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Abstract. Despite the omnipresence of event logs in transactional infor-
mation systems (cf. WFM, ERP, CRM, SCM, and B2B systems), historic
information is rarely used to analyze the underlying processes. Process
mining aims at improving this by providing techniques and tools for
discovering process, control, data, organizational, and social structures
from event logs, i.e., the basic idea of process mining is to diagnose busi-
ness processes by mining event logs for knowledge. Given its potential
and challenges it is no surprise that recently process mining has become
a vivid research area [5, 6]. In this paper, a novel approach for process
mining based on two event types, i.e., START and COMPLETE, is pro-
posed. Information about the start and completion of tasks can be used
to explicitly detect parallelism. The algorithm presented in this paper
overcomes some of the limitations of existing algorithms such as the α-
algorithm (e.g., short-loops) and therefore enhances the applicability of
process mining.

1 Introduction

During the last decade workflow management technology [3] has become read-
ily available. Workflow management systems such as Staffware, IBM MQSeries,
COSA, etc. offer generic modeling and enactment capabilities for structured
business processes. By making process definitions, i.e., models describing the
life-cycle of a typical case (workflow instance) in isolation, one can configure
these systems to support business processes. These process definitions need to
be executable and are typically graphical, e.g., in terms of Petri nets. Besides
pure workflow management systems many other software systems have adopted
workflow technology. Consider for example ERP (Enterprise Resource Planning)
systems such as SAP, PeopleSoft, Baan and Oracle, CRM (Customer Relation-
ship Management) software, SCM (Supply Chain Management) systems, B2B
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(Business to Business) applications, etc. which embed workflow technology. De-
spite its promise, many problems are encountered when applying workflow tech-
nology. One of the problems is that these systems require a workflow design,
i.e., a designer has to construct a detailed model accurately describing the rout-
ing of work. Modeling a workflow is far from trivial: It requires deep knowledge
of the business process at hand (i.e., lengthy discussions with the workers and
management are needed) and the workflow language being used.

In this paper, we do not focus on the design but instead we focus on tech-
niques for monitoring enterprise information systems (i.e., WFM, ERP, CRM,
SCM-like systems). Today, many enterprise information systems store relevant
events in some structured form. For example, workflow management systems
typically register the start and completion of activities [3]. ERP systems like
SAP log all transactions, e.g., users filling out forms, changing documents, etc.
Business-to-business (B2B) systems log the exchange of messages with other
parties. Call center packages but also general-purpose CRM systems log interac-
tions with customers. These examples show that many systems have some kind
of event log often referred to as “history”, “audit trail”, “transaction log”, etc.
[5, 8, 18, 39]. The event log typically contains information about events referring
to an task and a case. The case (also named process instance) is the “thing”
which is being handled, e.g., a customer order, a job application, an insurance
claim, a building permit, etc. The task (also named activity, operation, action,
or work-item) is some operation on the case. Typically, events have a timestamp
indicating the time of occurrence. Moreover, when people are involved, event
logs will typically contain information on the person executing or initiating the
event, i.e., the originator. Based on this information several tools and techniques
for process mining have been developed [2, 4, 5, 7, 8, 10, 19, 25, 35, 39, 50].

Process mining is useful for at least two reasons. First of all, it could be used
as a tool to find out how people and/or procedures really work. Second, process
mining could be used for Delta analysis, i.e., comparing the actual process with
some predefined process (i.e., a descriptive or prescriptive process model).

In this paper, we present a new algorithm for process mining. This algorithm
generates a Petri net based on some event log where both the start and comple-
tion of some event are logged. To illustrate the algorithm and its distinguishing
features we use the event log shown in Table 1. The event log contains the audit
trail of three cases. The first event is the start of task T1 for case 1. The second
event is the completion of this task. The third event is the start of task T2 for
case 1. The fourth event is the start of task T3 for case 1. Note that for case
1 the execution of T2 and T3 overlap. This suggests that T2 and T3 are in
parallel. After the completion of T3 and T2 for case 1, the first event for case
2 is registered in the log. In total there are 36 events in the event log shown in
Table 1: 18 events of type START and 18 events of type COMPLETE.

Using the algorithm presented in this paper, the log shown Table 1 can be
used to generate the process model shown in Figure 1. This process model is
expressed in terms of a Petri net. It is easy to see that the three cases can indeed
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Case id Task name Event type Case id Task name Event type Case id Task name Event type

1 T1 START 1 T6 START 2 T5 START

1 T1 COMPLETE 1 T6 COMPLETE 2 T5 COMPLETE

1 T2 START 3 T2 START 2 T6 START

1 T3 START 3 T2 COMPLETE 2 T6 COMPLETE

1 T3 COMPLETE 2 T3 START 3 T4 START

1 T2 COMPLETE 2 T2 START 3 T4 COMPLETE

2 T1 START 2 T3 COMPLETE 3 T5 START

1 T4 START 2 T2 COMPLETE 3 T5 COMPLETE

2 T1 COMPLETE 2 T4 START 3 T5 START

1 T4 COMPLETE 2 T4 COMPLETE 3 T5 COMPLETE

3 T1 START 3 T3 START 3 T6 START

3 T1 COMPLETE 3 T3 COMPLETE 3 T6 COMPLETE

Table 1. An event log with START and COMPLETE events.

P1 T1

P2

P3

T2

T3

P4

P5

T4 P6

T5

T6 P7

T1= Register order
T2 = Pick products
T3 = Send bill
T4 = Ship goods
T5 = Send reminder
T6 = Handle payment

Figure 1. The Petri net corresponding to the event log shown in Table 1.
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be handled by the Petri net. In Table 1 only task identifiers (T1, T2, etc.) are
used. Figure 1 also shows the mapping of these identifiers onto task names.

Existing techniques for process mining do not consider event types, i.e., tasks
are either considered to be atomic or only the completion of a task is considered
(i.e., just event type COMPLETE) [2, 5, 7, 8, 10, 19, 50]. Note that the start and
completion of a task can be considered as two atomic tasks when using the classi-
cal process mining techniques. Unfortunately, such an approach does not detect
explicit parallelism. Moreover, the knowledge that the START and COMPLETE
events are related is not exploited. As far as we know, the algorithm presented
in this paper is the only algorithm explicitly detecting parallelism. It can be seen
as a variant of the α-algorithm [7]. However, the causal relations and complete-
ness notion are fundamentally different. Moreover, the new algorithm overcomes
some of the problems of the basic α-algorithm, e.g., it is possible to correctly
mine short loops. Note that Figure 1 contains a short loop, i.e., the construct
involving T5 and P6 (sending 0, 1, or more reminders). This indicates that the
basic α-algorithm is unable to correctly mine the process while the algorithm
presented in this paper does.

The remainder of this paper is organized as follows. Section 2 reviews related
work. Section 3 introduces some preliminaries. In Section 4 a method for discov-
ering characteristic relations between tasks is given. Based on these relations, in
Section 5, a concrete algorithm for constructing process model is proposed. An
experimental evaluation is outlined in Section 6. Finally, a conclusion is drawn
in Section 7.

