
Case Handling: A New Paradigm for
Business Process Support

Wil M.P. van der Aalst1, Mathias Weske2, Dolf Grünbauer3
1Dept. of Technology Management, Eindhoven University of Technology

P.O. Box 513, NL-5600 MB Eindhoven, The Netherlands
e-mail:w.m.p.v.d.aalst@tm.tue.nl

2Hasso Plattner Institute for Software Systems Engineering
Prof.-Dr.-Helmertstrasse 2-3, 14482 Potsdam, Germany

e-mail:weske@hpi.uni-potsdam.de
3 Pallas Athena, P.O. Box 747, NL-7300 AS, Apeldoorn, The Netherlands

e-mail:dolf.grunbauer@pallas-athena.com

Abstract

Case handling is a new paradigm for supporting flexible and knowledge intensive
business processes. It is strongly based on data as the typical product of these pro-
cesses. Unlike workflow management, which uses predefined process control struc-
tures to determine what should be done during a workflow process, case handling
focuses on what can be done to achieve a business goal. In case handling, the know-
ledge worker in charge of a particular case actively decides on how the goal of that
case is reached, and the role of a case handling system is assisting rather than guid-
ing her in doing so. In this paper, case handling is introduced as a new paradigm for
supporting flexible business processes. It is motivated by comparing it to workflow
management as the traditional way to support business processes. The main entities
of case handling systems are identified and classified in a meta model. Finally, the
basic functionality and usage of a case handling system is illustrated by an example.

Key Words: Case handling, workflow management systems, adaptive workflow, flexibil-
ity, business process management

1 Introduction

1.1 Context

During the last decade workflow management concepts and technology [6, 7, 21, 26,
31, 32, 35] have been applied in many enterprise information systems. Workflow man-
agement systems such as Staffware, IBM MQSeries Workflow, COSA, etc. offer generic
modeling and enactment capabilities for structured business processes. By making graph-
ical process definitions, i.e., models describing the life-cycle of a typical case or workflow
instance in isolation, one can configure these systems to support business processes. Re-
cently, besides pure workflow management systems many other software systems have
adopted workflow technology, for example ERP (Enterprise Resource Planning) systems
such as SAP, PeopleSoft, Baan, Oracle, as well as CRM (Customer Relationship Man-
agement) software.

However, there appears to be a severe gap between the promise of workflow technol-
ogy and what systems really offer. As indicated by many authors, workflow management

1

systems are too restrictive and have problems dealing with change [6, 9, 11, 15, 19, 24,
29, 30, 52]. In particular, many workshops and special issues of journals have been de-
voted to techniques to make workflow management more flexible [6, 9, 29, 30]. Some
authors stress the fact that models should be as simple as possible to allow for maximum
flexibility [11]. Other authors propose advanced techniques to support workflow evolu-
tion and the migration of cases of one workflow model to another [15, 52]. If the process
model is kept simple, only a more or less idealized version of the preferred process is
supported. As a result, the real run-time process is often much more variable than the
process specified at design-time. In contemporary workflow technology, the only way to
handle changes is to go behind the system’s back. If users are forced to bypass the work-
flow system quite frequently, the system is more a liability than an asset. If the process
model attempts to capture all possible exceptions [46], the resulting model becomes too
complex to manage and maintain. These and many other problems show that it is difficult
to offer flexibility without losing control.

1.2 Terminology

To illustrate the deficiencies of contemporary workflow management and to motivate the
case handling paradigm, we use the metaphor of a blind surgeon. Before doing so we
first introduce some standard workflow terminology. Workflow management systems are
case-driven, i.e., they focus on a single process instance.1 This means that only business
processes describing the handling of one workflow instance in isolation are supported.
Many cases can be handled in parallel. However, from the viewpoint of the workflow
management system these cases are logically independent. To handle each case, the
workflow management system uses the corresponding workflow process definition. The
process definition describes the routing of the case by specifying the ordering of activ-
ities. Activities are the logical units of work and correspond to atomic pieces of work,
i.e., each activity is executed by one worker (or another type of resource) and the result is
either “commit work” or “abort and roll back”.

To specify the ordering of activities typically some graphical language such as Petri
nets [1] or workflow graphs [52] is used. These languages allow for sequential, condi-
tional, and parallel routing of cases. Some of the workflow management systems allow
for more advanced constructs [8]. Typically, an activity which is enabled for a given case
may be executed by many workers, and many workers may execute a given activity. To
support the distribution of work, the concept of a role is used. A worker can have mul-
tiple roles, but an activity has only one role. If activity A has role R, then only workers
with role R are allowed to execute activities of type A. Based on this information, the
workflow management system works as follows: The corresponding workflow process
definition is instantiated for each new case, i.e., for each case (e.g., request for infor-
mation, insurance claim, customs declaration, etc.) a new workflow instance is created.
Based on the corresponding workflow process definition, the workflow engine calculates
which activities are enabled for this case. For each enabled activity, one work-item is put
in the in-tray of each worker having the appropriate role. Workers can pick work-items
from their in-tray. By selecting a work-item the worker can start executing the corre-
sponding activity, etc. Note that, although a work-item can appear in the in-tray of many
workers, only one worker will execute the corresponding activity. When a work-item is

1Please do not confuse “case-driven” processes with “case handling”. The case-handling paradigm can
be used to support case-driven processes. However, conventional workflow technology can also be used to
case-driven processes.

2

selected, the workflow management system launches the corresponding application and
monitors the result of executing the corresponding activity. Note that the worker only
sees work-items in his/her in-tray, and when selecting a work-item only the information
relevant for executing the corresponding activity is shown.

1.3 Four problems

In this paper, we argue that the lack of flexibility and — as a result — the lack of usability
of contemporary workflow management systems to a large extent stems from the fact that
routing is the only mechanism driving the case, i.e., work is moved from one in-tray to
another based on pre-specified causal relationships between activities. This fundamental
property of the workflow approach causes the following problems:

• Work needs to be straight-jacketed into activities. Although activities are con-
sidered to be atomic by the workflow system, they are not atomic for the user.
Clustering atomic activities into workflow activities is required to distribute work.
However, the actual work is done at a much more fine-grained level.

• Routing is used for both work distribution and authorization. As a result, workers
can see all the work they are authorized to do. Moreover, a worker is not authorized
to do anything beyond the work-items in her in-tray. Clearly, work distribution and
authorization should not coincide. For example, a group leader may be authorized
to do the work offered to any of the group members, but this should not imply that
all this work is put in his worklist. Since distribution and authorization typically
coincide in contemporary workflow management systems, only crude mechanisms
can be used to align workflow and organization.

• By focusing on control flow the context, i.e., data related to the entire case and
not just the activity, is moved to be background. Typically, such context tunneling
results in errors and inefficiencies.

• Routing focuses on what should be done instead of what can be done. This push-
oriented perspective results in rigid inflexible workflows.

It is worth noting that not only traditional workflow technology suffers from these prob-
lems. Recent approaches to flexible workflow management are still based on routing as
the only mechanism for process support and, hence, suffer from the problems mentioned.

1.4 Blind Surgeon Metaphor

We use the “Blind Surgeon Metaphor” to illustrate the four problems identified by placing
them in a hospital environment. In a hospital both operational flexibility and well-defined
procedures are needed. Therefore, workflow processes in a hospital serve as benchmark
examples for flexible workflow management, cf. [39]. Note that the “Blind Surgeon
Metaphor” is not restricted to hospital environments, similar issues can be observed in
a wide range of other knowledge-intensive application scenarios.

