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Abstract. Ubiquitous Mobile Systems (UMSs) allow for automated cap-
turing of events. Both mobility and ubiquity are supported by electronic
means such as mobile phones and PDAs and technologies such as RFID,
Bluetooth, WLAN, etc. These can be used to automatically record hu-
man behavior and business processes in detail. UMSs typically also allow
for more flexibility. The combination of flexibility (i.e., the ability to de-
viate from standard procedures) and the automated capturing of events,
provides an interesting application domain for process mining. The goal
of process mining is to discover process models from event logs. The α-
algorithm is a process mining algorithm whose application is not limited
to ubiquitous and/or mobile systems. Unfortunately, the α-algorithm is
unable to tackle so-called “short loops”, i.e., the repeated occurrence of
the same event. Therefore, a new algorithm is proposed to deal with
short loops: the α+-algorithm. This algorithm has been implemented in
the EMiT tool.
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1 Process Mining in Ubiquitous Mobile Systems

Since Mark Weiser first described it in 1991 [19], ubiquitous computing has trans-
formed from a fairy-tale to reality. Unlike the traditional situation where people
share a computer (mainframe) or where there is a one-to-one correspondence
between people and computers (PC), people are surrounded by computing de-
vices. These devices may have a fixed location (cf. “smart homes”), but increas-
ingly these devices are mobile. Typical examples that exist today are PDA’s
and mobile phones. New concepts like “smart clothes” or “wearable comput-
ers” illustrate future applications. Research projects such as UWA (Ubiquitous
Web Applications, cf. www.uwaproject.org) and MOTION (MObile Teamwork
Infrastructure for Organizations Networks, cf. www.motion.softeco.it) illustrate
the scientific challenges ubiquitous and/or mobile systems are posing.

Clearly, Ubiquitous Mobile Systems (UMSs) will change the way people work
[10]. However, in this paper we do not discuss the impact of new technologies on
people and organizations but focus on the use of process mining to monitor the
processes where UMSs are involved. The main contribution is an extension of
the α-algorithm [7] to tackle so-called “short loops” [13], i.e., the paper consists
of two clearly distinguishable parts: (1) an introduction to process mining and



its relevance for UMSs and (2) a concrete algorithm called the α+-algorithm.
We start with the first part and discuss the relation between process mining and
UMSs.

UMSs are enabled by recent developments in various fields. Miniaturization
and mass fabrication of “computer-like devices” allows for an omnipresence of
computing power. This combined with advances in wireless communication have
made mobile computing a reality. The difference between phones and portable
computers (e.g., PDAs) is fading, thus illustrating this trend. Current technolo-
gies such as Bluetooth and WLAN enable new ways of cooperation. RFID tags
allows for new ways of “synchronizing” the physical and electronic worlds. These
technologies have in common that potentially it can be used to automatically
capture data on work processes and other human behavior. Humans are very
good in problem solving but are typically not very accurate or thorough in
recording information on events that take place. A human’s sensory and short
term memories have limited capacity and data entry is considered a tedious job.
Therefore, UMSs can serve as natural assistants to record events.1

UMSs typically allow for more flexibility than traditional information sys-
tems. For many work processes this increased flexibility will trigger the need to
monitor things more closely. The combination of availability of event data and
the desire to monitor suggests the use of process mining techniques. Fueled by
the omnipresence of event logs in transactional information systems (cf. WFM,
ERP, CRM, SCM, and B2B systems), process mining has become a vivid re-
search area [5, 6]. Until recently, the information in these event logs was rarely
used to analyze the underlying processes. Process mining aims at improving this
by providing techniques and tools for discovering process, control, data, orga-
nizational, and social structures from event logs, i.e., the basic idea of process
mining is to diagnose business processes by mining event logs for knowledge.