2 Related Work

The idea of process mining is not new [5, 7, 8, 10–12, 19–24, 29–31, 40–44, 47–49].
Cook and Wolf have investigated similar issues in the context of software en-
gineering processes. In [10] they describe three methods for process discovery:
one using neural networks, one using a purely algorithmic approach, and one
Markovian approach. The authors consider the latter two the most promising
approaches. The purely algorithmic approach builds a finite state machine where
states are fused if their futures (in terms of possible behavior in the next k steps)
are identical. The Markovian approach uses a mixture of algorithmic and sta-
tistical methods and is able to deal with noise. Note that the results presented
in [10] are limited to sequential behavior. Related, but in a different domain,
is the work presented in [27, 28] also using a Markovian approach restricted to
sequential processes. Cook and Wolf extend their work to concurrent processes
in [11]. They propose specific metrics (entropy, event type counts, periodicity,
and causality) and use these metrics to discover models out of event streams.
However, they do not provide an approach to generate explicit process models.
In [12] Cook and Wolf provide a measure to quantify discrepancies between a
process model and the actual behavior as registered using event-based data. The
idea of applying process mining in the context of workflow management was first
introduced in [8]. This work is based on workflow graphs, which are inspired by
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workflow products such as IBM MQSeries workflow (formerly known as Flow-
mark) and InConcert. In this paper, two problems are defined. The first problem
is to find a workflow graph generating events appearing in a given workflow log.
The second problem is to find the definitions of edge conditions. A concrete
algorithm is given for tackling the first problem. The approach is quite differ-
ent from other approaches: Because the nature of workflow graphs there is no
need to identify the nature (AND or OR) of joins and splits. As shown in [26],
workflow graphs use true and false tokens which do not allow for cyclic graphs.
Nevertheless, [8] partially deals with iteration by enumerating all occurrences
of a given task and then folding the graph. However, the resulting conformal
graph is not a complete model. In [31], a tool based on these algorithms is pre-
sented. Schimm [40, 41, 44] has developed a mining tool suitable for discovering
hierarchically structured workflow processes. This requires all splits and joins to
be balanced. Herbst and Karagiannis also address the issue of process mining
in the context of workflow management [21, 19, 20, 23, 24, 22] using an inductive
approach. The work presented in [22, 24] is limited to sequential models. The
approach described in [21, 19, 20, 23] also allows for concurrency. It uses stochas-
tic task graphs as an intermediate representation and it generates a workflow
model described in the ADONIS modeling language. In the induction step task
nodes are merged and split in order to discover the underlying process. A no-
table difference with other approaches is that the same task can appear multiple
times in the workflow model, i.e., the approach allows for duplicate tasks. The
graph generation technique is similar to the approach of [8, 31]. The nature of
splits and joins (i.e., AND or OR) is discovered in the transformation step, where
the stochastic task graph is transformed into an ADONIS workflow model with
block-structured splits and joins. In contrast to the previous papers, the follow-
ing papers are characterized by the focus on workflow processes with concurrent
behavior (rather than adding ad-hoc mechanisms to capture parallelism).

The algorithm presented in this paper is most related to the α-algorithm pre-
sented in [2, 7, 47–50]. Based on an event log, the α-algorithm is able to construct
a corresponding Petri net. In [47–50] a heuristic approach using rather simple
metrics is used to construct so-called “dependency/frequency tables” and “de-
pendency/frequency graphs” as an intermediate step before constructing the
corresponding Petri net. In [29] another variant of this technique is presented
using examples from the health-care domain. The preliminary results presented
in [29, 47–49] only provide heuristics and focus on issues such as noise. However,
in [7] it is proven that the α-algorithm can find the proper process model for
certain subclasses of Petri nets. In [2] the EMiT tool is presented which uses an
extended version of α-algorithm to incorporate timing information. Note that
EMiT also can handle START and COMPLETE events and use this to explic-
itly detect parallelism. However, this approach is different from the approach
presented in this paper because the ordering relations are completely different.
Moreover, the way EMiT deals with START and COMPLETE events is not
proven to be correct. In fact, it is hardly documented.
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Process mining can be seen as a tool in the context of Business (Process)
Intelligence (BPI). In [18, 39] a BPI toolset on top of HP’s Process Manager is
described. The BPI tools set includes a so-called “BPI Process Mining Engine”.
However, this engine does not provide any techniques as discussed before. Instead
it uses generic mining tools such as SAS Enterprise Miner for the generation of
decision trees relating attributes of cases to information about execution paths
(e.g., duration). In order to do process mining it is convenient to have a so-
called “process data warehouse” to store audit trails. Such as data warehouse
simplifies and speeds up the queries needed to derive causal relations. In [14,
33–35] the design of such warehouse and related issues are discussed in the
context of workflow logs. Moreover, [35] describes the PISA tool which can be
used to extract performance metrics from workflow logs. Similar diagnostics are
provided by the ARIS Process Performance Manager (PPM) [25]. The later tool
is commercially available and a customized version of PPM is the Staffware
Process Monitor (SPM) [46] which is tailored towards mining Staffware logs.
Note that none of the latter tools is extracting the process model. The main
focus is on clustering and performance analysis rather than causal relations as
in [8, 10–12, 19–24, 29–31, 40–44, 47–49].

More from a theoretical point of view, the rediscovery problem discussed in
this paper is related to the work discussed in [9, 16, 17, 37]. In these papers the
limits of inductive inference are explored. For example, in [17] it is shown that
the computational problem of finding a minimum finite-state acceptor compati-
ble with given data is NP-hard. Several of the more generic concepts discussed
in these papers could be translated to the domain of process mining. It is pos-
sible to interpret the problem described in this paper as an inductive inference
problem specified in terms of rules, a hypothesis space, examples, and criteria
for successful inference. The comparison with literature in this domain raises
interesting questions for process mining, e.g., how to deal with negative exam-
ples (i.e., suppose that besides log W there is a log V of traces that are not
possible, e.g., added by a domain expert). However, despite the many relations
with the work described in [9, 16, 17, 37] there are also many differences, e.g., we
are mining at the net level rather than sequential or lower level representations
(e.g., Markov chains, finite state machines, or regular expressions).

There is a long tradition of theoretical work dealing with the problem of
inferring grammars out of examples: given a number of sentences (traces) out
of a language, find the simplest model that can generate these sentences. There
is a strong analogy with the process-mining problem: given a number of pro-
cess traces, can we find the simplest process model that can generate these
traces. Many issues important in the language-learning domain are also relevant
for process mining (i.e. learning from only positive examples, how to deal with
noise, measuring the quality of a model, etc.). However, an important differ-
ence between the grammar inference domain and the process-mining domain is
the problem of concurrency in the traces: concurrency seems not relevant in the
grammar inference domain. In spite of this important difference, it seems usefully
to investigate which theoretical results, measurements, and mining techniques
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can be used or updated so that they become useful in process mining. A good
overview of prominent computational approaches for learning different classes of
formal languages is given in [36].

Additional related work is the seminal work on regions [15]. This work in-
vestigates which transition systems can be represented by (compact) Petri nets
(i.e., the so-called synthesis problem). Although the setting is different and our
notion of completeness is much weaker than knowing the transition system, there
are related problems such as duplicate transitions, etc.

Most of the work mentioned thus far is primarily focusing on the process
perspective. However, there are clear links with sociometry, and Social Net-
work Analysis (SNA) in particular. Since the early work of Moreno [32] SNA
has been an active research domain. There is a vast amount of textbooks, re-
search papers, and tools available in this domain [45]. There have been many
studies analyzing workflow processes based on insights from social network anal-
ysis. However, these studies typically have an ad-hoc character and sociograms
are typically constructed based on questionnaires rather than using a struc-
tured and automated approach as described in this paper. Most tools in the
SNA domain take sociograms as input. MiSoN is one of the few tools that gen-
erate sociograms as output. The only comparable tools are tools to analyze
e-mail traffic, cf. BuddyGraph (http://www.buddygraph.com/) and MetaSight
(http://www.metasight.co.uk/). However, these tools monitor unstructured mes-
sages and cannot distinguish between different activities (e.g., work-related in-
teraction versus social interaction). One of the few approaches constructing so-
ciograms from structured event logs is described in [4].