Consider the flow of patients in a hospital as a workflow process. One can consider
the admission of a patient to the hospital as the creation of a new case. The basic workflow
process of any hospital is to handle these cases. The activities in such a workflow include
all kinds of treatments, operations, diagnostic tests, etc. The workers are, among others,
surgeons, specialists, physicians, laboratory personnel, nurses. Each of these workers has

3

one or more roles, and each task requires a worker having a specific role. For example, in
case of appendicitis the activity “remove appendix” requires the role “surgeon”. Clearly,
we can define hospital workflows in terms of process definitions, activities, roles, and
workers.

In the setting of “hospital workflows”, we again consider the four problems identified
before. Suppose that work in hospitals would be straight-jacketed into activities. This
would mean that workers would only execute the actions that are specified for the activity,
i.e., additional actions would not be allowed, and it would also not be possible to skip
actions. Such a rigorous execution of the work specified could lead to life-threatening
situations. In hospital environments it is crucial that knowledgeable persons can decide on
activities to perform based on the current case and their personal experiences. In general,
workflow process models cannot represent the complete knowledge of the experts and all
situations that might occur.

Suppose that the routing in hospital processes would be used for both work distribu-
tion and authorization. This would mean that activities can only be executed if they are
in the in-tray of a worker. Since distribution and authorization then coincide, it would not
be possible to allow for initiatives of workers, e.g., a physician cannot request a blood test
if the medical protocol does not specify such a test.

Context tunneling is also intolerable. This would mean that the information for sur-
geons, specialists, physicians, laboratory personnel, and nurses is restricted to the infor-
mation that is needed for executing a specific task. In contrast, given a specific medical
situation, doctors and nurses may take advantage from consulting the complete medical
record of the patient, based on the current state of the patient and their personal knowl-
edge and experiences.

Finally, it is clearly undesirable that the medical staff of a hospital would limit their
activities to what should be done according to the procedure rather than what can be done.
The medical protocol typically specifies what should be done instead of what can be done.
Such descriptions are useful to guide workers. However, it is clear that restricting the
workers to the workflow specified in the medical protocol would lead to absurd situations.

It is clear that such a “tunnel vision”, i.e., a straight-ahead vision without attention
for contextual information, is not acceptable in any hospital process. Consider for ex-
ample a surgeon who would ignore all information which is not directly related to the
surgical procedure. A straightforward implementation of such a process using contem-
porary workflow management systems would result in surgeons that are blind for this
information, just doing the actions specified for the activities in their in-trays. This “blind
surgeon metaphor” illustrates some of the key problems of present-day workflow man-
agement technology.

1.5 Case handling

In this paper, we propose case handling as a new paradigm for supporting knowledge-
intensive business processes. By avoiding the blind surgeon metaphor, a wide range of
application scenarios for which contemporary workflow technology fails to offer an ad-
equate solution will benefit from this new paradigm. The core features of case handling
are:

• avoid context tunneling by providing all information available (i.e., present the case
as a whole rather than showing just bits and pieces),

• decide which activities are enabled on the basis of the information available rather

4

than the activities already executed,

• separate work distribution from authorization and allow for additional types of
roles, not just the execute role,

• allow workers to view and add/modify data before or after the corresponding activ-
ities have been executed (e.g., information can be registered the moment it becomes
available).

Based on these key properties, we believe that case handling provides a good balance
between the data-centered approaches of the 80-ties and the process-centered approaches
of the 90-ties. Inspired by Business Process Re-engineering (BPR) principles [22] work-
flow engineers have focused on processes neglected the products being produced by these
processes [2]. Case handling treats both data and processes as first-class citizens. This
balance seems to be highly relevant for knowledge intensive business processes.

This paper builds on the results presented in [5], where we focused on case handling
in the context of a specific case handling tool named FLOWer [13]. Besides FLOWer
of Pallas Athena there are few other case handling tools. Related products are E.C.H.O.
(Electronic Case-Handling for Offices), a predecessor of FLOWer, the Staffware Case
Handler [44] and the COSA Activity Manager [43], both based on the generic solution
of BPi [14], and Vectus [33, 34]. Instead of focusing on a specific product, we gener-
alize some of the ideas used in these tools into a conceptual model which clearly shows
the difference between case handling and traditional workflow management. Then, we
demonstrate the applicability of the case handling concept using FLOWer.

1.6 Outline

The remainder of this paper is organized as follows. Section 2 introduces case handling
by focusing on the differences between case handling and traditional workflow manage-
ment. Section 3 presents a conceptual model which describes the key features of case
handling. Case handling environments are precisely characterized in Section 4 by a math-
ematical formalization of their static and dynamic aspects. Note that sections 2, 3 and 4
are tool independent. Section 5 describes the case-handling system FLOWer using a re-
alistic example. Then we provide pointers to current case-handling applications based on
FLOWer. Finally, we discuss related work and conclude the paper. In the conclusion we
position case handling in a broader spectrum involving other approaches such traditional
production workflow, ad-hoc workflow, and groupware.

2 The Case Handling Paradigm

The central concept for case handling is the case and not the activities or the routing. The
case is the “product” which is manufactured, and at any time workers should be aware of
this context. Examples of cases are the evaluation of a job application, the verdict on a
traffic violation, the outcome of a tax assessment, and the ruling for an insurance claim.

To handle a case, activities need to be executed. Activities are logical units of work.
Many workflow management systems impose the so-called ACID properties on activities
[1, 26]. This means that an activity is considered to be atomic and either carried out
completely or not at all. Case handling uses a less rigid notion. Activities are simply
chunks of work which are recognized by workers, e.g., like filling out an electronic form.
As a rule-of-thumb, activities are separated by points where a transfer of work from one

5

worker to another is likely or possible. Please note that activities separated by points
of ‘work transfer’ can be non-atomic, e.g., the activity ‘book business trip’ may include
tasks such as ‘book flight’, ‘book hotel’, etc.

Clearly activities are related and cases follow typical patterns [8]. A process is the
recipe for handling cases of a given type. In many workflow management systems, the
specification of a process fixes the routing of cases along activities, and workers have
hardly any insight in the whole. As a result exceptions are difficult to handle because
they require unparalleled deviations from the standard recipe.

Since in dynamic application environments exceptions are the rule, precedence rela-
tions among activities should be minimized. If the workflow is not exclusively driven
by precedence relations among activities and activities are not considered to be atomic,
then another paradigm is needed to support the handling of cases. Workers will have
more freedom but need to be aware of the whole case. Moreover, the case should be
considered as a ‘product’ with structure and state. For knowledge-intensive processes,
the state and structure of any case is based on a collection of data objects. A data object
is a piece of information which is present or not present and when it is present it has a
value. In contrast to existing workflow management systems, the logistical state of the
case is not determined by the control-flow status but by the presence of data objects. This
is truly a paradigm shift: case handling is also driven by data-flow instead of exclusively
by control-flow.