The event log typically contains information about events referring to an ac-
tivity and a case. The case (also named process instance) is the “thing” which is
being handled, e.g., a customer order, a job application, an insurance claim, a
building permit, etc. The activity (also named task, operation, action, or work-
item) is some operation on the case. Typically, events have a timestamp indicat-
ing the time of occurrence. Moreover, when people are involved, event logs will
typically contain information on the person executing or initiating the event,
i.e., the originator. Based on this information several tools and techniques for
process mining have been developed [2, 4, 5, 7–9, 11, 12, 15, 17, 18]. In this paper
we present the α+-algorithm. This is a new algorithm focusing on the control-
flow (i.e., process) perspective. It extends the α-algorithm [7] by addressing the
problem of “short loops” [13].

The remainder of this paper is organized as follows. Section 2 introduces the
concept of process mining. Section 3 describes the α-algorithm and its supporting

1 Note that in most mobile systems there is a communication asymmetry, i.e., the
bandwidth downstream (server-to-client) is much larger than upstream. This may
complicate data collection in a mobile system. However, the bandwidth required to
record events is typically moderate.



definitions. Section 4 presents the new approach to tackle length-two loops using
the α-algorithm. Section 5 shows how to extend the approach in Section 4 to
mine also length-one loops. Section 6 discusses related works. Section 7 has the
conclusions.

2 Process Mining: An Introduction

We assume that in UMSs, information on events (e.g., the execution of a task
by a worker) is recorded in a log.

To illustrate the principle of process mining, case identifier task identifier
case 1 task A
case 2 task A
case 3 task A
case 3 task B
case 1 task B
case 1 task C
case 2 task C
case 4 task A
case 2 task B
case 2 task D
case 5 task E
case 4 task C
case 1 task D
case 3 task C
case 3 task D
case 4 task B
case 5 task F
case 4 task D

Table 1. An event log.

we consider the event log shown in Table 1. This
log contains information about five cases (i.e.,
process instances) and six tasks (A..F). Based
on the information shown in Table 1 and by
making some assumptions about the complete-
ness of the log (i.e., if a task can follow another
task, there is an event trace to show this) we can
deduce for example the process model shown in
Figure 1. The model is represented in terms of
a Petri net [16]. After executing A, tasks B and
C are in parallel. Note that for this example
we assume that two tasks are in parallel if they
appear in any order. By distinguishing between
start events and end events for tasks it is pos-
sible to explicitly detect parallelism. Instead of
starting with A the process can also start with
E. Task E is always followed by task F. Table 1
contains the minimal information we assume to
be present.

For this simple example, it is quite easy to
construct a process model that is able to regen-
erate the event log. For larger process models this is much more difficult. For
example, if the model exhibits alternative and parallel routing, then the process
log will typically not contain all possible combinations. Moreover, certain paths
through the process model may have a low probability and therefore remain
undetected. Noisy data (i.e., logs containing exceptions) can further complicate
matters [18]. These are just some of the problems that we need to face in process
mining research. In this paper we assume perfect information: (i) the log must
be complete (i.e., if a task can follow another task directly, the log contains an
example of this behavior) and (ii) the log is noise free (i.e., everything that is
registered in the log is correct).

Process mining can be viewed as a three-phase process: pre-processing, pro-
cessing and post-processing. In the pre-processing phase, based on the assump-
tion that the input log contains enough information, the ordering relations be-
tween tasks are inferred. The processing phase corresponds to the execution of
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Fig. 1. A process model corresponding to the event log.

the mining algorithm, given the log and the ordering relations as input. In our
case, the mining algorithm is the α-algorithm [7]. During post-processing, the
discovered model (in our case a Petri-net) can be fine-tuned and a graphical
representation can be build.

The focus of most research in the domain of process mining is on mining
heuristics based on ordering relations of the events in the event log. Consid-
erable work has been done on heuristics to mine event-data logs to produce a
process model. Typically these models can be characterized as workflow models.
Existing heuristic-based mining algorithms have limitations as indicated in [13].
Typically, more advanced process constructs are difficult to handle for existing
mining algorithms. Some of these problematic constructs are common in work-
flow applications and, therefore, need to be addressed to enable application in
practice. Among these constructs are short loops (see Figure 2) .