For more information on existing research, we also refer to special issue of
Computers in Industry on process mining [6] and the survey paper [5].

3 Preliminaries: WF-nets

We assume some basic knowledge of Petri nets and WF-nets in particular. Read-
ers not familiar with basic concepts such as (P, T, F ) as a representation for a
Petri net, the firing rule, firing sequences, preset •x, postset x•, boundedness,
liveness, reachability, etc. are referred to [1, 13, 38]. Some basic definitions for
WF-nets are provided in this section.

Before introducing the new algorithm we briefly discuss a subclass of Petri
nets called a WorkFlow nets (WF-nets). This subclass is tailored towards mod-
eling the control-flow dimension of a workflow4 or any other case driven process,
e.g., logging onto a system. It should be noted that a WF-net specifies the dy-
namic behavior of a single case in isolation [1].

Definition 1 (Workflow nets). Let N = (P, T, F ) be a Petri net and t̄ a fresh
identifier not in P ∪ T . N is a workflow net (WF-net) iff:

1. object creation: P contains an input place i such that •i = ∅,
4 Note that we use the words workflow and process interchangeably.
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2. object completion: P contains an output place o such that o• = ∅,
3. connectedness: N̄ = (P, T ∪ {t̄}, F ∪ {(o, t̄), (t̄, i)}) is strongly connected,
The Petri net shown in Figure 1 is a WF-net. Note that although the net is
not strongly connected, the short-circuited net with transition t̄ is strongly con-
nected. Even if a net meets all the syntactical requirements stated in Definition 1,
the corresponding process may exhibit errors such as deadlocks, tasks which can
never become active, livelocks, garbage being left in the process after termina-
tion, etc. Therefore, we define the following correctness criterion.

Definition 2 (Sound). Let N = (P, T, F ) be a WF-net with input place i and
output place o. N is sound iff:

1. safeness: (N, [i]) is safe,5

2. proper completion: for any marking s ∈ [N, [i]〉, o ∈ s implies s = [o],
3. option to complete: for any marking s ∈ [N, [i]〉, [o] ∈ [N, s〉, and
4. absence of dead tasks: (N, [i]) contains no dead transitions.

The set of all sound WF-nets is denoted W.

The WF-net shown in Figure 1 is sound. Soundness can be verified using stan-
dard Petri-net-based analysis techniques [1, 3].

Most process modeling languages offer standard building blocks such as the
AND-split, AND-join, XOR-split, and XOR-join [3]. These are used to model
sequential, conditional, parallel and iterative routing. Clearly, a WF-net can be
used to specify the routing of cases, i.e., process instances. Tasks, also referred
to as activities, are modeled by transitions and causal dependencies are modeled
by places and arcs. In fact, a place corresponds to a condition which can be
used as pre- and/or post-condition for tasks. An AND-split corresponds to a
transition with two or more output places, and an AND-join corresponds to
a transition with two or more input places. XOR-splits/XOR-joins correspond
to places with multiple outgoing/ingoing arcs. Given the close relation between
tasks and transitions we use the terms interchangeably.

Our process mining research aims at rediscovering WF-nets from event logs.
However, not all places in sound WF-nets can be detected. For example places
may be implicit which means that they do not affect the behavior of the process.
These places remain undetected. Therefore, we limit our investigation to WF-
nets without implicit places.

Definition 3 (Implicit place). Let N = (P, T, F ) be a Petri net with initial
marking s. A place p ∈ P is called implicit in (N, s) if and only if, for all
reachable markings s′ ∈ [N, s〉 and transitions t ∈ p•, s′ ≥ •t \ {p} ⇒ s′ ≥ •t.6
5 (N, [i]) is the marked net with initial marking [i], i.e., the marking with just one
token in the source place i. Similarly, [o] is used to denote the the marking with just
one token in the sink place o.

6 [N, s〉 is the set of reachable markings of net N when starting in marking s, p• is the
set of output transitions of p, •t is the set of input places of t, and ≥ is the standard
ordering relation on multisets.
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Figure 1 contains no implicit places. However, adding a place p connecting tran-
sition T1 and T4 yields an implicit place. No mining algorithm is able to detect
p since the addition of the place does not change the behavior of the net and
therefore is not visible in the log.

(i) (ii)

Figure 2. Constructs not allowed in SWF-nets.

For process mining it is very important that the structure of the WF-net
clearly reflects its behavior. Therefore, we also rule out the constructs shown in
Figure 2. The left construct illustrates the constraint that choice and synchro-
nization should never meet. If two transitions share an input place, and therefore
“fight” for the same token, they should not require synchronization. This means
that choices (places with multiple output transitions) should not be mixed with
synchronizations. The right-hand construct in Figure 2 illustrates the constraint
that if there is a synchronization all preceding transitions should have fired, i.e.,
it is not allowed to have synchronizations directly preceded by an XOR-join.
WF-nets which satisfy these requirements are named structured workflow nets
and are defined as:

Definition 4 (SWF-net). A WF-net N = (P, T, F ) is an SWF-net (Struc-
tured workflow net) if and only if:

1. For all p ∈ P and t ∈ T with (p, t) ∈ F : |p • | > 1 implies | • t| = 1.
2. For all p ∈ P and t ∈ T with (p, t) ∈ F : | • t| > 1 implies | • p| = 1.
3. There are no implicit places.

The WF-net shown in Figure 1 is an example of an SWF-net. Note that all
three requirements are satisfied.

Figure 3 gives another example of a process modelled in terms of an WF-net.
This model is sound but it is not an SWF-net because the construct involving
P7 and P8, i.e., (P7, T11) ∈ F and | • T11| > 1 but | • P7| > 1. Nevertheless,
the model will be used as the main example throughout the paper.

�� T1

�� T3 ��

��

T4

��

T7

��

T5

T11 ���

T2

T9

T6 ��

�	

T8

�
 T10

Figure 3. An example of process expressed in terms of a Petri net.
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The transitions (drawn as rectangles) T1, T2, · · ·, T11 represent tasks and
the places (drawn as circles) P1, P2, · · ·, P10 represent causal dependencies.
A place can be used as pre-condition and/or post-condition for tasks. The arcs
(drawn as directed edges) between transitions and places represent flow relations.
In this process, sequential (from T9 to T10, etc.), alternative (from P4 to T4
and T5, etc.), parallel (from T1 to P2 and P4, etc.), synchronous (from P7 and
P8 to T11, etc.) and iterative (P2-T3-P3-T2-P2, P7-T8-P7, etc.) routing are
present. There are also three short loops (i.e., loops of length of one or two): the
loop involving T8 (length 1), the loop involving T2 and T3 (length 2), and the
loop involving T9 and T10 (also length 2). Also note the special parallel routing
(splits from T7 and joins at T11).

The α-algorithm is unable to correctly mine WF-nets such as the one shown
in Figure 3 (but also the model shown in the introduction), because of the
presence of short loops. Moreover, tasks (i.e., transition firings) are considered
to be atomic while in reality this is not the case.

4 Analyzing the event log

In this section, we focus on event logs with two event types. First, we define such
event logs. Then, we define a new notion of completeness and ordering relations
on tasks based on the two event types START and COMPLETE.

4.1 Event logs with two types of events

Existing approaches do not consider event types [2, 5, 7, 8, 10, 19, 50]. Tasks are
either considered to be atomic or only the completion of a task is considered
(i.e., just event type COMPLETE). One way to deal with this is to consider the
start and completion of a task as two atomic tasks. EMiT uses some pre- and
post-processing to incorporate multiple event types, but does not incorporate
this in the mining algorithm and ordering relations.7 In this paper, we propose
a fundamentally different approach where parallelism is detected explicitly by
registering overlapping activities.

