log: ab, acdb, edcf, ef. However, by looking
at this log it is not clear if transitions c and d are in parallel or belong to a
length-two loop. Thus, to correctly detect length-two loops in SWF-nets, the
following new definition of complete log is introduced.

Definition 3.1. (Loop-complete workflow log) Let N = (P, T, F ) be a
sound SWF-net and W a log of N . W is a loop-complete workflow log of N
if and only if W is complete and for all workflow logs W ′ of N : if there is a
firing sequence σ′ ∈ W ′ with σ′ = t1t2t3 . . . tn′ and i′ ∈ {1, . . . , n′ − 2} such
that ti′ = ti′+2 = a and ti′+1 = b, for some a, b ∈ T : a �= b, then there is a
firing sequence σ ∈ W with σ = t1t2t3 . . . tn and i ∈ {1, . . . , n − 2} such that
ti = ti+2 = a and ti+1 = b.

Note that a loop-complete workflow log for the net in Figure 2 will contain one
or more traces with the substrings “cdc” and “dcd”. Besides, all loop-complete
workflow logs are also complete workflow logs.
In definition 3.1 it is implicitly assumed that there exists a loop-complete

workflow log with a finite set of traces. Furthermore, it is assumed that all
traces are finite. We would like to point out that it is indeed possible to have a
loop-complete workflow log with these properties.

Theorem 3.2. It is possible to have a loop-complete log that is a finite set of
finite traces.

Proof. Consider the reachability graph of a SWF-net. Since the number of
possible markings is finite, the reachability graph is also finite. Furthermore,
soundness (or more specifically liveness) implies that in the reachability graph
there is a path from marking [i] to every other reachable marking and there is a
path from every reachable marking to the state [o]. Every arc in the reachability
graph can be mapped onto the firing of a transition, therefore we need to show
two things:

– For every two arcs (sj−1, sj) and (sj , sj+1) there is a path from [i] to [o]
over these arcs. Liveness properties of a sound SWF-net give that there is
a shortest path from marking [i] to marking sj−1. Furthermore, there is a
shortest path from marking sj+1 to marking [o]. Combining these two paths
with the two arcs (sj−1, sj) and (sj , sj+1) leads to a finite path from [i] to
[o] over these two arcs. Extending this to all pairs shows that there are finite
traces that contain all information for the > relation.

– For every three arcs (sj−1, sj), (sj , sj+1) and (sj+1, sj+2) such that (sj−1, sj)
and (sj+1, sj+2) represent the firing of the same transition t1 and (sj , sj+1)
represents the firing of a different transition t2, we need to show that there
is again a path from [i] to [o] over these arcs. The proof for this is the same
as for the > relation. Therefore, there also exist finite traces containing all
the information needed to detect the firing sequences t1t2t1.



All that we need to show now is that it is possible to generate a finite set of
finite traces that is a loop-complete log. Since we have shown that for each pair
or triple of arcs it is possible to generate a finite trace, and the number of pairs
and triplicates is bounded in the size of the graph, we know that this is the case.

✷

3.2 Redefinition of Ordering Relations

The new notion of a loop-complete workflow log is necessary but not sufficient
to mine length-two loops. The main reason is that the tasks in the length-two
loop are inferred to be in parallel. For example, for the net in Figure 2, any loop-
complete workflow log will lead to c‖W d and d‖W c. However, these transitions
are not in parallel. In fact, they are connected by places that can only be correctly
mined by the α-algorithm if at least c →W d and d →W c. Using this insight,
we redefine Definition 2.14, i.e., we provide the following new definitions for the
basic ordering relations →W and ‖W .

Definition 3.3. (Ordering relations capturing length-two loops) Let W
be a loop-complete workflow log over T , i.e., W ∈ P(T ∗). Let a, b ∈ T :

– a�W b if and only if there is a trace σ = t1t2t3 . . . tn and i ∈ {1, . . . , n − 2}
such that σ ∈ W and ti = ti+2 = a and ti+1 = b,

– a �W b if and only if a�W b and b�Wa,
– a >W b if and only if there is a trace σ = t1t2t3 . . . tn−1 and i ∈ {1, . . . , n−2}
such that σ ∈ W and ti = a and ti+1 = b,

– a →W b if and only if a >W b and (b �>W a or a �W b) ,
– a#W b if and only if a �>W b and b �>W a, and
– a‖W b if and only if a >W b and b >W a and a � �W b.