The main aim of our research is to extend the class of nets we can correctly
mine. The α-algorithm is able to correctly mine sound SWF-nets without short
loops [7]. In this paper we prove that it is possible to correctly mine all nets
in the class of sound SWF-nets. The new mining algorithm is called α+ and is
based on the α-algorithm.
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Fig. 2. An example of a sound SWF-net the α-algorithm cannot correctly mine.

3 WF-nets and the α-Algorithm

This section contains the main definitions used in the α-algorithm that are also
relevant to the new α+-algorithm presented in this paper. For more information
on the α-algorithm and Structured Workflow Nets (SWF-nets) the reader is
referred to [7]. We assume some basic knowledge of Petri nets. Readers not
familiar with basic concepts such as (P, T, F ) as a representation for a Petri net,
the firing rule, firing sequences, preset •x, postset x•, boundedness, liveness,
reachability, etc. are referred to [1, 16].



3.1 Workflow Nets

Before introducing the α-algorithm we briefly discuss a subclass of Petri nets
called a WorkFlow nets (WF-nets). This subclass is tailored towards modeling
the control-flow dimension of a workflow.2 It should be noted that a WF-net
specifies the dynamic behavior of a single case in isolation [1].

Definition 3.1. (Workflow nets) Let N = (P, T, F ) be a Petri net and t̄ a
fresh identifier not in P ∪ T . N is a workflow net (WF-net) iff:

1. object creation: P contains an input place i such that •i = ∅,
2. object completion: P contains an output place o such that o• = ∅,
3. connectedness: N̄ = (P, T ∪ {t̄}, F ∪ {(o, t̄), (t̄, i)}) is strongly connected,

The Petri net shown in Figure 1 is a WF-net. Note that although the net is
not strongly connected, the short-circuited net with transition t̄ is strongly con-
nected. Even if a net meets all the syntactical requirements stated in Defini-
tion 3.1, the corresponding process may exhibit errors such as deadlocks, tasks
which can never become active, livelocks, garbage being left in the process after
termination, etc. Therefore, we define the following correctness criterion.

Definition 3.2. (Sound) Let N = (P, T, F ) be a WF-net with input place i
and output place o. N is sound iff:

1. safeness: (N, [i]) is safe,
2. proper completion: for any marking s ∈ [N, [i]〉, o ∈ s implies s = [o],
3. option to complete: for any marking s ∈ [N, [i]〉, [o] ∈ [N, s〉, and
4. absence of dead tasks: (N, [i]) contains no dead transitions.

The set of all sound WF-nets is denoted W.

The WF-net shown in Figure 1 is sound. Soundness can be verified using stan-
dard Petri-net-based analysis techniques [1, 3].

Most workflow systems offer standard building blocks such as the AND-split,
AND-join, XOR-split, and XOR-join [3]. These are used to model sequential,
conditional, parallel and iterative routing. Clearly, a WF-net can be used to
specify the routing of cases. Tasks, also referred to as activities, are modeled by
transitions and causal dependencies are modeled by places and arcs. In fact,
a place corresponds to a condition which can be used as pre- and/or post-
condition for tasks. An AND-split corresponds to a transition with two or more
output places, and an AND-join corresponds to a transition with two or more
input places. XOR-splits/XOR-joins correspond to places with multiple outgo-
ing/ingoing arcs. Given the close relation between tasks and transitions we use
the terms interchangeably.

Our process mining research aims at rediscovering WF-nets from event logs.
However, not all places in sound WF-nets can be detected. For example places
may be implicit which means that they do not affect the behavior of the process.
These places remain undetected. Therefore, we limit our investigation to WF-
nets without implicit places.
2 Note that we use the words workflow and process interchangeably.



Definition 3.3. (Implicit place) Let N = (P, T, F ) be a Petri net with initial
marking s. A place p ∈ P is called implicit in (N, s) if and only if, for all reachable
markings s′ ∈ [N, s〉 and transitions t ∈ p•, s′ ≥ •t \ {p} ⇒ s′ ≥ •t.3
Figure 1 contains no implicit places. However, adding a place p connecting tran-
sition A and D yields an implicit place. No mining algorithm is able to detect
p since the addition of the place does not change the behavior of the net and
therefore is not visible in the log.