It is important that workers have insight in the whole case when they are executing
activities. Therefore, all relevant information should be presented to the worker. More-
over, workers should be able to look at other data objects associated to the case they are
working on (assuming proper authorization). Forms are used to present different views
on the data objects associated to a given case. Activities can be linked to a form to present
the most relevant data objects. Forms are only a way of presenting data objects. The link
between data objects, activities, and processes is specified directly. Each data object is
linked to a process. So-called free data objects can be changed while the case is being
handled. All other data objects are explicitly linked to one or more activities as a manda-
tory and/or a restricted data object. If a data object is mandatory for an activity, it is
required to be entered in order to complete the corresponding activity. If a data object is
restricted for an activity, then it can only be entered in this activity or some other activity
for which the data object is restricted. If data object D is mandatory for activity A, A can
only be completed if D has been entered. If D is restricted to A and no other activities,
D can only be entered in A. Note that D may be mandatory for activity A and restricted
to A, i.e., mandatory and restricted are two orthogonal notions. Moreover, forms are in-
dependent of these two notions. For example, the form attached to an activity may or
may not show mandatory/restricted data objects. However, if D is mandatory for activity
A and restricted to only A, but not in the form linked to A, then this will cause a dead-
lock since it is not possible to complete A. Therefore, mandatory and/or restricted data
objects are typically in the corresponding form. Moreover, in many cases the form will
contain additional data elements which are either free or mandatory for other activities in
the process.

Note that mandatory data objects can he considered as some kind of postcondition.
This observation raises the question why there is not a precondition (i.e., data objects have
to exist before execution) in addition or instead of this postcondition. This functionality
can be obtained by adding a dummy activity just before the activity which requires a
precondition, i.e., the dummy activity has a postcondition which can be interpreted as a
precondition of the subsequent activity. In other words, the dummy acts as a guard.

6

Actors are the workers executing activities and are grouped into roles. Roles are
specific for processes, i.e., there can be multiple roles named ‘manager’ as long as they
are linked to different processes. One actor can have multiple roles and roles may have
multiple actors. Roles can be linked together through role graphs. A role graph specifies
‘is a’ relations between roles. This way, one can specify that anybody with role ‘manager’
also has the role ‘employee’. For each process and each activity three types of roles need
to be specified: the execute role, the redo role, and the skip role.

• The execute role is the role that is necessary to carry out the activity or to start a
process.

• The redo role is necessary to undo activities, i.e., the case returns to the state be-
fore executing the activity. Note that it is only possible to undo an activity if all
following activities are undone as well.

• The skip role is necessary to pass over activities.

In order to skip over two consecutive activities, the worker needs to have the skip role for
both activities. The three types of roles associated to activities and processes provide a
very powerful mechanism for modeling a wide range of exceptions. The redo ensures a
very dynamic (as it is dependent on the role of the employee and the status of the case) and
flexible form of a loop. The skip takes care of a range of exceptions that would otherwise
have to be modeled in order to pass over activities. Of course, there are ways of avoiding
undesirable effects: you can define the ‘no-one’ or ‘nobody’ role that is higher than all the
other roles, i.e., no user has this role, and therefore, the corresponding action is blocked.
You can also define an ‘everyone’ role that is lower than all others. An activity with the
‘no-one’ redo role can never be undone again and it would then also not be possible to
go back to an earlier activity. This is a very effective way to model ‘points of no return’.
Using “everyone” as an execute role means that the activity can be carried out by anyone
who at least has a role in that process (because that person is then, after all, at least
equal to the everyone role). Note that in addition to these three roles, one could consider
additional roles, e.g., the “responsible role” or the “supervisor role”. For a case one could
also define the “case manager role”, etc.

The variety of roles associated to a case or an activity shows that in case handling
it is possible to separate authorization from work distribution. When using the classical
in-tray, one can only see the work-items which need to be executed. The only way to
get to a case is through work-items in the in-tray, i.e., authorization and work distribution
coincide. For case handling the in-tray is replaced by a flexible query mechanism. This
mechanism allows a worker to navigate through all active and also to completed cases.
The query “Select all cases for which there is an activity enabled which has an execute
role R” can be used to emulate the traditional in-tray. In fact, this query corresponds
precisely to the work queue concept used in the in-tray of the workflow management
system Staffware. By extending the query to all roles a specific worker can fulfill, it is
possible to create a list of all cases for which the worker can execute activities at a given
point in time. However, it is also possible to have queries such as “Select all cases that
worker W worked on in the last two months” and “Select all cases with amount exceeding
80k Euro for which activity A is enabled”. By using the query mechanism workers can
get a handle to cases that require attention. Note that authorization is separated from
work distribution. Roles are used to specify authorization. Standard queries can be used
to distribute work. However, the query mechanism can also be used to formulate ad-hoc
queries which transcend the classical in-tray.

7

Workflow management Case handling
Focus Work-item Whole case
Primary driver Control flow Case data
Separation of case data
and process control

Yes No

Separation of authoriza-
tion and distribution

No Yes

Types of roles associated
with tasks

Execute Execute, Skip, Redo

Table 1: Differences between workflow management and case handling.

To conclude this section, we summarize the main differences between workflow man-
agement, as supported by contemporary workflow technology, and case handling (cf. Ta-
ble 1). The focus of case handling is on the whole case, i.e., there is no context tunneling
by limiting the view to single work-items. The primary driver to determine which activ-
ities are enabled is the state of the case (i.e., the case data) and not control-flow related
information such as the activities that have been executed. The basic assumption driving
most workflow management systems is a strict separation between data and process. Only
the control data is managed. The strict separation between case data and process control
simplifies things but also creates integration problems. For case handling the logistical
state of a case (i.e., which activities are enabled) is derived from the data objects present,
therefore data and process cannot be separated! Unlike workflow management, case han-
dling allows for a separation of authorization and distribution. Moreover, it is possible to
distinguish various types of roles, i.e., the mapping of activities to workers is not limited
to the execute role.

3 The Case Handling Meta Model

After motivating case handling and introducing the basic concepts of this new paradigm in
Sections 1 and 2, we now identify the main entities of case handling environments as well
as their relationships. In doing that we move from a rather informal discussion towards
more precise modeling of case handling environments. An object-oriented approach is
used for this endeavor, since it provides powerful modeling constructs which proved to be
adequate for dealing with the complexity in case handling. We use the de facto standard
in object oriented analysis and design, the Unified Modeling Language (UML); mainly
its structural features are used. The case handling meta model represents artifacts which
are required to define cases and environments in which cases are executed; it is shown in
Figure 1.

Case definition is the central class of the case handling meta model. Case defini-
tions are either complex (cases with internal structure) or atomic (cases without internal
structure), referred to as complex case definitions and activity definitions, respectively.
Complex case definitions consist of a number of case definitions, resulting in a hierar-
chical structuring of cases in sub-cases and activities. In the case handling meta model,
this property is represented by a recursive association between complex case definition
and case definition. Obviously each complex case definition consists of at least one case
definition, and each case definition may occur in at most one complex case definition, as
represented by the cardinalities of that association in Figure 1.

8

case definition

complex case definition activity definition

-sub

1..*

-super0..1

data object definition forms definition
0..*1..*

0..1

0..*

role

-from

0..*

-to

0..*

-free0..*

0..*
0..*

0..*

-is_a 0..*

0..*

0..*

0..*

0..*

0..*

-mandatory

-restricted

1..*

0..*

activity role type

1..*

0..*

case role type

Figure 1: Case handling meta model, schema level.