Note that, in the new Definition 3.3, two transitions a and b are also in the
a →W b relation if a >W b and b >W a and the substrings aba and bab are
contained in the log traces.

Theorem 3.4. Let N = (P, T, F ) be an one-loop-free sound SWF-net. Let W
be a loop-complete workflow log of N . For any a, b ∈ T , such that •a ∩ b• �= ∅
and a • ∩ • b �= ∅, a�W b implies b�Wa.

Proof. Assume a • ∩ • b �= ∅, b • ∩ • a �= ∅, ∃σ = ...aba... and � ∃σ′ = ...bab.... We
show that this leads to a contradiction.
Since N is a SWF-net and no implicit places are possible, |a • ∩ • b| = 1

and |b • ∩ • a| = 1. Let pab, pba ∈ P be the places between a and b, such that
a•∩•b = {pab} and b•∩•a = {pba}. Since ∃σ = ...aba... and N is safe, | •a| = 1
and •a = {pba}. Since there is no firing sequence σ′ = ...bab... and a • ∩ • b �= ∅,
b has more than one input place, i.e. | • b| > 1. We define {pab, pb,in} ⊆ •b.
Consequently, the following properties hold:

– | • pab| = 1. This is a direct consequence of Definition 2.11(2).
– |pab • | = 1. This is a direct consequence of Definition 2.11(1).



– pb,in• = {b}. This is a direct consequence of Definition 2.11(1).
By definition, •pab = {a} and pab• = {b}. Since the net is safe and the sequence
σ = ...aba... exists, we know that all tokens produced by a must be consumed by
b. From the definition of SWF-nets it is known that |a•∩• b| ≤ 1 for all a and b.
Therefore, a• = {pab} meaning that the firing of a can only affect the enabling
of b.
Furthermore, it can be shown that {pba} ⊂ b•. Assume that {pba} = b•. We
show that this leads to a contradiction. Since the net is live, there is a marking
s1 that puts a token in pab and pb,in to enable b. Since the token in pab can
only arrive after firing a, a marking s2 that puts a token in pba and pb,in must
also exist. Assume that there is a trace containing b, i.e. ∃σ1 = ...abσ′

1 such
that b �∈ σ′

1 ∧ a �∈ σ′
1. From the property of proper completion we know that

such a trace must exist. We know that no transition can remove tokens from
pb,in other than b. Since the trace σ′

1 can be fired from a marking s marking
pba and not pb,in, it can be fired from a marking s′ marking every place that is
marked in s and marking pb,in. However, after firing σ′

1 from marking s
′ a token

is eventually placed in the sink place and the token in pb,in is not removed. This
is a contradiction to the property of proper completion of SWF-nets.
Now we know that there must be a place pb,out such that {pba, pb,out} ⊆ b•
and pb,out �= pb,in. From the property of safeness we know that after firing b
the token from pb,out has to be removed before b becomes enabled again. This
means that from the moment b becomes enabled there are two tokens travelling.
One between pab and pba and one between pb,in and pb,out. Since the property
of proper completion holds for the net, we know that these two tokens need to
be synchronized in order to exit the loop between a and b.
Structural properties of SWF-nets forbid a transition to take tokens from

pab and tokens in pb,in can only be consumed by b. Proper completion implies
that it has to be possible to remove a token from pba. Any transition removing
this token does not have any other input places because of structural properties.
Liveness implies that the token produced in pb,out can be transported back to
pb,in by firing at least one transition. The subnet transporting this token cannot
know whether transition a has fired, or the token in pba has been removed never
to return. Any construction that checks this condition would namely violate free-
choiceness. Therefore, this subnet could produce a token in pb,in, even though
transition a will never become enabled again. This violates proper completion or
deadlock freedom and therefore, a net where pab ⊂ •b cannot be a sound SWF-
net. Therefore, •b = {pab} and consequently, b• = {pba}. However, if that is the
case then the trace σ′ = ...bab... is possible, thus leading to a contradiction.

✷

However, there is still a problem. Length-one loops in the net may also produce
“cdc” and “dcd” patterns in the log traces. For example, see the nets in Figure
4. Therefore, to prove that the α-algorithm can correctly mine length-two loops
when using the new definitions of loop-complete workflow log and ordering re-
lations, we assume that the net is a sound one-loop-free SWF-net. In Section 4,
we show how to handle the general case (all sound SWF-nets).
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Fig. 4. Example illustrating why length-one loops are not allowed when mining length-
two loops. Note that both nets have loop-complete workflow logs that contains traces
with the substrings “cdc” or “dcd”.