(i) (ii)

Fig. 3. Constructs not allowed in SWF-nets.

For process mining it is very important that the structure of the WF-net
clearly reflects its behavior. Therefore, we also rule out the constructs shown in
Figure 3. The left construct illustrates the constraint that choice and synchro-
nization should never meet. If two transitions share an input place, and therefore
“fight” for the same token, they should not require synchronization. This means
that choices (places with multiple output transitions) should not be mixed with
synchronizations. The right-hand construct in Figure 3 illustrates the constraint
that if there is a synchronization all preceding transitions should have fired, i.e.,
it is not allowed to have synchronizations directly preceded by an XOR-join.
WF-nets which satisfy these requirements are named structured workflow nets
and are defined as:

Definition 3.4. (SWF-net) A WF-net N = (P, T, F ) is an SWF-net (Struc-
tured workflow net) if and only if:

1. For all p ∈ P and t ∈ T with (p, t) ∈ F : |p • | > 1 implies | • t| = 1.
2. For all p ∈ P and t ∈ T with (p, t) ∈ F : | • t| > 1 implies | • p| = 1.
3. There are no implicit places.

This paper introduces the α+-algorithm, which mines all SWF-nets. The α+-
algorithm is based on the α-algorithm, which correctly mines SWF-nets without
short loops. In our solution, we first tackle length-two loops (see Section 4) and
then also length-one loops (see Section 5). While tackling length-two loops only,
we do not allow the nets to have length-one loops. That is why we introduce the
definition of one-loop-free workflow nets.

Definition 3.5. (One-loop-free workflow nets) Let N = (P, T, F ) be a
workflow net. N is a one-loop-free workflow net if and only if for any t ∈ T ,
t • ∩ • t = ∅.
3 [N, s〉 is the set of reachable markings of net N when starting in marking s, p• is the

set of output transitions of p, •t is the set of input places of t, and ≥ is the standard
ordering relation on multisets.



3.2 The α-Algorithm

The starting point for process mining is the event log. A log is a set of traces.
Event traces and logs are defined as:

Definition 3.6. (Event trace, event log) Let T be a set of tasks. σ ∈ T ∗ is
an event trace and W ∈ P(T ∗) is an event log.4

From an event log, ordering relations between tasks can be inferred. In the case
of the α-algorithm, every two tasks in the event log must have one of the follow-
ing four ordering relations: >W (follows), →W (causal), ‖W (parallel) and #W

(unrelated). These ordering relations are extracted based on local information
in the event traces. The ordering relations are defined as:

Definition 3.7. (Log-based ordering relations) Let W be an event log over
T , i.e., W ∈ P(T ∗). Let a, b ∈ T :

– a >W b if and only if there is a trace σ = t1t2t3 . . . tn−1 and i ∈ {1, . . . , n−2}
such that σ ∈ W and ti = a and ti+1 = b,

– a →W b if and only if a >W b and b �>W a,
– a#W b if and only if a �>W b and b �>W a, and
– a‖W b if and only if a >W b and b >W a.

To ensure the event log contains the minimal amount of information necessary
to mine the process, the notion of log completeness is defined as:

Definition 3.8. (Complete event log) Let N = (P, T, F ) be a sound WF-net,
i.e., N ∈ W. W is an event log of N if and only if W ∈ P(T ∗) and every trace
σ ∈ W is a firing sequence of N starting in state [i] and ending in state [o], i.e.,
(N, [i])[σ〉(N, [o]). W is a complete event log of N if and only if (1) for any event
log W ′ of N : >W ′⊆>W , and (2) for any t ∈ T there is a σ ∈ W such that t ∈ σ.

For Figure 1, a possible complete event log W is: abcd, acbd and ef. From this
complete log, the following ordering relations are inferred:

– (follows) a >W b, a >W c, b >W c, b >W d, c >W b, c >W d and e >W f .

– (causal) a →W b, a →W c, b →W d, c →W d and e →W f .

– (parallel) b‖W c and c‖W b.

Now we can give the formal definition of the α-algorithm followed by a more
intuitive explanation.

Definition 3.9. (Mining algorithm α) Let W be an event log over T . The
α(W ) is defined as follows.