9

Since case handling is a data-driven approach, activity definitions are associated with
data object definitions. In particular, each activity definition is associated with at least one
data object definition. This association is partitioned into two main types, i.e., mandatory
and restricted. If a data object definition is mandatory for an activity definition then the
respective data value has to be entered before that activity can be completed; however,
it may also be entered in an earlier activity. A restricted association indicates that a data
value can only be entered during a particular activity.

Restricted and mandatory associations between activities and data are an important
implementation vehicle for business process support, since an activity can only be com-
pleted if and when values for the mandatory data objects are provided. Activity definitions
are also associated with forms definitions. Forms are used to visualize data objects which
are offered to the user. Forms are closely associated with activities, and they are an im-
portant means to business process support. The fields displayed in a form associated with
an activity correspond to mandatory as well as restricted data objects for that activity.2 In
addition, the definition of forms may also contain data objects that are mandatory for sub-
sequent activities. This feature allows flexible execution of business processes, since data
values can be entered at an early stage, if the knowledge worker decides to do so. Data
object definitions may also be free; free data objects are not associated with particular
activities; rather they are defined in the context of complex case definitions. Hence, they
can be accessed at any time during the case execution. Free data objects are represented
by an association of data object definition with complex case definition. The context of a
case can be presented by such a form. As indicated above, providing the knowledge with
as much information as possible is an important aspect of case handling systems.

Roles are used more thoroughly in case handling than in workflow management. In
particular, there are multiple roles associated with a given case definition, and these roles
have different types. Typical roles types associated with an activity are execute (to execute
an activity), skip (to skip an activity that is not required during a particular case), and
redo (to jump back to previous activities of the case with the option of re-doing these
activities or re-confirming data object values which have already been entered). Role
types associated with complex case definitions are, for example, manager and supervisor,
to indicate persons which may manage or supervise complex cases; typically these roles
are mapped to management personnel of an organization. Role types for activities are
represented by an association class called activity role type, linking the role class and
the activity definition class, while role types for complex cases are represented by an
association class between the complex case definition and the role class.

The example shown in Figure 2 illustrates the concepts introduced in the case han-
dling meta model. It shows how cases, data objects and forms and their associations as
well as organizational aspects are represented. We start by discussing the overall structure
of the case definition. There is one complex case definition C1, which consists of activity
definitions A1, A2, and A3, represented by the indirect recursion of complex case defi-
nitions and case definitions in the meta model, shown as a dotted line connecting C1 to
its sub-cases. As shown in that figure, data object definition D1 is mandatory for A1, A2
and A3. D2 is mandatory for A2, and D3 is restricted for A3. Since D1 is mandatory
for A1, the form definition F1 associated with A1 holds a field for D1. However, there is
also a field for D2 in that form. The knowledge worker in charge of a case based on that
case definition may enter a value for D1 when A1 is ready for execution. In addition, she
may also enter a value for D2 at this instant, which implicitly performs A2 as well. This

2As indicated before, the form may not contain all mandatory/restricted data objects. However, this may
cause deadlocks or other anomalies.

10

A1 A2 A3

D1 D2 D3

F1

D0

d1

D4

C1

d2

d0

d4
d1

F3

d0

R1

Exec

R2

Skip

d1

d3
d2

F2

free

free

restrictedmandatory

mandatory

mandatory

mandatory

Figure 2: Abstract example introducing the schema level of the case handling meta model.

is due to the fact that D2 is the only mandatory data object for A2. Notice, however, that
D3 cannot be entered neither during A1 nor during A2, since it is restricted to A3 and
can therefore only be executed in the context of A3, using the form associated with it.

The activities of the case are ordered: A1 is followed by A2 and A3, represented
by the recursive association with roles to and from in the meta model. There are five
data object definitions D0 through D4. Dotted lines marked with association type names
represent the associations between activity definitions and data object definitions. As in-
dicated above, D1 is mandatory for A1, A2 and A3, D2 is mandatory for A2, while D3 is
restricted for A3. D0 and D4 are free data elements, which appear in form definition F3,
associated with the overall case definition C1. Notice that form definition F1 contains
not only a field d1 representing data object definition D1 (mandatory for the completion
of A1), but also d2 (for data object definition D2 which is mandatory for A2) and d0 (for
data object definition D0 which is free). As discussed above, during A1 the knowledge
worker may already enter a data value for d2, although this is not required for the com-
pletion of A1. However, A1 cannot complete before d1 is entered (D1 is mandatory for
A1). The knowledge worker may use the information presented in d0 to work efficiently
on the case. Not to overload the figure, the roles are not specified completely. In fact, only
the roles for A1 are specified: R1 and R2 are associated with A1, where the association
with R1 is of type execute (persons with role R1 may execute this activity), while the
association with R2 is of type skip (persons with role R2 may skip this activity). This
means that during the enactment of cases based on case definition C1, only knowledge
workers which can play role R1 are permitted to perform activities based on A1, and only
persons with role R2 may skip that activity.

Figure 1 only shows entities at the schema level, i.e., entities such as (complex) case
definitions, roles, activity definitions, data object definitions, and forms definitions. These
entities are specified at design-time. At run-time, other entities come into play, e.g., con-
crete cases, actors, activities, data objects, and forms. For example, a case definition
“insurance claim” describes an insurance claim at the type level and not at the instance

11

case

complex case activity

-sub

1..*

-super0..1

data object form0..*0..*

0..1

0..1

actor

0..*

1..* 1..*

0..*

-from

0..*

-to

0..*

0..*

-free0..*
1..*

0..*

0..1

0..*

activity role
case role

Figure 3: Case handling meta model, instance level.

level. Case “insurance claim 993567 filed by Jones on August 10th” is an instantiation
of case definition “insurance claim” and is example of an entity created and handled at
run-time. Entities on the instance level are represented by the case handling model shown
in Figure 3. In this model concrete cases are in the center of attention. The overall struc-
ture of the object model shown in Figure 3 is similar to the structure of the meta model
shown in Figure 1. For example, as case definitions are generalizations of complex case
definitions and activity definitions in the meta model, cases are generalizations of com-
plex cases and activities in the case handling model. Furthermore, there is a precedence
ordering between cases, represented by a recursive relationship with roles to and from in
both levels of abstraction. The main differences between the two models are the organi-
zational embedding and the forms. In particular, while role is a class in the meta model,
actor is a class in the case handling model. The cardinality of forms and form definitions
are different in both models. In the meta model (schema level), each forms definition
is associated with an arbitrary number of activity definitions, while in the case handling
model (instance level) each form is associated with at most one activity. This is due to the
fact that forms are instantiated for each activity with which they are associated. There are
activities without forms to cater for automatic activities, for example automated queries
to external database systems.

Figure 3 assumes that at run-time the same form can be instantiated multiple times,
i.e., if two activities share the same forms definition, there may be two copies of the same
form. An alternative interpretation used by e.g. FLOWer is to see a form as simply a view
on the data and not allow multiple instances of the same form for the same case at the
same time. For this interpretation, the cardinalities in Figure 3 should be like in Figure 1.

12

4 A Formal Framework for Case Handling

This section formalizes most of the concepts introduced in the first half of this paper. The
main purpose of this endeavor is to precisely describe the dynamics of a case handling
environment, i.e., an execution model for case handling. Note that the meta model intro-
duced in the previous section only considers static aspects. The meta model structures
relevant entities at both the schema level and instance level. However, it does not specify
the dynamics.