3.3 Proof that the α-algorithm Mines Length-Two Loops

In [6], the α-algorithm was proved to correctly mine sound SWF-nets without
short loops. In subsections 3.1 and 3.2, we respectively introduced the new def-
initions of log completeness (Definition 3.1) and ordering relations (Definition
3.3) that are necessary to capture length-two loops using the α-algorithm. How-
ever, we need to prove that the α-algorithm correctly mines one-loop-free sound
SWF-nets when the definitions 3.1 and 3.3 are used. Thus, this subsection has
proofs for the relevant theorems and properties in [6] that do not hold directly
when using the definitions 3.1 and 3.3.

Theorem 3.5. 4 Let N = (P, T, F ) be a sound one-loop-free SWF-net and let
W be a loop-complete workflow log of N . For any a, b ∈ T : a →W b implies
a • ∩ • b �= ∅.
Proof. Assume a →W b. If a � �W b then a >W b and b >W a and Theorem 4.1 in
[6] can be used to prove that a• ∩ •b �= ∅. Therefore, we also assume that a�W b.
Now we need to find a contradiction when we also assume that a • ∩ • b �= ∅.
Because N is one-loop-free and safe, for any t ∈ T , t • ∩ • t = ∅ and there is
no firing sequence σ′′ = ...tt.... So, once a transition t fires, it can be enabled
again only after the firing of another distinct transition. However, this leads to a
contradiction because there is a firing sequence σ′ = ...bab... that cannot be true
if a • ∩ • b = ∅, since a is the only transition to fire between the two firings of
b. For similar reasons, it is also impossible to have σ = ...aba... if •a ∩ b• = ∅.

✷

Theorem 3.6. 5 Let N = (P, T, F ) be a sound one-loop-free SWF-net and let
W be a loop-complete workflow log of N .

1. If a, b ∈ T and a • ∩ b• �= ∅, then a#W b.
2. If a, b ∈ T and •a ∩ •b �= ∅, then a#W b.
3. If a, b, t ∈ T , a →W t, b →W t, and a#W b, then a • ∩ b • ∩ • t �= ∅.
4. If a, b, t ∈ T , t →W a, t →W b, and a#W b, then •a ∩ •b ∩ t• �= ∅.

Proof. Let a, b, t ∈ T . We prove each of the four items separately.

4 Theorem 4.1 in [6].
5 Theorem 4.8 in [6].



1. If a • ∩ b• �= ∅, then there is a common output place p ∈ a • ∩ b•. If
a firing of a is directly followed by b (or vice versa), then two subsequent
transitions produce a token for p. These transitions do not consume tokens
from p (because a • ∩ • a = ∅ and b • ∩ • b = ∅). Therefore, p contains
at least two tokens after firing a and b. This is not possible since (N, [i]) is
safe. Hence, a �>W b and b �>W a which implies a#W b.

2. Similar arguments apply to the situation where p ∈ •a ∩ •b.
3. Assume a →W t, b →W t, a#W b and a• ∩ b• ∩ • t = ∅. We show this leads
to a contradiction. From Theorem 3.5, we know a →W t implies a•∩• t �= ∅.
Similarly, b →W t implies b • ∩ • t �= ∅. We assumed that a • ∩ b • ∩ • t = ∅.
Thus a • ∩b• = ∅. Moreover, if pat ∈ a • ∩ • t and pbt ∈ b • ∩ • t, then
•pat ∩ •pbt = ∅. This means that t can only fire after the firings of both a
and b. If a�W t, we know there is a firing sequence σ′ = ...tat.... This means
that t fired (afterwards all its input places are empty since the net is safe),
a fired and t fired again. However, this is impossible since b • ∩ • t �= ∅ and
a • ∩b• = ∅, i.e. pbt is empty. So a • ∩ b • ∩ • t �= ∅ if a�W t. Similar
arguments hold if b�W t, t�Wa, and t�W b. Therefore, we can refer to the
proof at Theorem 4.8 in [6].

4. Similar arguments apply to the situation where t →W a, t →W b, and a#W b.

✷

Theorem 3.7. Let N = (P, T, F ) be a sound one-loop-free SWF-net and let W
be a loop-complete workflow log of N . Then α(W ) = N modulo renaming of
places.

Proof. This theorem is correct because all theorems and properties of the orig-
inal α-algorithm are proven to still hold when dealing with sound one-loop-free
SWF-net, loop-complete workflow logs and the new ordering relations. ✷

4 Length-One Loops

In this section we show the properties of length-one loops in sound SWF-nets
and an algorithm (called α+) that correctly mines all sound SWF-nets.