1. TW = {t ∈ T | ∃σ∈W t ∈ σ},
2. TI = {t ∈ T | ∃σ∈W t = first(σ)},
3. TO = {t ∈ T | ∃σ∈W t = last(σ)},

4 T ∗ is the set of all sequences that are composed of zero of more tasks from T . P(T ∗)
is the powerset of T ∗, i.e., W ⊆ T ∗.



4. XW = {(A,B) | A ⊆ TW ∧ B ⊆ TW ∧ ∀a∈A∀b∈Ba →W b ∧ ∀a1,a2∈Aa1#W a2 ∧
∀b1,b2∈Bb1#W b2},

5. YW = {(A,B) ∈ XW | ∀(A′,B′)∈XW
A ⊆ A′ ∧B ⊆ B′ =⇒ (A,B) = (A′, B′)},

6. PW = {p(A,B) | (A,B) ∈ YW } ∪ {iW , oW },
7. FW = {(a, p(A,B)) | (A,B) ∈ YW ∧ a ∈ A} ∪ {(p(A,B), b) | (A,B) ∈

YW ∧ b ∈ B} ∪ {(iW , t) | t ∈ TI} ∪ {(t, oW ) | t ∈ TO}, and
8. α(W ) = (PW , TW , FW ).

The α-algorithm works as follows. First, it examines the event traces and (Step
1) creates the set of transitions (TW ) in the workflow, (Step 2) the set of output
transitions (TI) of the source place , and (Step 3) the set of the input transitions
(TO) of the sink place5. In steps 4 and 5, the α-algorithm creates sets (XW and
YW , respectively) used to define the places of the discovered WF-net. In Step 4,
the α-algorithm discovers which transitions are causally related. Thus, for each
tuple (A,B) in XW , each transition in set A causally relates to all transitions
in set B, and no transitions within A (or B) follow each other in some firing
sequence. These constraints to the elements in sets A and B allow the correct
mining of AND-split/join and XOR-split/join constructs. Note that the XOR-
split/join requires the fusion of places. In Step 5, the α-algorithm refines set XW

by taking only the largest elements with respect to set inclusion. In fact, Step
5 establishes the exact amount of places the discovered net has (excluding the
source place iW and the sink place oW ). The places are created in Step 6 and
connected to their respective input/output transitions in Step 7. The discovered
WF-net is returned in Step 8.

Finally, we define what it means for a WF-net to be rediscovered.

Definition 3.10. (Ability to rediscover) Let N = (P, T, F ) be a sound WF-
net, i.e., N ∈ W, and let α be a mining algorithm which maps event logs of N
onto sound WF-nets, i.e., α : P(T ∗) → W. If for any complete event log W of
N the mining algorithm returns N (modulo renaming of places), then α is able
to rediscover N .

Note that no mining algorithm is able to find names of places. Therefore, we
ignore place names, i.e., α is able to rediscover N if and only if α(W ) = N
modulo renaming of places.

4 Length-Two Loops

In this section we first show why a new notion of log completeness is necessary to
capture length-two loops in SWF-nets and why the α-algorithm does not capture
length-two loops in SWF-nets (even if the new notion of log completeness is
used). Then a new definition of ordering relations is given, and finally we prove
that this new definition of ordering relations is sufficient to tackle length-two
loops with the α-algorithm.
5 In a WF-net, the source place i has no input transitions and the sink place o has no

output transitions.



Log completeness as defined in Definition 3.8 is insufficient to detect length-
two loops in SWF-nets. As an example, consider the SWF-net in Figure 2 (left-
hand side). This net can have the complete log: ab, acdb, edcf, ef. However, by
looking at this log it is not clear whether transitions c and d are in parallel
or belong to a length-two loop. Thus, to correctly detect length-two loops in
SWF-nets, the following new definition of complete log is introduced.