In this section, we will specify the dynamics using a formal model. First, we introduce
a formal model describing a case definition. In this model, we abstract from certain
entities (e.g., forms) and focus on activities and data objects. Based on this formal model,
we describe the execution model for case handling in terms of state-transition diagrams
and ECA-rules. Finally, we discuss the relation between the formal model and the entities
excluded from the formal model, e.g., forms and actors.

4.1 Case definition

A case definition describes the way a case of a specific type is handled. Clearly, the case
definition is a good starting point for formalizing the dynamics of case handling. For
presentation purposes, we will limit our formalization of case handling to activities, data
objects, and their interrelationships. These are the core entities which determine the exe-
cution semantics of case handling. The formalization will exclude forms and roles. More-
over, we do not consider nested case definitions, i.e., we assume that a case definition only
contains activity definitions and not complex case definitions. Note that the latter is not a
real limitation: Any hierarchical model can be flattened by recursively replacing complex
case definitions by their decompositions. Forms and roles can be excluded because they
only indirectly affect the execution semantics. Given these restrictions, we can define a
case definition as follows.

Definition 4.1 A tuple CD = (A, P, D, dom,mandatory , restricted , free, condition)
is called case definition, if the following holds:

• A is a set of activities definitions,

• P ⊆ A × A is a precedence relation,

• D is a set of data object definitions,

• dom ∈ D �→ 2U is a function mapping each data object onto its domain (2U

denotes the power set of U), i.e., the domain of a data object definition is a set of
values over some universe U ,

• mandatory ⊆ A × D is a relation which specifies mandatory data object defini-
tions,

• restricted ⊆ A × D is a relation which specifies restricted data object definitions,

• free ⊆ D is a relation which specifies free data object definitions,

• condition ∈ A �→ 2B specifies activity conditions, where B is a set of partial
bindings, i.e., B = {f ∈ D �→ U | ∀d ∈ dom(f), f(d) ∈ dom(d)}

such that

13

• P is acyclic,

• D = free ∪ {d ∈ D | ∃a ∈ A : (a, d) ∈ mandatory ∪ restricted}, and

• free ∩ {d ∈ D | ∃a ∈ A : (a, d) ∈ mandatory ∪ restricted} = ∅.

�

It is easy to relate Definition 4.1 to the meta model shown in Figure 1. Set A in Defi-
nition 4.1 corresponds to the class activity definition in Figure 1. Set D corresponds to
the class data object definition. Function dom can be considered to be an attribute of
the class data object definition. Relation P corresponds to the association denoting the
precedence relation. Note that we require P to be acyclic, i.e., there are no loops.3 Func-
tions mandatory and restricted correspond to the two associations connecting activities
and data object definitions. Set free corresponds to the association connecting complex
case definitions and data object definitions. Note that we do not consider nested case def-
initions. Therefore, it suffices to consider only one case definition and a set is enough to
model free data objects. Free data objects can neither be mandatory nor restricted. Note
that a data object definition can be both mandatory and restricted at the same time.

Function condition can be seen as an attribute of class activity definition in Figure 1.
Each activity definition has a condition which is defined as a set of bindings. A binding
is a set of values for specific data objects. An activity can only be executed if the actual
values of data objects match at least one of its bindings. If not, the activity is bypassed.
Functions dom and condition provide a very simplistic type system and constraint lan-
guage. These can be upgraded to more advanced languages. The choice that activities
are bypassed if the activity condition evaluates to false is merely chosen for reasons of
simplicity. Every activity acts as an AND-join/AND-split [31]. Therefore, sequential and
parallel routing are possible by setting the activity conditions to true. Alternative routing,
normally specified through XOR-splits and XOR-joins, can be obtained by adding activ-
ity conditions such that each activity in one branch either evaluates to true or to false.
This style of process modeling corresponds to the routing semantics of InConcert [47]. It
is important to note that activities for which the condition evaluates to false (i.e., there is
no binding matching the current values) are skipped and not blocked. It is possible to use
a less simplistic routing language.

Definition 4.1 is illustrated by the sample case definition shown in Figure 2. This case
definition is formalized as C1 = (A, P, D, dom,mandatory , restricted , free, condition),
such that A = {A1, A2, A3}, P = {(A1, A2), (A2, A3)}, D = {D0, D1, . . . D4}, and

• mandatory = {(A1, D1), (A2, D1), (A3, D1), (A2, D2)},

• restricted = {(A3, D3)},

• free = {D0, D4}.

Figure 2 does not specify dom and condition . Let us assume that dom(D1) = {true,
false}, dom(D2) = {red , green, yellow}, dom(D3) = {1, 2, 3, 4, 5, 6, 7, 8, 9, 10}, and
dom(D4) = String . I.e., D1 is a boolean, D2 is a color, D3 is a number, and D4 is
some free text. condition(A1) = {}, which indicates that there is only one possible

3We do not allow loops. As a result we have a partial order of activities. This is not a fundamental
restriction. It is possible to have block structured loops like in MQSeries workflow [32]. However, it is
not easy to extend this to the pattern “arbitrary cycles” described in [8]. However, for structured loops the
extension is straightforward. In fact, the case-handling system FLOWer supports this.

14

binding for activity A1 and this binding is the empty binding. The empty binding is the
function with an empty domain. Therefore, there are no requirements with respect to the
values of data objects. This makes sense since A1 is the first activity to be executed.
condition(A2) = {{(D1, true)}}, which indicates that A2 can only be executed if the
value of D1 is set to true. condition(A3) = {{(D2, red)}, {(D2, green)}}, which in-
dicates that A3 can only be executed if the value of D2 is set to red or green . Suppose
that in activity A1 data object D1 is set to false and D2 is set to red . As a result activity
A2 is bypassed because condition(A2) does not contain a binding where D1 is set to
false. After skipping A2, activity A3 becomes enabled. A3 is not skipped because there
is a binding where D2 is set to red ({(D2, red)}). An alternative condition for A3 is
condition(A3) = {{(D1, true), (D2, red)}, {{(D1, false)}, (D2, green)}}. This indi-
cates that A3 can only be executed if D1 is true and D2 is red, or D1 is false and D2
is green. Otherwise A3 is bypassed. Note that these examples have only been given to
show how conditions can be specified in terms of bindings.

4.2 Dynamics

As a basis for the specification of the dynamic behavior of case handling systems, the
behavior of activities has to be defined properly. In this paper, state-transition diagrams
are used for this purpose. In a given organization, each case definition is assigned to a
particular type of business event, which triggers the instantiation of a case according to
the case definition. For example, receiving a message informing an insurance company
on a claim is a typical business event. There might be case definitions for which many
business events are triggering.

When a case is instantiated, its activities are created. On its creation, an activity is in
the initial state. If and when it becomes available for execution, it enters the ready state.
When it is selected by the user it starts running. It can either be completed or it can be
interrupted. In the latter case, the data entered during the interrupted activity is saved.
The activity can be started again, and the data is still available at that time. If all data
objects of a given activity are entered, for instance during previous activities, it performs
the auto-complete state transition to enter the completed state. Activities may be skipped
or bypassed. The user may skip an activity if she decides that it is not required. When
due to the evaluation of conditions certain branches are not followed, the activities on that
particular branch of the case definition are bypassed.

An important aspect of case handling systems is the ability to re-execute previous ac-
tivities. This feature is represented by specific redo transitions from the passed, skipped,
and completed states. Activities which have been redone can be re-executed. The behav-
ior of activities is shown in Figure 4.