4.1 Properties of Length-One Loops

Length-one loops are connected to a single place in any sound SWF-net and this
place cannot be the source or sink place of the sound SWF-net, as is stated in
the following theorem:

Theorem 4.1. Let N = (P, T, F ) be a sound SWF-net. For any a ∈ T , a•∩•a �=
∅ implies a �∈ i•, a �∈ •o, a• = •a and | • a| = 1.
Proof. Let a ∈ T . We prove by contradiction. Assume a • ∩ • a �= ∅ and:
1. a ∈ i•. If | • a| = 1, then •a = a• = i, since a • ∩ • a �= ∅. However, N is a
WF-net and •i = ∅ (see Definition 2.8(1)). So we have a contradiction.



2. a ∈ •o. Again if | • a| = 1 we have a contradiction (see Definition 2.8(2)).
3. •a �= a•, i.e. there is a place p ∈ •a \ a• or p ∈ a • \ • a. If p ∈ •a \ a•, then

a is dead because the SWF-net properties imply that the places in a • ∩ • a
can never be marked. If p ∈ a• \ • a, the resulting net is unbounded because
if a can fire once it can fire multiple times.

4. | • a| > 1. Let p ∈ a• = •a. Again, from Definition 2.11(2), | • a| > 1 implies
| • p| = 1. But if this is the case, a is a deadlock because the only transition
that can put a token in p is a. This is a contradiction since N is sound.

✷

Property 4.2. Let N = (P, T, F ) be a sound SWF-net. Let W be a loop-
complete workflow log of N . For any a ∈ T : •a ∩ a• �= ∅ implies there are
b, c ∈ T : a �= b and b �= c and a �= c and b →W a and a →W c and b →W c and
•c = •a.
This property follows directly from Definition 2.11(1) and Theorem 4.1 in this
paper, and from Theorem 4.66 in [6]. Property 4.2 states there are always non-
length-one loops transitions that are either input transitions or output transi-
tions from the single place connected to a length-one-loop transition in a sound
SWF-net. Furthermore, the output transitions have only this single place as their
input place.

Theorem 4.3. Let N = (P, T, F ) be a sound SWF-net. Let N ′ = (P ′, T ′, F ′)
be a one-loop-free PT-net such that P ′ = P , T ′ = {t ∈ T | • t ∩ t• = ∅}, and
F ′ = F ∩ (P ′ × T ′ ∪ T ′ × P ′). Let W be a loop-complete workflow log of N and
let W−L1L be the log created by excluding the occurrences of length-one-loop
transitions from every log trace in W . Then:

1. N ′ is a sound one-loop-free SWF-net,
2. α(W−L1L) = N ′ modulo renaming of places.

Proof. We prove (1) by checking if N ′ is sound, one-loop-free and a SWF-net.
We prove (2) by showing W−L1L is a loop-complete workflow log of N ′.

1. N ′ is a one-loop-free by definition. Thus, it remains to prove N ′ is sound
and is a SWF-net. Let us first look at the soundness of N ′. From Theorem
4.1, we know any length-one-loop transition t is connected to a single place
in a sound SWF-net. Thus, the firing of t does not change the marking
of N . We know N ′ is originated from N by excluding all t and the arcs
connected to t. So the set of reachable markings for N coincides with the set
of reachable markings for N ′. Consequently, N ′ is sound because N is sound.
By reasoning about the set of reachable markings is also easy to see N ′ is
a WF-net. It remains to check if N ′ is a SWF-net. Definition 2.11(1) and
2.11(2) hold directly because N ′ is created by only excluding transitions and
arcs from N , which is already a SWF-net. Definition 2.11(1) holds because,

6 This theorem is defined as:
Let N = (P, T, F ) be a sound SWF-net and let W be a complete workflow log of N .
For any a, b ∈ T : a • ∩ • b �= ∅ and b • ∩ • a = ∅ implies a →W b.



as stated in Property 4.2, for any other transition t′ such that •t′ ∩ t′• = ∅
and •t ∩ •′t �= ∅ implies t′ has a single input place p that is also connected
to t. Note that t′ exists because p �= o. Since | • t| = 1, p can never become
an implicit place in N ′.