As indicated in the introduction, there are two event types: START and
COMPLETE. Therefore, each event is characterized by a task and an event
type.

Definition 5 (Event). Let T be a set of tasks. E = T ×{0, 1} is a set of events
over T . (t, 0) ∈ E denotes the start of some task t and (t, 1) ∈ E denotes the
completion of t. For convenience, we also introduce the following notation for
e ∈ E: e.task refers to the task and e.type refers to the event type. If e = (t, 0),
then e.task = t and e.type = START . If e = (t, 1), then e.task = t and e.type =
COMPLETE.
7 Note that EMiT allows for even more event types, e.g., there are also event types
like SCHEDULE, ASSIGN, WITHDRAW, etc.
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Note that Definition 5 abstracts from other information that may be present
in the log, e.g., the timestamp of the event, the performer executing the task,
and data linked to the event. An event always occurs in the context of a single
case. The ordering of events corresponding to different cases is not important.
Therefore, we consider a log to be a set of traces where each trace corresponds
to a case.

Definition 6 (Event trace, Event log). Let E = T ×{0, 1} be a set of events
over T . σ ∈ T ∗ is an event trace and W ⊆ T ∗ is an event log.8

Note that the log shown in Table 1 is consistent with this notation. For example,
the event trace for the first case is σ = (T1, 0)(T1, 1)(T2, 0)(T3, 0)(T3, 1)(T2, 1)
(T4, 0)(T4, 1)(T6, 0)(T6, 1).

Event traces are sequences. We use the following standard notation for se-
quences.

Definition 7. Let E = T × {0, 1}, σ ∈ T ∗ a sequence containing n elements,
and t ∈ T some task.

1. dom(σ) = {1, 2, . . . , n} is the domain of σ,
2. σi is the i-th element, i ∈ dom(σ),
3. t ∈ σ iff there exists an i ∈ dom(σ) such that σi.task = t,
4. first(σ) = σ1.task is the first task to start, and
5. last(σ) = σn.task is the last task to complete.

Note that Definition 6 allows for event traces like (T1, 1) (T1, 0) and (T1, 0)
(T2, 1) (i.e., the COMPLETE event precedes the START event or there is not
START/COMPLETE event at all). Therefore, we define the notion of consis-
tency.

Definition 8 (Consistent). Let E = T × {0, 1} be a set of events over T and
σ ∈ T ∗ an event trace. σ is consistent if and only if

1. ∀i∈dom(σ)σi.type = 0 ⇒ (∃j∈dom(σ)j > i ∧ σj = (σi.task, 1) ∧
∀i<k<jσi.task �= σk.task), i.e., every START event has a corresponding
COMPLETE event, and

2. ∀i∈dom(σ)σi.type = 1 ⇒ (∃j∈dom(σ)j < i ∧ σj = (σi.task, 0) ∧
∀j<k<iσi.task �= σk.task), i.e., every COMPLETE event has a correspond-
ing START event.

In the remainder we consider event traces to be consistent, i.e., any log W
will hold only consistent traces. Note that in some situations this is not realistic,
i.e., parts of the log may be missing or there may be some kind of noise. In
[49] these issues are discussed and partially solved. We expect that the concepts
presented in [49] can be transferred to the mining algorithm presented here.

8 T ∗ is the set of all sequences that are composed of zero of more tasks from T .
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4.2 Ordering relations

An essential prerequisite for process mining is the ordering of tasks. To define
suitable ordering relations on tasks, we need to consider pairs of events, i.e., a
START event and a corresponding COMPLETE event. Therefore, we define the
notion of task occurrence.

Definition 9 (Task occurrence). Let σ ∈ E∗ and σ = e1e2 · · · en.
t(ei, ej) is a task occurrence of t in σ iff

1. 1 ≤ i < j ≤ n,
2. ei.task = ej .task = t,
3. ei.type = 0,
4. ej .type = 1, and
5. ∀i<k<j σk.task �= t).
Note that every event in event trace corresponds to precisely one task occurrence.
However, for one task there may be multiple task occurrences in the same event
trace.

Intuitively, a task occurrence can be represented as a line segment. The left
end is the START event and the right end is the COMPLETE event. These
line segments represent the time the task is being executed and can be used to
define succession (i.e., “directly” follows) and intersection (i.e., overlapping task
occurrences).

Definition 10 (Succession). Let W ⊆ E∗ an event log such that E = T ×
{0, 1}. Let a, b ∈ T be two tasks. a is directly succeeded by b in W , notation a >W

b, iff there exists a σ ∈ E∗ such that σ = e1e2 · · · en and two task occurrences
a(ei, ej) and b(ek, el) in σ such that j < k and there is no task occurrence
c(ep, eq) in σ satisfying j < p < q < k.

a is succeeded by b if and only if in at least one event trace a is “directly followed”
by b, i.e., there is not another complete task occurrence in-between the two task
occurrences a(ei, ej) and b(ek, el).

Definition 11 (Intersection). Let W ⊆ E∗ an event log such that E = T ×
{0, 1}. Let a, b ∈ T be two tasks. a intersects with b in W , notation a ×W b, iff
there exists a σ ∈ E∗ such that σ = e1e2 · · · en and two task occurrences a(ei, ej)
and b(ek, el) in σ such that i < k < j or k < i < l.

a intersects with b if and only if in at least one event trace where an occurrence
of a overlaps with an occurrence of b. Note that the intersection relation is
symmetric, i.e., a×W b if and only if b×W a.

Both a >W b (a is succeeded by b) and a ×W b (a intersects with b) are
illustrated in Figure 4.

Using the notation introduced in this section we can represent the finite set
of tasks TW = {t ∈ T |∃σ∈W t ∈ σ}, the finite set of initial tasks TI = {t ∈
T |∃σ∈W t = first(σ)} (the first tasks to start), and the finite set of final tasks



Process Mining 13

a b a b ab b a

or

a b ab

W
b a>

W
a b>

W
a b×

W
b a×

Figure 4. Illustration of a >W b, b >W a, a ×W b, and b ×W a.

TO = {t ∈ T |∃σ∈W t = last(σ)} (the last tasks to complete). It is also fairly
straightforward to calculate the relations >W and ×W . The complexity of an
efficient algorithm to calculate these relations and sets is O(n), where n is the
number of total events in the corresponding traces.

The notions TW , TI , TO, >W , and ×W are the basic ingredients for the
mining algorithm presented in this paper. To prove the correctness of the mining
algorithm we need to assume some notion of completeness, i.e., for a complex
process with many possible event traces we need a log that somehow reflects the
possible behavior.

Definition 12 (Completeness of an event log). Let N=(P,T,F) be a sound
WF-net. W is an event log of N iff W ⊆ E∗ where E = T × {0, 1} and every
trace σ ∈ W is a firing sequence of N starting in state [i] and ending in state
[o]. W is a complete event log of N iff 1) For any event log W ′ of N : >W ′⊆>W

and ×W ′ ⊆ ×W , and 2) For any t ∈ T , there is a σ ∈W such that t ∈ σ.
It is easy to check that the event log shown in Table 1 is complete, i.e., all tasks
appear somewhere in the log and the relations >W and ×W are maximal.