While activities are an important artifact in case handling, the case is mainly con-
trolled on the basis of states of data objects, associated with the particular case. It is
important to stress that not only the life-cycle of activities can be described by states and
state transitions, but also data objects. To see this, consider the state transitions that data
objects may take as shown in Figure 5. On the creation of a data object, it adopts the un-
defined state. Data objects can be defined, either by users filling in forms which represent
these data, or they can be defined automatically, for example, by running queries against
a database and transferring the result values to the data objects. Activities for which data
objects are mandatory can be redone (cf. the redo role), which results in a state transition
of data objects to the unconfirmed state. By confirming the values, data objects re-enter
the defined state.

15

initial ready running

passed skipped completed

enable

disable

select

redo

complete

redoredo

interrupt

by
pa

ss skip

auto-

com
plete

Figure 4: Dynamic behavior of activities.

undefined defined

unconfirmed

define

redo confirm

Figure 5: States of data objects.

Based on the above considerations, the state space of a case is defined as follows:

Definition 4.2 Let CD = (A, P, D, dom,mandatory , restricted , free, condition) be a
case definition. The case state space S based on CD is defined as Cartesian product
S = AS × DS over an activity state space AS and a data state space DS, such that

• AS = A �→ {initial , ready , running , completed , passed , skipped}, and

• DS = D �→ {undefined} ∪ ({defined , unconfirmed} × U)

�
This definition simply states that the state of a case is characterized by the states of its
activities (as characterized by Figure 4) and the states of data objects (as characterized
by Figure 5). Each data object is either undefined, defined, or – after a redo operation –
unconfirmed. In the latter case, a value is stored for the data object.

It is useful to define terms describing the relative order of activities within the context
of a given case definition. Given a case definition CD = (A, P, D, dom,mandatory ,
restricted , free, condition), for each activity a ∈ A

• preceding(a) = {a′ ∈ A | (a′, a) ∈ P+}, and

• subsequent(a) = {a′ ∈ A | (a, a′) ∈ P+}.

where P+ =
⋃

i>0 P i is the non-reflexive transitive closure of P .
Case handling systems make use of case definitions to guide users in handling cases.

In order to do that, the system has to make sure that a given activity is flagged ready for
execution if and only if the preconditions of that activity are met. To be able to specify if
an activity should be executed or bypassed, we use the following auxiliary function. Let
CD = (A, P, D, dom,mandatory , restricted , free, condition) be a case definition and

16

S = AS×DS its state space. Function α ∈ DS �→ (D �→ U) maps elements of the data
state space onto sets of defined data objects and their values, i.e., α filters out data objects
which are undefined or unconfirmed. α can be specified as follows: For any ds ∈ DS:
α(ds) := {(d, v) ∈ D × U | ds(d) = (defined , v)}. Using this function, we can define
whether an activity a ∈ A should be executed, considering to the data objects given a
state state ds ∈ DS: Cpre(a, ds) := ∃f ∈ condition(a) : f ⊆ α(ds). Cpre(a, ds) is
called the precondition of activity a in data state ds. Note that Cpre ∈ (A × DS) �→ B.
Note that if this condition evaluates to true, a user with the proper role can select the
activity for execution. If the condition evaluates to false, the activity is bypassed. Again
we would like to stress that activities may be bypassed but not blocked like in most other
languages.

In addition to a precondition which depends on the data state, there is also a post-
condition depending on the data state. Cpost ∈ (A × DS) �→ B is an auxiliary function
for specifying postconditions. For each a ∈ A and ds ∈ DS, Cpost(a, ds) := {d ∈
D | (a, d) ∈ mandatory} ⊆ dom(α(ds)) is the postcondition of activity a in data state
ds.

Functions Cpre and Cpost only focus on the data state ds ∈ DS. Clearly, the data
state is not sufficient to determine the dynamics, also the activity state as ∈ AS, the
causal relations specified by P , and the state-transition diagrams shown in Figures 4 and
5 matter. To specify the semantics of case handling we augment the state transitions
shown in Figure 4 with rules specified using an Event Condition Action (ECA) style of
formalization [45]. Each state transition shown in Figure 4 is described by a rule of the
following form: ON event, IF condition, THEN action. The event describes the trigger
to evaluate the rule and typically corresponds to a user action. If there is no external
event needed to trigger the rule (i.e., a system trigger), this part of the rule is omitted.
The condition is a boolean expression in terms of the state of the case, i.e., the activity
state (as ∈ AS) and the data state (ds ∈ DS). The action is a state transition in the
state-transition diagram. Using such ECA-rules, the semantics are defined as follows.

Definition 4.3 Let CD = (A, P, D, dom,mandatory , restricted , free, condition) be a
case definition, a ∈ A an activity, as ∈ AS the activity state, and ds ∈ DS the data state.
The state transitions shown in Figure 4 are defined by the following ECA-rules.

• IF ∀a′ ∈ preceding(a) : as(a′) ∈ {passed, skipped, completed}
THEN enable(a, as, ds)

• IF ∃a′ ∈ preceding(a) : as(a′) �∈ {passed, skipped, completed}
THEN disable(a, as, ds)

• ON user trigger (an actor with the proper execute role selects the activity)
IF Cpre(a, ds)
THEN select(a, as, ds)

• ON user trigger (activity is interrupted by the actor working on the activity)
IF true
THEN interrupt(a, as, ds)

• ON user trigger (activity is completed by the actor working on the activity)
IF Cpost(a, ds)
THEN complete(a, as, ds)

17

• IF Cpre(a, ds) ∧ Cpost(a, ds)
THEN auto complete(a, as, ds)

• ON user trigger (activity is skipped by an actor with the proper skip role)
IF Cpre(a, ds)
THEN skip(a, as, ds)

• IF ¬Cpre(a, ds)
THEN bypass(a, as, ds)

• ON user trigger (activity is redone by an actor with the proper redo role)
IF ∀a′ ∈ subsequent(a) : as(a′) ∈ {initial, ready}
THEN redo(a, as, ds)

�

The ECA rules should be interpreted in the context of the state-transition diagram shown
in Figure 4. A rule can only be applied if the corresponding activity is in the proper
state, e.g., action bypass(a, as, ds) corresponds to a state transition of state ready to state
passed and, therefore, can only be executed if activity a is in state ready. Most of the
rules are fairly straightforward. The only rule which deserves some explanation is the
last one, redo(a, as, ds). To redo an activity all subsequent activities should either be in
state initial or ready or also rolled back. Therefore, one should first roll back activities
whose subsequent activities are ready or initial and then recursively roll back the other
activities. Note that it is possible that a direct predecessor of an activity that is in state
ready can be rolled back. If this is the case, action disable(a, as, ds) automatically puts
the predecessor in state initial.

Definition 4.3 only relates to the state-transition diagram shown in Figure 4. In the
next definition we give similar rules for the state-transition diagram shown in Figure 5.

Definition 4.4 Let CD = (A, P, D, dom,mandatory , restricted , free, condition) be a
case definition, d ∈ D a data object, as ∈ AS the activity state, and ds ∈ DS the data
state. The state transitions shown in Figure 5 are defined by the following ECA-rules.