2. LetW ′ be a loop-complete workflow log of N ′. N ′ and N have the same set of
reachable markings. Thus, for any two transitions a, b ∈ T ′, if a >W ′ b holds,
then a >W b also holds. SinceW−L1L is created by excluding the occurrences
of length-one-loop transitions t (i.e. •t ∩ t• �= ∅) from the log traces of W ,
a >W−L1L b also holds. Consequently, W−L1L is a loop-complete workflow
for N ′. Since N ′ was proven in (1) to be a sound one-loop-free SWF-net, by
Theorem 3.7, α(W−L1L) = N ′.

✷

Theorem 4.3 states that the main net structure (called N ′ in the theorem) of
any sound SWF-net can be correctly discovered by the α-algorithm whenever
length-one-loop transitions are removed from the input log. Consequently, since
length-one-loop transitions are always connected to a single place in sound SWF-
net (Theorem 4.1), we can use the α-algorithm to mine the main net structure
N ′ and then connect the length-one-loop transition to this net.
The next subsection shows how to identify length-one-loops transitions and

how to correctly insert them in the net the α-algorithm outputs.

4.2 Solution to Tackle Length-One Loops

The solution to tackle length-one loops in sound SWF-nets focusses on the pre-
and post-processing phases of process mining. The key idea is to identify the
length-one-loop tasks and the single place to which each task should be con-
nected. Any length-one-loop task t can be identified by searching a loop-complete
workflow log for traces containing the substring tt. To determine the correct place
p to which each t should be connected in the discovered net, we must check which
transitions are directed followed by t but do not direct follow t (i.e. p is an output
place of these transitions) and which transitions direct follow t but t does not
direct follow them (i.e. p is the input place of these transitions).
The algorithm - called α+ - to mine sound SWF-nets is formalized as follows.

Note that the function eliminateTask maps any log trace σ to a new one σ′

without the occurrence of a certain transition t.

Definition 4.4. (Mining algorithm α+) Let W be a loop-complete workflow
log over T , the α-algorithm as in Definition 2.16 and the ordering relations as
in Definition 3.3.

1. Tlog = {t ∈ T | ∃σ∈W [t ∈ σ]}
2. L1L = {t ∈ Tlog | ∃σ=t1t2...tn∈W ;i∈{1,2,...,n}[t = ti−1 ∧ t = ti]}
3. T ′ = Tlog \ L1L
4. FL1L = ∅
5. For each t ∈ L1L do:



(a) A = {a ∈ T ′ | a >W t}
(b) B = {b ∈ T ′ | t >W a}
(c) FL1L := FL1L ∪ {(t, p(A\B,B\A)), (p(A\B,B\A), t)}

6. W−L1L = ∅
7. For each σ ∈ W do:

(a) σ′ = σ

(b) For each t ∈ L1L do:
i. σ′ := eliminateTask(σ′, t)

(c) W−L1L :=W−L1L ∪ σ′

8. (PW−L1L , TW−L1L , FW−L1L) = α(W−L1L)
9. PW = PW−L1L

10. TW = TW−L1L ∪ L1L
11. FW = FW−L1L ∪ FL1L

12. α+ = (PW , TW , FW )

The α+ works as follows. First, it examines the log traces (Step 1) and identifies
the length-one-loop transitions (Step 2). In steps 3 to 5, the places to which each
length-one-loop transition should be connected to are identified and the respec-
tive arcs are included in FL1L. Then, all length-one-loop transitions are removed
from the input log W−L1L to be processed by the α-algorithm (steps 6 and 7).
In Step 8, the α-algorithm discovers a workflow net based on the loop-complete
workflow log W−L1L and the ordering relations as defined in Definition 3.3. In
steps 9 to 11, the length-one-loop transitions and their respective input and out-
put arcs are added to the net discovered by the α-algorithm. The workflow net
with the added length-one loops is returned in Step 12.

Theorem 4.5. Let N = (P, T, F ) be a sound SWF-net and let W be a loop-
complete workflow log of N . Using the ordering relations as in Definition 3.3,
α+(W ) = N modulo renaming of places.

Proof. If N is an one-loop-free sound SWF-net, the α+-algorithm works as the
α-algorithm. If N is not an one-loop-free sound SWF-net, given Theorem 4.3,
it suffices to prove FL1L correctly connects all length-one-loops transitions to
the discovered net (PW ′ , TW ′ , FW ′). We prove this in two parts: first we prove
the arcs (t, p(A\B,B\A)) and (p(A\B,B\A), t), created in Step 5c, point to places
in PW−L1L . In other words, p(A\B,B\A) ∈ PW−L1L . Second we prove p(A\B,B\A) is
the right place.