1 0 0 1 1 1 0 0 0 0 0 0 1 0 0 0 0 0 0 0

2 0 0 1 1 1 1 0 0 0 0 0 2

3 0 1 0 1 1 1 1 0 0 0 0 3

4 0 1 1 0 0 1 0 0 0 0 0 4

5 0 1 1 0 0 1 0 0 0 0 0 5

6 0 1 1 0 0 0 1 0 0 0 0 6

7 0 0 0 0 0 0 0 1 1 0 1 7

8 0 0 0 0 0 0 0 1 1 1 1 8

9 0 0 0 0 0 0 0 1 0 1 0 9

10 0 0 0 0 0 0 0 1 1 0 1 10

11 0 0 0 0 0 0 0 0 0 0 0 11

T T

T T

T T

T T

T T

T T

T T

T T

T T

T T

T T

 
 
 
 
 
 
 
 
 
 
 
 

0 0 0 0

0 0 0 1 1 1 0 0 0 0 0

0 0 0 1 1 1 0 0 0 0 0

0 1 1 0 0 0 0 0 0 0 0

0 1 1 0 0 0 0 0 0 0 0

0 1 1 0 0 0 0 0 0 0 0

0 0 0 0 0 0 0 0 0 0 0

0 0 0 0 0 0 0 0 1 1 0

0 0 0 0 0 0 0 1 0 0 0

0 0 0 0 0 0 0 1 0 0 0

0 0 0 0 0 0 0 0 0 0 0

 
 
 
 
 
 
 
 
 
 
 
 

T1 T2 T3 T4 T5 T6 T7 T8 T9 T10 T11
W
> T1 T2 T3 T4 T5 T6 T7 T8 T9 T10 T11

W
×

Figure 5. Matrices representing >W and ×W for the WF-net shown in Figure 3 based
on some complete log W .

Assume that we have a complete event log for the WF-net shown in Figure 3.
The resulting relations >W and ×W are shown in Figure 5. In this figure 0
denotes false and 1 denotes true.

4.3 Identifying the ordering relations between tasks

After establishing the basic relations >W and ×W we identify four derived rela-
tions. These derived ordering relations will be used to detect typical routings in
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the process model, such as sequential, parallel, alternative, iterative (i.e., loops)
routing and their combination.

Definition 13 (Log-based ordering relations). Let W be an event log over
E where E = T × {0, 1}. For any a, b ∈ T :
• a→W b iff a >W b and ¬(a×W b).
• a ‖W b iff a×W b.
• a#W b iff ¬(a >W b) and ¬(a×W b).
• a ∦W b iff ¬(a×W b).

Based on these definitions, it is obvious that relations ‖W and ∦W satisfy
commutativity while relations →W and #W do not. The two relations ‖W and
∦W are mutually exclusive and complementary. From Definition 13, the following
property can be inferred directly.

Property 1. Let W be an event log over E where E = T × {0, 1}. For any
a, b ∈ T : a→W b, a#W b, or a ‖W b. Moreover, the relations →W , #W , and ‖W

are mutually exclusive and partition T ×T . Furthermore, the relation ∦W is the
union of the relations →W and #W .

After applying Definition 13 to the two matrices shown in Figure 5, we obtain
the matrix shown in Figure 6.

# # # # # # # #1
# # // // // # # # # #2

# # // // // # # # #3

# // // # # # # # # #4

# // // # # # # # # #5

# // // # # # # # # #6

7 # # # # # # # #

8 # # # # #

9

10

11

W W W W W W W W W W W

W W W W W W W W W W W

W W W W W W W W W W W

W W W W W W W W W W W

W W W W W W W W W W W

W W W W W W W W W W W

W W W W W W W W W W W

W W W W W

T

T

T

T

T

T

T

T

T

T

T

→ → →
→

→ →
→
→

→
→ → →

# # // //

# # # # # # # // # #

# # # # # # # // #

# # # # # # # # # # #

W W W W W W

W W W W W W W W W W W

W W W W W W W W W W W

W W W W W W W W W W W

 
 
 
 
 
 
 
 → → → → → 
 

T1 T2 T3 T4  T5 T6 T7 T8 T9 T10 T11

Figure 6. Matrix of the ordering relations for the WF-net shown in Figure 3 based on
the two matrices shown in Figure 5.

The log-based relations shown in Figure 6 reflect the relations between the
tasks in the WF-net shown in Figure 3 in an intuitive manner. For example, T9
and T10 are clearly in a sequence and indeed we obtain T9→W T10 from the
complete log. Another example is that T3 and T4 are in parallel and we indeed
get T3 ‖W T4.

Note that it may appear to be strange that we compare the log-based relations
(e.g., Figure 6) with a Petri net that is already known (e.g., Figure 3). However,
please note that while building the relations we only consider the log and not
the WF-net itself. Rediscovering a known WF-net based on a complete log is
used for demonstrating the accuracy of the mining algorithm. The challenge is
to derive Figure 3 from a complete log without any additional knowledge. Note
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that completeness is very important in this context. If the log is not complete,
our mining algorithm will still be able to discover a process but this is likely to
differ from the actual process because there are not enough observations.

5 Constructing a process model from ordering relations

In this section, we present the new algorithm which we have named the β-
algorithm. However, first we investigate the relation between the ordering re-
lations detected from the log and the presence of the connecting places in the
corresponding process model. We will use this to prove the correctness of the
β-algorithm. The proofs of all theorems presented in this section can be found
in the appendix of this paper.

5.1 Ordering relations and connecting places

First we investigate the relation between →W (i.e., the ordering relation in-
dicating causality) and the existence of connecting places. If →W relates two
transitions (i.e., tasks), there will be a place connecting them.

Theorem 1. Let N = (P, T, F ) be a sound WF-net and let W be a complete
event log of N . For any a, b ∈ T : a→W b implies a • ∩ • b �= ∅.

Figures 6 and 3, can be used to illustrate the theorem. Since T1→W T3 (cf.
Figure 6), there has to be a place between T1 and T3. This place corresponds
to P2 in the WF-net shown in Figure 3.

Theorem 1 holds for any WF-net. The other direction, does not hold for any
WF-net. However, for SWF-nets we can show that if a place connects two suc-
cessive transitions in an SWF-net, their corresponding tasks are related through
→W .

Theorem 2. Let N= (P, T, F ) be a sound SWF-net and let W be a complete
event log of N . For any a, b ∈ T : a • ∩ • b �= ∅ implies a→W b.

Based on figures 3 and 6, we can see that all connecting places between two
successive transitions lead to →W relations between the corresponding two tasks
in the log, e.g., the presence of the place P2 connecting T1 and T3 indeed implies
T1→WT3, etc.

After showing the relation between →W and places in the corresponding
Petri net, we focus on parallelism. First, we show that two transitions cannot be
in parallel according to ‖W if they have common input or output places.

Theorem 3. Let N= (P, T, F ) be a sound SWF-net and let W be a complete
event log of N . For any a, b ∈ T :
1. If a • ∩b• �= ∅, then a ∦W b.
2. If •a ∩ •b �= ∅, then a ∦W b.
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It is clear that T4 and T5 share one input place P4 and one output place
P5 in Figure 3. The ordering relations between T4 and T5 are T4#WT5 and
T5#WT4. Thus T4 ∦W T5 holds, i.e., T4 and T5 can not occur concurrently.

To show that a similar relation holds in the other direction consider three
tasks a, b, and c. If both a and b are causally related to c (i.e., a and c are
connected by a place in the corresponding Petri net and so are b and c) and a
and b are not in parallel (i.e., a ∦W b holds), then a and b are connected to c
through a common place.

Theorem 4. Let N= (P, T, F ) be a sound SWF-net and let W be a complete
event log of N . For any a, b, c ∈ T :
1. If a→W c, b→W c and a ∦W b, then a • ∩b • ∩ • c �= ∅.
2. If c→W a, c→W b and a ∦W b, then c • ∩ • a ∩ •b �= ∅.