Definition 4.1. (Loop-complete event log) Let N = (P, T, F ) be a SWF-
net and W a log of N . W is a loop-complete event log of N if and only if W is
complete and for all event logs W ′ of N : if there is a firing sequence σ′ ∈ W ′

with σ′ = t1t2t3 . . . tn′ and i′ ∈ {1, . . . , n′ − 2} such that ti′ = ti′+2 = a and
ti′+1 = b, for some a, b ∈ T : a �= b, then there is a firing sequence σ ∈ W with
σ = t1t2t3 . . . tn and i ∈ {1, . . . , n − 2} such that ti = ti+2 = a and ti+1 = b.

Note that a loop-complete event log for the net in Figure 2 will contain one or
more traces with the substrings “cdc” and “dcd”. By definition, all loop-complete
event logs are also complete event logs.

The new notion of a loop-complete event log is necessary but not sufficient
to mine length-two loops. The main reason is that the tasks in the length-two
loop are inferred to be in parallel. For example, for the net in Figure 2, any loop-
complete event log will lead to c‖W d and d‖W c. However, these transitions are
not in parallel. In fact, they are connected by places that can only be correctly
mined by the α-algorithm if at least c →W d and d →W c. Using this insight,
we redefine Definition 3.7, i.e., we provide the following new definitions for the
basic ordering relations →W and ‖W .

Definition 4.2. (Ordering relations capturing length-two loops) Let W
be a loop-complete event log over T , i.e., W ∈ P(T ∗). Let a, b ∈ T :

– a�W b if and only if there is a trace σ = t1t2t3 . . . tn and i ∈ {1, . . . , n − 2}
such that σ ∈ W and ti = ti+2 = a and ti+1 = b,

– a �W b if and only if a�W b and b�W a,
– a >W b if and only if there is a trace σ = t1t2t3 . . . tn−1 and i ∈ {1, . . . , n−2}

such that σ ∈ W and ti = a and ti+1 = b,
– a →W b if and only if a >W b and (b �>W a or a �W b) ,
– a#W b if and only if a �>W b and b �>W a, and
– a‖W b if and only if a >W b and b >W a and a � �W b.

Note that, in the new Definition 4.2, a and b are also in the a →W b relation if
a >W b and b >W a and the substrings aba and bab are contained in the event
traces.

However, there is still a problem. Length-one loops in the net may also pro-
duce “cdc” and “dcd” patterns in the event traces, cf. Figure 4. Therefore, to
prove that the α-algorithm can correctly mine length-two loops when using the
new definitions of loop-complete event log and ordering relations, we assume
that the net is a sound one-loop-free SWF-net.
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Fig. 4. Example illustrating why length-one loops are not allowed when mining length-
two loops. Note that both nets have loop-complete event logs that contain traces with
the substrings “cdc” or “dcd”.

Theorem 4.3. Let N = (P, T, F ) be an one-loop-free sound SWF-net. Let W
be a loop-complete event log of N . For any a, b ∈ T , such that •a ∩ b• �= ∅ and
a • ∩ • b �= ∅, a�W b implies b�W a.

Proof. For a detailed proof we refer to [14]. ✷

Using this result, it is possible to prove the following theorem which shows that
the new ordeing relations solve the problem of length-two loops.

Theorem 4.4. Let N = (P, T, F ) be a sound one-loop-free SWF-net and let W
be a loop-complete event log of N . Then α(W ) = N modulo renaming of places.

Proof. See [14] for a detailed proof. ✷

In the next section, we show how to handle the general case (all sound SWF-
nets).

5 Length-One Loops

In this section we first show some of the properties of length-one loops in sound
SWF-nets. Then we present an algorithm (called α+) that correctly mines all
sound SWF-nets.

Length-one loops are connected to a single place in any sound SWF-net and
this place cannot be the source or the sink place of the sound SWF-net, as is
stated in the following theorem:

Theorem 5.1. Let N = (P, T, F ) be a sound SWF-net. For any a ∈ T , a•∩•a �=
∅ implies a �∈ i•, a �∈ •o, a• = •a and | • a| = 1.

Proof. See [14]. ✷

Property 5.2. Let N = (P, T, F ) be a sound SWF-net. Let W be a complete
event log of N . For any a ∈ T : •a∩ a• �= ∅ implies there are b, c ∈ T : a �= b and
b �= c and a �= c and b →W a and a →W c and b →W c and •c = •a.