Part 1: Arcs are connected to existing places. We prove this by showing
(A\B,B\A) ∈ XW (Definition 2.16(4)) in α-algorithm. Let t ∈ L1L be a length-
one-loop transition. From Property 4.2, we know there are transitions x, y ∈ T ′,
such that x →W t, t →W y, x →W y and •y = •t. x ∈ A\B because x >W t and
t �>W x. Similarly, y ∈ B \A. Because x →W y, x ∈ A\B and y ∈ B \A, we can
conclude (A\B)→W (B \A). To show (A\B,B \A) ∈ XW , it remains to prove
that for any x1, x2 ∈ A \ B, x1#Wx2 and for any y1, y2 ∈ B \ A, y1#W y2. But



this follows directly from Theorem 3.6(1-2). Note that x1 • ∩ x2• �= ∅ because
x1 •∩ • t �= ∅, x2 •∩ • t �= ∅ and | • t| = 1. Similar reasoning applies to y1 and y2.

Part 2: Here we need to prove that the arcs are connected to the right place.
This means (A \ B,B \ A) ∈ YW (Definition 2.16(5)) in the α-algorithm. Let
us first check if B \ A is maximal. Let t ∈ L1L be a length-one-loop transition.
Assume there exists y ∈ T ′ such that (A \ B) >W y, y ∈ B, •t ∩ •y �= ∅ and
y �∈ B \ A. Since y ∈ B but y �∈ B \ A, then y ∈ A and y >W t. However, this
is a contradiction because y • ∩ • y �= ∅ (from y ∈ T ′) and •t ∩ •y �= ∅ imply
y • ∩ • t �= ∅. Thus, when y fires it consumes the token in •t and does not return
it. Since we are dealing with logs of safe nets, y >W t is impossible. A similar
reasoning is used to prove A \ B is maximal. Since both A \ B and B \ A are
proven to be maximal, A \ B,B \ A) ∈ YW and the arcs in FL1L are connected
to the right place. ✷
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Fig. 5. Examples of sound SWF-nets that the α+-algorithm correctly mines.

The original net in Figure 2 and the nets N1−4 in Figure 5 satisfy the require-
ments stated in Theorem 4.5. Therefore, they are all correctly discovered by the
α+-algorithm. In fact, the α+ can be extended to correctly discover nets beyond
the class of sound SWF-net. These nets are discussed in the next section.

5 Extension beyond SWF-nets

To enable the α+-algorithm to correctly discover nets beyond the class of sound
SWF-net, Step 11 in Definition 4.4 must be modified to:
11. FW = FW ′ ∪

{(t, p(A,B)) ∈ (L1L × PW ) | ∃(t′,p(A′,B′))∈FL1L
[t = t′ ∧ A ⊆ A′ ∧ B ⊆ B′]} ∪

{(p(A,B), t) ∈ (PW × L1L) | ∃(p(A′,B′),t′)∈FL1L
[t = t′ ∧ A ⊆ A′ ∧ B ⊆ B′]}
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Fig. 6. Example of a sound WF-net that the modified version of the α+-algorithm (the
α++) correctly mines.

As an example, see the net in Figure 6. This net is not a SWF-net, but it is
correctly mined by the modified version of the α+-algorithm. Let us call α++

the modified version of the α+-algorithm. Note that the α++-algorithm behaves
exactly as the α+-algorithm when dealing with loop-complete workflow logs of
sound SWF-nets. This happens because Step 11 in Definition 4.4 can be rewritten
to:

FW = FW ′ ∪
{(t, p(A,B)) ∈ (L1L × PW ) | ∃(t′,p(A′,B′))∈FL1L

[t = t′ ∧ A = A′ ∧ B = B′]} ∪
{(p(A,B), t) ∈ (PW × L1L) | ∃(p(A′,B′),t′)∈FL1L

[t = t′ ∧ A = A′ ∧ B = B′]}

The argument above makes it trivial to see that all the proofs given in Section
4 are valid when the α++-algorithm is used. In fact, the EMiT mining tool
implements the α++-algorithm.
We think the α++-algorithm correctly mines all sound nets of the following

class:

Definition 5.1. (Extended SWF-nets) A WF-net N = (P, T, F ) is an ex-
tended SWF-net (Structured workflow net) if, and only if:

1. For all p ∈ P and t ∈ T with (p, t) ∈ F and •t ∩ t• = ∅: |p • | > 1 implies
| • t| = 1.

2. For all p ∈ P and t ∈ T with (p, t) ∈ F and •t ∩ t• = ∅: | • t| > 1 implies
| • p| = 1.

3. There are no implicit places.
4. For all t ∈ T : •t ∩ t• �= ∅ implies •t = t• and (for all t′ ∈ T : t′ • ∩ • t �= ∅
implies t′• ⊆ •t).