For example, T1→WT4, T1→WT5 and T4 ∦W T5 hold in Figure 6. Therefore,
as Theorem 4 points out, there is a place P4 connecting T1, T4 and T5 in
Figure 3.9 Another example is the fact that T7→W T8, T8→W T8 and T7 ∦W T8
implies that T7 • ∩T8 • ∩ • T8 �= ∅. As Figure 3 shows, the shared place is P7.
Note that in terms of Theorem 4 a = T7, b = T8, and c = T8, i.e., b = c. This
example shows that, unlike the classical relations used by the α-algorithm [7],
the ordering relations can deal successfully with short loops.

The following theorem shows how to identify the connecting places.

Theorem 5. Let N = (P, T, F ) be a sound SWF-net and let W be a com-
plete event log of N . For any two task sets PS and SS, such that PS ⊆ T ,
SS ⊆ T : ∀a∈PS∀b∈SSa →W b, ∀a1,a2∈PSa1 ∦W a2 and ∀b1,b2∈SSb1 ∦W b2 iff
∃p∈P∀a∈PS∀b∈SSa • ∩ • b = {p}.

Theorem 5 illustrates the relation between the connecting places and the
ordering relations among tasks. Considering an example from Figure 3, we get
PS = {T4, T5}, SS = {T6} and the unique connecting places is p = P5.
Notably, although the net shown in Figure 3 is not an SWF-net, we can still
get the correct relations. The connecting places P7 and P8 can be rediscovered
successfully and efficiently, which indicates the power of the mining algorithm
presented next.

5.2 Mining algorithm based on the ordering relations

Based on the theoretical results shown in the previous subsection, we now present
the β-algorithm.

Mining algorithm β. LetW be an event log over T . β(W ) is defined as follows:

1. TW = {t ∈ T |∃σ∈W t ∈ σ},
9 Note that Figure 3 is not an SWF-net. However, the part of the net considered does
satisfy the requirements of an SWF-net. In fact, the applicability of the algorithm
and therefore also the theorems are not limited to just SWF-nets.
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2. TI = {t ∈ T |∃σ∈W t =first(σ)},
3. TO= {t ∈ T |∃σ∈W t= last(σ)},
4. XW={<PS, SS> |PS⊆TW∧SS⊆TW∧∀a∈PS∀b∈SSa→W b∧∀a1,a2∈PSa1∦W

a2 ∧ ∀b1,b2∈SSb1 ∦W b2},
5. YW= {<PS, SS>∈XW |∀<PS′,SS′>∈XW

PS⊆PS′∧SS⊆SS′⇒<PS, SS>=<
PS′, SS′>},

6. PW = {p<PS,SS>|<PS, SS>∈YW } ∪ {iW , oW },
7. FW={(a, p<PS,SS>)|<PS, SS>∈YW ∧ a∈PS} ∪ {(p<PS,SS>, b)|<PS, SS>∈
YW ∧ b∈SS} ∪ {(iW , t)|t∈TI} ∪ {(t, oW )|t∈TO}, and

8. β(W ) = (PW , TW , FW ).

The mining algorithm constructs a Petri net (PW , TW , FW ) based on some
event log W . Note that TW , TI and TO can be obtained easily, i.e., the first
three steps are self-explanatory and linear in the size of the log. The last three
steps are also straightforward once YW has been obtained. In fact these three
steps are linear in the size of the resulting model. It is important to see that
YW corresponds to the set of internal places and that these places are discovered
using the insights resulting from the theorems presented in Section 5.1. The most
important and time-consuming steps are 4 and 5. Step 4 attempts to find all the
pairs of task sets satisfying the specific conditions to generate XW . Step 5 is used
to find all the largest elements in XW with respect to set inclusion to generate
YW . To calculate YW , the complexity of these two steps is exponential in the
number of tasks. In fact, the number of tasks in a practical process is less than
100. Therefore, the complexity is not a bottleneck for large-scale applications.

Now we will prove the correctness of the mining algorithm. Again the focus
is on the connecting places.

Theorem 6. Let N be a sound SWF-net and let W be a complete event log of
N . β(W ) = N modulo renaming of places, i.e., the discovered model matches
the original model after renaming places.

The names of the corresponding places of N and NW are different because
the names of the places are not stored in the event log. However, the names of
the places less relevant because they only serve as pre- and post-conditions for
tasks. Let us demonstrate the algorithm using the results shown in Figure 6. We
show the results in every step of the β-algorithm.

1. TW = {T1, T2, T3, T4, T5, T6, T7, T8, T9, T10, T11},
2. TI = {T1},
3. TO= {T11},
4. XW = {<{T1}, {T3}>,<{T1}, {T4}>, . . . , <{T7, T10}, {T9, T11}>},
5. YW = {<{T1, T2}, {T3}>,<{T1}, {T4, T5}>,<{T3}, {T2, T7}>,
<{T4, T5}, {T6}>,<{T7, T8}, {T8, T11}>,<{T7, T10}, {T9, T11}>,
<{T6}, {T7}>,<{T9}, {T10}>},

6. PW = {iW , oW , p<{T1,T2},{T3}>, p<{T1},{T4,T5}>, . . . , p<{T9},{T10}>},
7. FW = {(iW , T1), (T1, p<{T1,T2},{T3}>), (p<{T1,T2},{T3}>, T3), . . . , (T11, oW )},
8. β(W )= (PW , TW , FW ).
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The resulting net is indeed the WF-net shown in Figure 3. Although this
net is not a SWF-net, the algorithm can still mine it successfully. There are
no redundant nodes (i.e., transitions and places) or edges (i.e., arcs) and no
information is lost except the names of places. Even the short loops and parallel
routings are identified correctly. This example shows that the applicability of the
algorithm is not limited to SWF-nets. It is applicable to a larger class of sound
WF-nets.

Based on the log shown in Table 1 we can calculate the ordering relations and
successfully discover the process model shown in Figure 1. Note that this net is
an SWF net and therefore for any complete log, the β-algorithm will discover
the SWF net modulo renaming of places, cf. Theorem 6. Note that the classical
α-algorithm [7] is unable to successfully mine all SWF nets and will generate an
incorrect model for a log shown in Table 1.

6 Experimental evaluation of the work

We have developed a mining tool based on the β-algorithm and integrated it
into our workflow management system named WebFlow. This tool consists of
three parts: a simulation component, a mining component and a process editor.
The simulation component is used to generate an event log either manually or
automatically. The mining component is used to mine a process model from a
selected event log. The process editor is used to display the mined process model
to the process designer for further editing.

In an experimental setting logs can be obtained in three ways: (1) as a down-
load from an operation information system (i.e., a real log), (2) a manually
created log, and (3) a log resulting from a simulation which records events in
a simulation log. For evaluation of the β-algorithm, we have used all three pos-
sibilities. In this section, we show the results of our experimental evaluation of
the β-algorithm.

Table 2 summarizes the execution time of the mining procedure for the pro-
cess model shown in Figure 3 with logs having varying number of traces. Here
#L is the number of traces, #T is the number of tasks, #E is the number of
events, Tm is the execution time of the whole mining procedure and Tc is the ex-
ecution time of the scanning step, i.e., loading the log and building the relations.
The time unit used in Table 2 is seconds.

110(4008) 220(7486) 440(15192) 880(30112)

11 0.19 0.21 0.41 0.43 0.802 0.822 1.632 1.652

#L(#E)

#T

Tc Tm

Table 2. Execution time in seconds.

Note that Tm and Tc do not differ much, thus indicating that most of the
time is spent on the scanning step. For clarity, we transformed the data shown
in Table 2 to the two graphs shown in Figure 7. These graphs clearly show the
linear relations between Tc, Tm and #L, #E.
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Figure 7. Relations between Tm, Tc and #L, #E.