• ON user trigger (an actor enters the value of a data object in a form)
IF (∃a ∈ A : (a, d) ∈ restricted) ⇒ (∃a ∈ A : (a, d) ∈ restricted ∧ as(a) =
running)
THEN define(d, as, ds)

• ON system trigger (if an activity is redone all data elements associated to the ac-
tivity are triggered)
IF true
THEN redo(d, as, ds)

• ON user trigger (the value of a data object is confirmed by an actor having access
to some form)
IF (∃a ∈ A : (a, d) ∈ restricted) ⇒ (∃a ∈ A : (a, d) ∈ restricted ∧ as(a) =
running)
THEN confirm(d, as, ds)

�

18

It is interesting to note that the state-transitions in Figure 5 are relatively independent of
the states of activities. This is the essence of case handling, the data objects are leading
and data values may be entered at various places. Only restricted data objects are closely
bound to activities. This is reflected in the conditions given in Definition 4.4.

4.3 Other aspects

The formalization given in terms of the state-transition diagrams and the ECA rules only
partially incorporates aspects such as forms and roles. Therefore, we discuss the relation-
ships between these aspects and definitions 4.1, 4.2, 4.3, and 4.4.

Form definitions are linked to activity definitions and complex case definitions. Typ-
ically, if (a, d) ∈ mandatory , then data object d also appears in the form linked to
activity a. Note that a form linked to an activity may contain entries for data objects that
are not mandatory. These additional entries may be used to enter data which is needed
in subsequent activities or to view and modify data produced in preceding activities. The
additional entries increase flexibility by decoupling data objects and activities. There may
even be forms which are not linked to any activity. Forms do not determine whether a data
object is mandatory, restricted, or free. This is a matter between activities and data ob-
jects. Given the limited impact of forms on the dynamics of case handling, we abstracted
from this aspect.

Roles are linked to activities. We distinguish at least the following three role types:
exec, skip and redo. These roles are mentioned in the event part of the ECA rules given
in Definition 4.3 and Definition 4.4. For example, it is only possible to skip an activity
if the event that leads to action skip(a, as, ds) is generated by an actor that has the skip
role.

An issue that was not addressed is the separation between work distribution and au-
thorization. In traditional workflow management systems work distribution and autho-
rization coincide. For case handling we propose the query mechanism mentioned before.
Users can simply state an ad-hoc query or use a predefined query. The query “Select all
cases for which there is an activity in state ready which has an execute role R” can be used
to emulate the traditional in-tray. The query mechanism is used to give an actor a handle
to a case and not to a specific activity. Once an actor has a handle to a case, she can select
activities that are in state ready. Note that authorization is governed by the exec, skip and
redo roles. Work distribution is governed by the query mechanism.

5 FLOWer

In this section we introduce a concrete case handling product: FLOWer. FLOWer [5,
12, 13] is Pallas Athena’s case handling product. FLOWer is consistent with the case
handling meta model (cf. Section 3) and the formal framework (cf. Section 4). However,
FLOWer offers much more features than discussed in the previous sections. For example,
Section 4 assumes a rather basic control flow model where eventually all activities are
either bypassed, skipped, or completed. In this basic model it is not possible to select
one alternative branch, have multiple instances, deferred choice, etc. [8]. As a result,
Section 4 presents only a simplification of the actual functionality of FLOWer. Note
that the goal of this paper is to show the essence of case handling and not a concrete
product. Nevertheless, we think it is interesting a see a concrete application of FLOWer
to illustrate the case-handling paradigm.

19

Figure 6: Complex case definition MotorClaim.

FLOWer consists of a number of components: FLOWer Studio, FLOWer Case Guide,
FLOWer Configuration Management (CFM), FLOWer Integration Facility, and FLOWer
Management Information and Case History Logging. In this paper, we limit ourselves to
FLOWer Studio and FLOWer Case Guide. FLOWer Studio is the graphical design en-
vironment. It is used during build-time to define case definitions, consisting of activities,
precedences, data objects, roles, and forms. FLOWer Case Guide is the client application
which is used to handle individual cases.

Now we consider a fictive insurance company’s process for handling claims for mo-
tor car damage. Figure 6 shows a top-level view of the workflow process MotorClaim in
FLOWer Studio. The right-hand side of Figure 6 shows a graphical representation of the
process. The left-hand side shows a list of data object definitions. The left-hand side of
the window can also be used to list all form definitions, mappings (to connect to external
information sources) and complex case definitions (subprocesses). As Figure 6 shows
the case handling process starts with the creation of a case (activity Case Creation), fol-
lowed by the activity Claim Start. Activity Claim Start is linked to a form which en-
ables the user to enter the claim data and the scanned hand-written form supplied by the
claimant. Both data objects are restricted, i.e., they can only be entered in this step in
the process. After completing the form associated to activity Claim Start the subpro-
cess Register Claim is started. Note that this corresponds to a complex case definition
in terms of our meta model (cf. Figure 1). Complex case definitions are named plans
in FLOWer. Register Claim is a so-called static plan which means that it does not in-
volve any choices and is instantiated only once. The top-level view of Register Claim
is shown in Figure 7. Register Claim consists of a number of activities which all need
to be executed and each of these activities corresponds to obtaining certain data objects.
After completing Register Claim, four complex case definitions are handled in parallel:
Get Medical Report, Get Police Record, Assign Loss Adjuster, and Witness Statements.
Get Medical Report, Get Police Record, and Assign Loss Adjuster correspond to sub-
processes which start with a system choice and are named system decision plans. Each
of these subprocesses contains several activities. A detailed description of these subpro-
cesses is beyond the scope of the paper. The same holds for the processing of witness
statements. However, the complex case definition Witness Statements is a so-called dy-

20

Figure 7: Complex case definition Register Claim.

namic subplan. This means that it can be instantiated multiple times and each of these
instances is handled in parallel. A dynamic subplan can have the following attributes: Ex-
pansion name, Minimum instances, and Max expansions. The attribute Expansion name
is used to identify each instance. For the subplan Witness Statements the name of the
witness is used). The attribute Minimum instances is used to specify how many instances
should be created (in this case the number of eye witnesses specified by the data object
nr witnesses entered in Register Claim) The attribute Max expansions is used to set an
upper limit for the number of instances (in this case 5; note that new instances can be
created on-the-fly).

After completing Get Medical Report, Get Police Record, Assign Loss Adjuster, and
Witness Statements, complex case definition Policy Holder Liable is executed. This sub-
process starts with a user decision and is therefore named a user decision plan. Pol-
icy Holder Liable contains seven activities. Again details are omitted.

The case definition of MotorClaim comprises 173 data object definitions. This num-
ber shows the relevance of data. Each data object has a name and a type and is linked to a
plan (i.e., a complex case definition). The left-hand side of Figure 8 shows these attributes
for the data object definition claimant contacted. This is a boolean data object indicating
whether the policy holder has been contacted. Initially this data object is set to false. As
the right-hand side of Figure 8 shows, claimant contacted is restricted to activity Con-
tact policy holder. This activity is part of the complex case definition Register Claim
shown in Figure 7. Note that one data object definition can be restricted to multiple ac-
tivity definitions and that one activity definition can have multiple restricted data object
definitions. This is consistent with the cardinalities of the association restricted shown in
Figure 1. Mandatory data objects are specified when defining an activity. Figure 9 shows
two activities and the corresponding lists of mandatory data objects. For example, data
object definition accident date is mandatory for activity definition Collect case data. All
data object definitions are linked to a specific complex case definition (i.e., including re-
stricted and mandatory data elements). For example, the left-hand side of Figure 8 shows

21

Figure 8: Attributes of the data object definition claimant contacted.

that claimant contacted is linked to plan Register Claim. This is consistent with the meta
model which identifies the association free (cf. Figure 1) which links complex case def-
initions and data object definitions. However, the realization in FLOWer implies that all
mandatory and restricted data objects are also linked to a complex case definition (i.e.,
plan).