Extended SWF-nets have three main properties. The first is that all length-
one-loop transitions have all of their input places as output places too. This
property assures that length-one-loop transitions can be safely removed during
the pre-processing phase. The second property is that if a transition t shares
output places with another length-one-loop transition t′, then all output places
of t are connected to t′ too. This property assures the correct detection of all
the places to which the length-one-loop transitions should be connected to. The
third property is that, when removing all the length-one-loop transitions (and
their connecting arcs) from an extended SWF-net, the remaining net is a SWF-
net. This property assures the α-algorithm correctly mines the remaining net. As



an example, note that the sound WF-net in Figure 6 is an extended SWF-net,
but the sound WF-net in Figure 7 is not.
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Fig. 7. Example of a sound WF-net that the modified version of the α+-algorithm (the
α++) does not correctly mine.

6 Literature on Process Mining

The idea of process mining is not new [7, 9–11, 17–19, 24, 25, 32, 33, 5, 36, 6]. Cook
and Wolf have investigated similar issues in the context of software engineering
processes. In [9] they describe three methods for process discovery: one using
neural networks, one using a purely algorithmic approach, and one Markovian
approach. The authors consider the latter two the most promising approaches.
The purely algorithmic approach builds a finite state machine where states are
fused if their futures (in terms of possible behavior in the next k steps) are
identical. The Markovian approach uses a mixture of algorithmic and statistical
methods and is able to deal with noise. Note that the results presented in [9] are
limited to sequential behavior. Cook and Wolf extend their work to concurrent
processes in [10]. They propose specific metrics (entropy, event type counts, pe-
riodicity, and causality) and use these metrics to discover models out of event
streams. However, they do not provide an approach to generate explicit process
models. Recall that the final goal of the approach presented in this paper is to
find explicit representations for a broad range of process models, i.e., we want
to be able to generate a concrete Petri net rather than a set of dependency
relations between events. In [11] Cook and Wolf provide a measure to quantify
discrepancies between a process model and the actual behavior as registered
using event-based data. The idea of applying process mining in the context of
workflow management was first introduced in [7]. This work is based on workflow
graphs, which are inspired by workflow products such as IBM MQSeries work-
flow (formerly known as Flowmark) and InConcert. In this paper, two problems



are defined. The first problem is to find a workflow graph generating events ap-
pearing in a given workflow log. The second problem is to find the definitions
of edge conditions. A concrete algorithm is given for tackling the first problem.
The approach is quite different from other approaches: Because the nature of
workflow graphs there is no need to identify the nature (AND or OR) of joins
and splits. As shown in [22], workflow graphs use true and false tokens which
do not allow for cyclic graphs. Nevertheless, [7] partially deals with iteration by
enumerating all occurrences of a given task and then folding the graph. However,
the resulting conformal graph is not a complete model. In [25], a tool based on
these algorithms is presented. Schimm [32, 33] has developed a mining tool suit-
able for discovering hierarchically structured workflow processes. This requires
all splits and joins to be balanced. Herbst and Karagiannis also address the issue
of process mining in the context of workflow management [18, 17, 19] using an
inductive approach. The work presented in [19] is limited to sequential models.
The approach described in [18, 17] also allows for concurrency. It uses stochastic
task graphs as an intermediate representation and it generates a workflow model
described in the ADONIS modeling language. In the induction step task nodes
are merged and split in order to discover the underlying process. A notable dif-
ference with other approaches is that the same task can appear multiple times
in the workflow model, i.e., the approach allows for duplicate tasks. The graph
generation technique is similar to the approach of [7, 25]. The nature of splits
and joins (i.e., AND or OR) is discovered in the transformation step, where
the stochastic task graph is transformed into an ADONIS workflow model with
block-structured splits and joins. In contrast to the previous papers, our work
[24, 36] is characterized by the focus on workflow processes with concurrent be-
havior (rather than adding ad-hoc mechanisms to capture parallelism). In [36]
a heuristic approach using rather simple metrics is used to construct so-called
“dependency/frequency tables” and “dependency/frequency graphs”. The pre-
liminary results presented in [36] only provide heuristics and focus on issues such
as noise. In [3] the EMiT tool is presented which uses an extended version of
the α-algorithm to incorporate timing information. Now EMiT also incorporates
the ideas presented in this paper. For a detailed description of the α-algorithm
and a proof of its correctness we refer to [6]. For a detailed explanation of the
constructs the α-algorithm does not correctly mine see [26].