To evaluate the β-algorithm fully, we change the range of #T from 10 to 100
and the range of #L from 10 to 10000. The physical size of the log is roughly
proportional to #L. For #L=10000, the sizes of logs are 3MB, 7MB, 16MB
and 36MB for process models with 10, 25, 50 and 100 tasks respectively. Table 3
summarizes the execution time of the mining procedure for these process models.
Again the time unit is seconds.

10 25 50 100

10 270 0.019 332 0.025 756 0.110 1478 0.471

100 3176 0.171 3170 0.210 7170 0.451 16460 1.361

1000 31680 1.682 32000 2.073 72700 4.136 159560 9.814

10000 317720 16.694 318900 20.720 727200 38.896 1601648 91.061

#TTm
#E

#L

Table 3. Execution time in seconds for different models.

To visualize the result presented in Table 3 we again show two graphs, see
Figure 8. In practical process models, the number of tasks (i.e., #T ) is less
than 100. The number of traces #L and also the number of events #E are
typically much larger. Therefore the number of traces is the dominant factor in
determining the execution time of the mining procedure. Table 3 and Figure 8
show that the mining procedure is fast enough and scales linearly with the input
number of events for a given process model. It also scales well with the number
of tasks in the practical process models.
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Figure 8. Execution time for different models using different traces.

From the experimental evaluation, it is clear that the mining procedure is
suitable for practical situations. It runs fast and scales well for large-scale ap-
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plications. As far as the quality of the mining algorithm is concerned, the β-
algorithm can mine all of the sound SWF-nets successfully. In fact, in some
cases sound WF-nets that do not satisfy all requirements of an SWF-net can
still be rediscovered provided that the log is complete.

7 Conclusion and future work

In this paper, a new mining algorithm was presented: the β-algorithm. A dis-
tinguishing feature of the β-algorithm is that it exploits the fact that tasks take
time and therefore parallelism can be detected explicitly. To do this, event logs
with two kinds of event types, i.e., START and COMPLETE, are considered.
Using these two types of events it is possible to see if occurrences of tasks overlap.
Together with causality information, this is used to derive the ordering relations
→W , #W , or ‖W . Based on these relations the β-algorithm constructs a Petri
net. Assuming a complete log, it can be proven that the β-algorithm is able to
correctly discover any SWF-net. In fact the application is not limited to SWF-
nets, i.e., it can be applied to any event log with START and COMPLETE
events. However, for some non-SWF-nets the result may be incorrect. Through
experimental evaluation of the work, we demonstrated that the β-algorithm is
simple, fast and powerful enough to be used in practical situations.

The β-algorithm can be seen as an extension of the α-algorithm. Some of
the known problems of the α-algorithm, e.g., short-loops, are tackled by the
β-algorithm using fundamentally different ordering relations. However, there is
also a drawback. The α-algorithm can be applied in environments where tasks
are considered to be atomic, e.g., just the COMPLETE events are logged. In
such environments the α-algorithm will be unable to detect parallelism, while
the α-algorithm is able to do this implicitly (assuming interleaving semantics).

Our future work will focus on the following three aspects. First of all, we
plan to further evaluate and apply the mining algorithm in practical situations.
Secondly, we plan to improve the storage structure of the event log and reduce
the running time of the mining procedure even further. Finally, we will investi-
gate which kind of sound non-SWF-nets (i.e., ordinary sound WF-nets) can be
rediscovered by the β-algorithm.
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Appendix

Theorem 1. Let N = (P, T, F ) be a sound WF-net and let W be a complete
event log of N . For any a, b ∈ T : a→W b implies a • ∩ • b �= ∅.
Proof. Assume a→W b and a • ∩ • b = ∅. We will show that this assumption
leads to a contradiction and thus prove the theorem. From Definition 13, we
know that a →W b implies a >W b and ¬(a ×W b). Since a >W b there exists
at least one trace σ = e1e2e3 · · · en ∈ W such that ∃i,j2 ≤ i ≤ n − 2 ∧ i <
j < n such that ei.type=COMPLETE, ei.task=a, ej .type=START, ej .task=b
and there is not any task occurrence between ei and ej . For ∀ki < k < j and
ek.type=COMPLETE, we know that ek can occur before ei in some traces.
Similarly, for ∀mi < m < j and em.type=START, we know that em can wait
until ej occurs. Thus we can get a markingM of N , under which a can complete
and after a completes, b can start immediately. Because a • ∩ • b=∅, a does not
produce tokens for any input place of b. So under the marking M , b can start
before a completes. Therefore, we can find a×W b from the log and a ‖W b holds.
This result contradicts a→W b and we conclude that a→W b implies a•∩•b �= ∅.
Theorem 2. Let N= (P, T, F ) be a sound SWF-net and let W be a complete
event log of N . For any a, b ∈ T : a • ∩ • b �= ∅ implies a→W b.

Proof. Because a •∩• b �=∅, we assume a place p∈a •∩• b. We should prove this
theorem from the following two situations partitioned according to the properties
of an SWF-net.

1. |p • |>1. Thus | • b|=1, b can start after a completes and a >W b holds in
the log. Remains to prove ¬(a ×W b). If | • p|=1, b cannot start before a
completes. If | • p|>1, then b might start before a completes and a×W b
might hold. If this assumption is true, there should be one token in p under
some marking M . If a completes under M , a will produce one token for p
and there would be two tokens in p. We get a contradiction, thus ¬(a×W b)
holds. Since a >W b and ¬(a×W b), we conclude a→W b.

2. |p • |=1. If | • b|=1, the proof is as before. If | • b|>1, then | • p|=1. b cannot
start before a completes and ¬(a ×W b). Before a completes, there should
be a marking M such that M covers all other input places of b except p. If
not, there should be one path leading from a to the remainder input places
of b. Thus p becomes an implicit place connecting a and b, which violates
the SWF-net requirement. Under the marking M , when a completes, b can
start immediately. So a>W b holds and we conclude a→W b.
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Theorem 3. Let N= (P, T, F ) be a sound SWF-net and let W be a complete
event log of N . For any a, b ∈ T :
1. If a • ∩b• �= ∅, then a ∦W b.
2. If •a ∩ •b �= ∅, then a ∦W b.

Proof. Assume a ‖W b in both situations, we will show that this can lead to a
contradiction respectively for the following two parts.

1. Assume a place p ∈ a • ∩b•. For a ‖W b, there should at least be one
“overlapping sequence” in the log, i.e., a×W b. Since the COMPLETE event
of a task may occur at any time after the corresponding START event, there
may be a snippet (a, 1)(b, 1) or (b, 1)(a, 1) in some trace. In this case, there
will be a marking M that does not cover p, under which both a and b have
started and can complete immediately. Thus p will contain at least two tokens
after a and b complete and the net is not safe. So we get a contradiction and
a ∦W b holds.

2. Assume a place p ∈ •a ∩ •b. For a ‖W b, there should be at least a sequence
a×W b in the log. There will be a marking M of the net under which p is
covered and a or b can start. (Note that | • a| = | • b| = 1.) But after a or
b starts, the only token in p is consumed and the other transition can not
start. The other one will wait until there is a token in p again. So a snippet
of (a, 0)(c, 1)(b, 0) or (b, 0)(c, 1)(a, 0) will appear in some trace in the log.
However, the COMPLETE event of c may start before the START event of
a or b. Under the markingM , (c, 1) may occur just before (a, 0) or (b, 0) and
thus there will be two tokens in the place p, i.e., the net is not safe. So we
get a contradiction and a ∦W b holds.