Theorem 5.3. Let N = (P, T, F ) be a sound SWF-net. Let N ′ = (P ′, T ′, F ′)
be a one-loop-free PT-net such that P ′ = P , T ′ = {t ∈ T | • t ∩ t• = ∅}, and
F ′ = F ∩ (P ′ × T ′ ∪ T ′ × P ′). Let W be a loop-complete event log of N and
let W−L1L be the log created by excluding the occurrences of length-one-loop
transitions from every event trace in W . Then:

1. N ′ is a sound one-loop-free SWF-net,



2. α(W−L1L) = N ′ modulo renaming of places.

Proof. See [14]. ✷

Theorem 5.3 states that the main net structure (called N ′ in the theorem) of
any sound SWF-net can be correctly discovered by the α-algorithm whenever
length-one-loop transitions are removed from the input log. Consequently, since
length-one-loop transitions are always connected to a single place in sound SWF-
net (Theorem 5.1), we can use the α-algorithm to mine the main net structure
N ′ and then connect the length-one-loop transition to this net.

The solution to tackle length-one loops in sound SWF-nets focuses on the
pre- and post-processing phases of process mining. The key idea is to identify
the length-one-loop tasks and the single place to which each task should be
connected. Any length-one-loop task t can be identified by searching a loop-
complete event log for traces containing the substring tt. To determine the correct
place p to which each t should be connected in the discovered net, we must check
which transitions are directed followed by t but do not direct follow t (i.e. p is an
output place of these transitions) and which transitions direct follow t but t does
not direct follow them (i.e. p is the input place of these transitions). Figure 5
shows the basic idea by illustrating a pre- and post-processing phase.

Original net:

Pre-processing Phase

1-length-loop tasks:
"A": leftNeighbor ="X", rightNeighbor="Y"

Cleaned log:
XY

Post-processing Phase

XY
XAAY
XAY

Original Loop
Complete Log Processing Phase

i X Y o

i X Y o

A

Inferred ordering relations:
X -> Y

I X

A

OY

Fig. 5. Example of the approach to tackle length-one loops in sound SWF-net.

The algorithm - called α+ - to mine sound SWF-nets is formalized as follows.
Note that the function eliminateTask maps any event trace σ to a new one σ′

without the occurrence of a certain transition t.

Definition 5.4. (Mining algorithm α+) Let W be a loop-complete event log
over T , the α-algorithm as in Definition 3.9 and the ordering relations as in
Definition 4.2.

1. Tlog = {t ∈ T | ∃σ∈W [t ∈ σ]}
2. L1L = {t ∈ Tlog | ∃σ=t1t2...tn∈W ;i∈{1,2,...,n}[t = ti−1 ∧ t = ti]}
3. T ′ = Tlog \ L1L



4. FL1L = ∅
5. For each t ∈ L1L do:

(a) A = {a ∈ T ′ | a >W t}
(b) B = {b ∈ T ′ | t >W a}
(c) FL1L := FL1L ∪ {(t, p(A\B,B\A)), (p(A\B,B\A), t)}

6. W−L1L = ∅
7. For each σ ∈ W do:

(a) σ′ = σ

(b) For each t ∈ L1L do:
i. σ′ := eliminateTask(σ′, t)

(c) W−L1L := W−L1L ∪ σ′

8. (PW−L1L , TW−L1L , FW−L1L) = α(W−L1L)
9. PW = PW−L1L

10. TW = TW−L1L ∪ L1L
11. FW = FW−L1L ∪ FL1L

12. α+ = (PW , TW , FW )

The α+ works as follows. First, it examines the event traces (Step 1) and identi-
fies the length-one-loop transitions (Step 2). In steps 3 to 5, the places to which
each length-one-loop transition should be connected to are identified and the
respective arcs are included in FL1L. Then, all length-one-loop transitions are
removed from the input log W−L1L to be processed by the α-algorithm (steps 6
and 7). In Step 8, the α-algorithm discovers a workflow net based on the loop-
complete event log W−L1L and the ordering relations as defined in Definition 4.2.
In steps 9 to 11, the length-one-loop transitions and their respective input and
output arcs are added to the net discovered by the α-algorithm. The workflow
net with the added length-one loops is returned in Step 12.