Process mining can be seen as a tool in the context of Business (Process)
Intelligence (BPI). In [16] a BPI toolset on top of HP’s Process Manager is de-
scribed. The BPI tools set includes a so-called “BPI Process Mining Engine”.
However, this engine does not provide any techniques as discussed before. Instead
it uses generic mining tools such as SAS Enterprise Miner for the generation of
decision trees relating attributes of cases to information about execution paths
(e.g., duration). In order to do workflow mining it is convenient to have a so-
called “process data warehouse” to store audit trails. Such as data warehouse
simplifies and speeds up the queries needed to derive causal relations. In [13, 27,
28] the design of such warehouse and related issues are discussed in the context
of workflow logs. Moreover, [28] describes the PISA tool which can be used to



extract performance metrics from workflow logs. Similar diagnostics are provided
by the ARIS Process Performance Manager (PPM) [20]. The later tool is com-
mercially available and a customized version of PPM is the Staffware Process
Monitor (SPM) [34] which is tailored towards mining Staffware logs. Note that
none of the latter tools is extracting the process model. The main focus is on
clustering and performance analysis rather than causal relations as in [7, 9–11,
17–19, 24, 25, 32, 33, 36].
More from a theoretical point of view, the rediscovery problem discussed in

this paper is related to the work discussed in [8, 15, 30]. In these papers the lim-
its of inductive inference are explored. For example, in [15] it is shown that the
computational problem of finding a minimum finite-state acceptor compatible
with given data is NP-hard. Several of the more generic concepts discussed in
these papers could be translated to the domain of process mining. It is possi-
ble to interpret the problem described in this paper as an inductive inference
problem specified in terms of rules, a hypothesis space, examples, and criteria
for successful inference. The comparison with literature in this domain raises
interesting questions for process mining, e.g., how to deal with negative exam-
ples (i.e., suppose that besides log W there is a log V of traces that are not
possible, e.g., added by a domain expert). However, despite the many relations
with the work described in [8, 15, 30] there are also many differences, e.g., we
are mining at the net level rather than sequential or lower level representations
(e.g., Markov chains, finite state machines, or regular expressions). For a survey
of existing research, we also refer to [5].

7 Conclusion

The focus of this paper has been the extension of the α-algorithm so that it can
mine all sound SWF-nets. The new algorithm is called α+. The α-algorithm is
proven to correctly discover sound SWF-nets without lenght-one or length-two
loops. The extension involved changes in the pre- and post-processing phases.
First, length-two loops were tackled by redefining the notion of log completeness
and the possible ordering relations among tasks in the process. This solution
dealt with the pre-processing phase only. Then, the solution to tackle length-
two loops was extended to tackle also length-one loops. The key property is
that length-one-loop tasks are connected to single places in sound SWF-nets.
Therefore, the α+-algorithm (i) removes all occurrences of length-one loops from
the input log, (ii) feeds in the α-algorithm with this log and the new defined
ordering relations over this log, and (iii) reconnects all the length-one loop tasks
to their respective place in the net the α-algorithm produced. We proved that
the α+-algorithm correctly mines nets in the class of sound SWF-nets. This new
algorithm is implemented in the EMiT tool7.
In this paper a formal approach has been presented. We presuppose perfect

information: (i) the log must be complete (i.e., if a task can follow another

7 The EMiT tool is available at our research group’s website (www.processmining.org).



task directly, the log contains an example of this behavior) and (ii) there is no
noise in the log (i.e., everything that is registered in the log is correct). The
advantages of a formal approach is that we can prove under which conditions
our algorithm will certainly discover the right workflow net. However, real logs
are rarely complete and/or noise free. For this reason we also try to developed
heuristic mining techniques and tools which are less sensitive for noise and the
incompleteness of logs.
However, note that even noisy or incomplete logs not always make it impos-

sible to use the algorithm α+ or α. The reason is that real logs usually also
contains more data than we assume. This extra data may help in correctly in-
ferring the ordering relations even if the log is incomplete or noisy. Additionally,
based on this extra data, the workflow log given as input can also be treated to
contain all necessary transitions and loops. As a result, the pre-processing phase
is modified, but the processing and post-processing phases remain the same.
In future research we try to develop stronger mining algorithms that can deal

with a wider class of workflow nets.
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