Theorem 4. Let N= (P, T, F ) be a sound SWF-net and let W be a complete
event log of N . For any a, b, c ∈ T :
1. If a→W c, b→W c and a ∦W b, then a • ∩b • ∩ • c �= ∅.
2. If c→W a, c→W b and a ∦W b, then c • ∩ • a ∩ •b �= ∅.
Proof. Now we should prove the above two sub theorems respectively.

1. From Theorem 1 and a→W c, we deduce a • ∩ • c �= ∅. We assume a place
p1∈a•∩•c. Similarly, we assume a place p2∈b•∩•c. To prove the theorem,
we make an assumption that a•∩b•∩•c= ∅, i.e., for any p1 and p2, p1 �= p2.
Because the net N is an SWF-net, |p1 • |=| •p1|=|p2 • |=| •p2|=1 holds. Thus
a, b and c will execute the same number of times. If a starts before b starts,
a always completes before b starts, i.e., b can only start after a completes in
this situation (a∦W b). There should be at least one path Lab leading from
a to b on the net. After a completes, a will produce tokens for the first place
on Lab. Similarly, one path Lba leads from b to a and after b completes,
b will produce tokens for the first places on Lba. After a and b complete
successively, some tokens are left on Lba. There should be some transitions
not on Lba which consume the left tokens. Since N is an SWF-net, these
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transitions all have one input place on Lba and then these transitions cannot
include c (c has at least two input places p1 and p2). Once the only input
place contains a token, they may consume it (free choice). Similarly, there
should be some transitions not on Lab which consume the left tokens too.
Thus there will be a marking M of N , which covers p1 only (a executes first
and b still has to execute next) but does not cover p2 because the tokens
on Lab have been consumed by other transitions (neither b nor c) and b, c
could not execute this time, i.e., a deadlock occurs. Therefore, the net is not
sound and we get a contradiction. Thus the assumption is wrong and p1 is
the same as p2, i.e., a • ∩b • ∩ • c �= ∅.

2. From Theorem 1 and c→W a, we derive c • ∩ • a �= ∅. We assume a place
p1 ∈ c•∩•a. Similarly, we assume a place p2 ∈ c•∩•b. To prove the theorem,
we make an assumption that c•∩•a∩•b = ∅, i.e., for any p1 and p2, p1 �= p2.
According to c→W a, after c completes, there should be a marking M under
which a can start and both p1 and p2 contain one token. In this situation,
p1 /∈•b and p2 /∈•a hold. After a starts, a consumes the only token in p1 and
there is still a token in p2. Now let us investigate what will happen to b and
for this purpose we distinguish two situations: (i) |p2 • |>1 and (ii) |p2• |=1.
Assume |p2 • |>1. Thus we get | • b|=1. Because the only input place of
b contains one token, b can start immediately. There will be at least one
sequence in the log containing the snippet (a, 0)(b, 0) and a ×W b. We get
the relation a ‖W b, which is conflicting with the premise a ∦W b. Therefore
we get a contradiction.
Assume |p2• |=1. If | • b|=1, the situation is similar to (i) and we can get
a contradiction. If | • b|>1, b must start finally because there is a token in
one of its input places which can only be consumed by b. Because a ∦W b
and a has started, b can only start after a completes, i.e., the start of b is
dependent on the completion of a. Thus there is a path Lab leading from
a to b. Similarly, there is a path Lba leading from b to a. The remainder
of the proof is similar to the situation considered before. Again, we get a
contradiction.
As a consequence, p1 and p2 must be the same place and c • ∩ • a ∩ •b �= ∅.

Theorem 5. Let N = (P, T, F ) be a sound SWF-net and let W be a com-
plete event log of N . For any two task sets PS and SS, such that PS ⊆ T ,
SS ⊆ T : ∀a∈PS∀b∈SSa →W b, ∀a1,a2∈PSa1 ∦W a2 and ∀b1,b2∈SSb1 ∦W b2 iff
∃p∈P∀a∈PS∀b∈SSa • ∩ • b = {p}.
Proof. We should prove the theorem in both directions.

1. Assume ∃p∈P∀a∈PS∀b∈SSa • ∩ • b = {p}. Using Theorem 2, it is easy to
see that ∀a∈PS∀b∈SSa →W b. Using Theorem 3 we can also show that the
elements of PS and the elements in SS cannot be in parallel.

2. Assume ∀a∈PS∀b∈SSa →W b, ∀a1,a2∈PSa1 ∦W a2 and ∀b1,b2∈SSb1 ∦W b2.
From ∀a∈PS∀b∈SSa→W b and Theorem 1, we derive that a • ∩ • b �= ∅ for
any a ∈ PS and any b ∈ SS. From the property of an SWF-net, we get
|a • ∩ • b|=1. From ∀a1,a2∈PSa1 ∦W a2 and a1→W b and a2→W b, we get
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a1 • ∩a2 • ∩ • b �= ∅ (Theorem 4) where b can be any task in SS. Note that
|a1 • ∩a2 • ∩ • b|=1. Hence we can deduce that a1 • ∩ • b = a2 • ∩ • b = {p}
for some p and complete the proof.

Theorem 6. Let N be a sound SWF-net and let W be a complete event log of
N . β(W ) = N modulo renaming of places, i.e., the discovered model matches
the original model after renaming places.

Proof. Let N=(P, T, F ) and β(W ) = NW =(PW , TW , FW ). Based on the com-
pleteness of W and mining step 1 of the β algorithm, we get TW = T . For the
source and sink places (i.e., i and o) of N , there are the source and sink places
iW and oW of NW such that iW • = i • ∧ • oW = •o and vice versa. Remains to
prove that the “internal places” of the two Petri nets N and NW match.

1. First we prove that ∀p∈P\{i,o}∃pW∈PW \{iW ,oW } • pW = •p ∧ pW • = p•.
According to the β-algorithm and Theorem 5, we know that <•p, p•>∈XW

and ∃pW∈PW
• p ⊆ •pW ∧p• ⊆ pW •, i.e., <•pW , pW • >∈ YW . Assume that

∃t′∈T t
′∈•pW ∧ t′ /∈•p. From Theorem 4, we get that ∀tP∈•p∀tS∈p•tP •∩t′•∩•

tS �= ∅. Assume that p′∈ tP•∩t′ •∩• tS . Because t′ /∈•p, we know that p′ �=p.
Therefore for ∀tS∈p•∃p′∈•tS

| • tS | > 1 ∧ | • p′| > 1. This violates the second
requirement of an SWF-net and we get a contradiction. If we assume that
∃t′∈T t

′∈pW •∧t′ /∈p•, we can still get a similar contradiction. Therefore we
prove the result in one direction.

2. Finally, we prove ∀pW∈PW \{iW ,oW }∃p∈P\{i,o} • p = •pW ∧ p• = pW •.
According to the β-algorithm and pW ∈PW , we know that <•pW , pW •>∈
YW . Theorem 5 can be used to show that ∃p∈P∀a∈•pW

∀b∈pW • a • ∩ • b= {p}.
Therefore we deduce •pW ⊆•p ∧ pW •⊆ p•. Assume that ∃t′∈T t

′ ∈ •p ∧ t′ /∈
•pW . Using Theorem 2 and Theorem 3 we can show that ∀t∈•pW

t′ ∦W t and
∀t∈pW • t′ →W t. Therefore we can prove that <•pW ∪ {t′}, pW •>∈YW and
thus obtain a contradiction. If we assume that ∃t′∈T t

′∈p•∧t′ /∈pW •, we can
also get a contradiction, thus complete the proof.