Theorem 5.5. Let N = (P, T, F ) be a sound SWF-net and let W be a loop-
complete event log of N . Using the ordering relations as in Definition 4.2,
α+(W ) = N modulo renaming of places.

Proof. See [14]. ✷

The original net in Figure 2 and the nets N1−4 in Figure 6 satisfy the require-
ments stated in Theorem 5.5. Therefore, they are all correctly discovered by the
α+-algorithm. In fact, the α+ can be extended to correctly discover nets beyond
the class of sound SWF-net (cf. [14]).

6 Related Work

The idea of process mining is not new [2, 5, 7–9, 11–13, 15, 17, 18] and most tech-
niques aim at the control-flow perspective. However, process mining is not limited
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Fig. 6. Examples of sound SWF-nets that the α+-algorithm correctly mines.

to the control-flow perspective. For example, in [4] we use process mining tech-
niques to construct a social network. For more information on process mining
we refer to a special issue of Computers in Industry on process mining [6] and
a survey paper [5]. In this paper, unfortunately, it is impossible to do justice to
the work done in this area.

The focus of this paper is on an extension of the α-algorithm. For more
information on the α-algorithm, we refer to [2, 7, 13, 18]. This paper tackles one
of the problems raised in [13] and should be considered as an extension of [7].
For more detailed proofs we refer to a technical report [14].

To support our mining efforts we have developed a set of tools including EMiT
[2], Thumb [18], and MinSoN [4]. These tools share a common XML format. For
more details we refer to www.processmining.org.

7 Conclusion

New technologies such as RFID, Bluetooth, WLAN, etc. and the omnipresence
of small computing devices (e.g., mobile phones and PDAs) enable UMSs that
can be used to record human behavior and business processes in detail. The
combination of flexibility (i.e., the ability to deviate from standard procedures)
and the automated capturing of events, suggests that UMSs form an interesting
application domain for process mining. In this paper, we did not elaborate on the
application of process mining in this domain. Instead, we focused on an extension
of the α-algorithm such that it can mine all sound SWF-nets. The new algorithm
is called α+. The α-algorithm is proven to correctly discover sound SWF-nets
without length-one or length-two loops. The extension involves changes in the
pre- and post-processing phases. First, length-two loops are tackled by redefining
the notion of log completeness and the possible ordering relations among tasks in
the process. This solution is addressed in the pre-processing phase only. Then, the
solution to tackle length-two loops is extended to tackle also length-one loops.
The key property is that length-one-loop tasks are connected to single places



in sound SWF-nets. Therefore, the α+-algorithm (1) removes all occurrences
of length-one loops from the input log, (2) feeds in the α-algorithm with this
log and the new defined ordering relations, and (3) reconnects all the length-
one loop tasks to their respective place in the net the α-algorithm produced.
In this paper and a technical report [14], we provide a formal proof that the
α+-algorithm correctly mines nets in the whole class of sound SWF-nets.

Through our website, www.processmining.org, we provide the tool EMiT that
implements the α+-algorithm. Note that EMiT uses a generic XML-based input
format. In addition, EMiT provides adapters for tools like Staffware, InConcert,
ARIS PPM, etc. We invite people developing UMSs to log information in our
XML format (cf. www.processmining.org). Examples of possible applications we
envision include:

– Patients and medical equipment are tagged while the medical staff is equipped
with small computing devices. This way health-care processes can be moni-
tored to audit medical protocols, support the medical staff (e.g, alerts), and
suggest improvements.

– Service engineers are equipped with PDAs, mobile phones (for internet con-
nection), and GPS (for location). This way service processes can be analyzed.

– Students use ubiquitous/mobile technologies to study anytime/anywhere. To
monitor progress and act accordingly, process mining is used to analyze the
learning process.

Note that in each of these applications there will be repetitions. Therefore, it is
essential that the α+-algorithm is able to tackle short loops.
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