The case definition of MotorClaim comprises 21 form definitions. One form def-
inition can be linked to many activity definitions. For example, form definition Col-
lect Case Data is linked to the first four activities of Register Claim. Figure 9 shows
two activity definitions sharing this form. Let us focus on the first three steps of Regis-
ter Claim (Figure 7). Activity definition Collect case data has 5 mandatory data object
definitions (accident date, persons injured, etc.). Activity definition Policy holder data
has 14 mandatory data object definitions (name of policy holder, policy number, etc.).
Activity definition Opposite party data has 10 mandatory data object definitions (name
of opposite party, address, etc.). There is no overlap between these mandatory data ob-
jects. However, form definition Collect Case Data includes all these data objects since
the form is shared among these activities. This means that when a worker is executing the
first step in the process (i.e., activity Collect case data), she will see information relevant
for subsequent steps in the process. Moreover, the worker can already enter data and
this way implicitly execute subsequent steps. By entering the 5+14+10 = 29 mandatory
data objects mentioned before, the first three steps are executed through filling out a sin-
gle form. This example demonstrates the essence of case handling: The focus is on the
whole case rather a single work-item and data objects rather than control-flow constructs
are driving the workflow.

As Figure 10 shows, six roles are relevant for the MotorClaim case definition: no-
body, Manager, Supervisor, Claim adjuster, Doctor, and Data collector. The arcs in the
role graph correspond to the is a association shown in Figure 1. Note that nobody is the
most powerful role. If no actors are assigned this role, it can be used to disable undesir-
able skip or redo actions as was explained in Section 2. The role Data collector is the
weakest role and this role can be fulfilled by anybody having any of the six roles shown
in Figure 10. Each activity definition has three types of roles assigned to it. Figure 11

22

Figure 9: Properties of activities, including specification of mandatory data objects.

Figure 10: Role graph editor of Studio showing the six roles involved.

23

Figure 11: The execute, redo, and skip roles of Collect case data.

shows the execute, redo, and skip roles of Collect case data. Collect case data can be
executed by workers with at least the role Data collector (i.e., all actors having any of the
six roles), it can be redone by workers with at least the role Claim adjuster (i.e., all actors
except the ones just having the Doctor or Data collector) role, and it can be skipped by
workers with at least the role Manager (i.e., all actors with either the role Manager or
nobody).

Figures 6, 7, 8, 9, 10, and 11 show windows of the design tool Studio. Actors (i.e.,
workers) access cases through the so-called FLOWer Case Guide. Access to cases is lim-
ited by the associated roles. Note that FLOWer supports the separation of authorization
and work distribution. The role mechanism is used for authorization. Work distribution
is supported through a query mechanism as explained in Section 2.

Figure 12 shows the Case Guide showing the state of a case of type MotorClaim.
The case guide shows the whole case. The left-hand-side shows the hierarchy of the
case definition. The right-hand side of the Case Guide shown in Figure 12 is divided
into three parts. The top part is used for navigation. The bottom part is used to access
forms which are independent of activities, e.g., form Case Overview can be opened at
any time and shows information about letters sent, letters received, the accident form,
etc. In the middle part of the right-hand side for the window, the so-called wavefront is
shown. The wavefront is the most essential piece of information provided by the Case
Guide since it shows the state of the case in terms of activities that have been executed or
skipped, activities that are enabled, and activities that are not (yet) enabled. The wavefront
provides a time line. Activity Claim start is on the right of this time line indicating that it
has been executed. Static plan (i.e., subprocess/complex case definition) Register Claim
is on the time line indicating that it is ready to be executed. Get Medical Report and the
other plans/activities at the top level are on the left of the time line indicating that they
are not (yet) enabled. By double clicking the icon of Register Claim, the wavefront for
the activities/plans inside Register Claim is shown. By double-clicking an activity, the
execution of the corresponding activity starts. If the first activity of Register Claim (i.e.,
Collect case data) is started, the form shown in Figure 13 is opened. This form, also
named Collect Case Data, consists of two pages. Figure 13 only shows the first page.
The first six data objects shown in the form correspond to the activity Collect case data.
The data objects under “INSURO client” correspond to activity Policy holder data and

24

Figure 12: The FLOWer Case Guide.

25

Figure 13: The form associated with some of the activities in Register Claim.

the data objects under “Opposite party” correspond to activity Opposite party data. The
form Collect Case Data is linked to these three activities, i.e., a single form is shared
among multiple activities. However, whether data objects are mandatory or restricted
depends on the current activity. Note that as indicated before all three activities can be
performed through a single form, i.e., there is no need to open and close forms in-between
activities. However, a worker can fill out only the top part of the form Collect Case Data
and thus only executed the first step in Register Claim.

In this section, we have shown an application of case handling using FLOWer. The
application is fairly straightforward. However, even rather straightforward workflow pro-
cesses may involve many data objects and activities. The MotorClaim applications con-
sists of 8 complex case definitions, 30 activity definitions, 173 data object definitions, 21
forms, and 6 roles. Unlike typical workflow solutions, data is not hidden inside appli-
cations. The fact that a considerable number of data objects are identified and used for
guiding workers through case executions shows that the process is primarily data-driven
and thus a nice illustration of the case handling paradigm.

26

6 Applications of case handling

In this section we briefly discuss practical implementations of case handling systems
based on FLOWer. At this point in time several Dutch organizations are switching from
a traditional workflow management system to FLOWer. In many cases the switch is
triggered by the problems addressed in the introduction. An example of such an orga-
nization is the UWV. The Employee Insurance Implementing Body (Uitvoering Werk-
nemersverzekeringen, or UWV) is responsible for the implementation of employee insur-
ance schemes, such as the sickness insurance scheme (ZW), the national health insurance
scheme (ZFW), the unemployment insurance scheme (WW) and the occupational disabil-
ity insurance scheme (WAO). The UWV levies the contributions under these schemes,
assesses benefit applications and sees to the payment of benefits. UWV is a new organi-
zation which joins former organizations (uitvoeringsinstellingen, or uvi’s) such as Guo,
Gak, Cadans, Uszo, Bouwnijverheid, and Lisv. Formally the organization was created
on 1-1-2002. The goal of joining these organizations into the UWV is twofold: improve
quality and reduce costs. To achieve this goal, the merger triggered the development of a
common ICT strategy and standards. For workflow management and case handling within
the UWV, FLOWer was selected as the standard product. One of the first applications of
FLOWer was in the Complaints and Appeals Department of UWV/Gak. A system based
on FLOWer runs within all 25 branch offices (1000 users) of the UWV/Gak and handles
about 110.000 complaints and 15.000 appeals per year. The processes supported by this
system are complex, need to deal with many exceptions, and involve many documents.
Since FLOWer is a rather new tool and the organizations applying FLOWer are not eager
to provide detailed information about their processes (e.g., for reasons of confidentiality),
we cannot provide any details of current implementations. Instead we conclude with a
list of typical application domains of a tool like FLOWer:

• Payment institutions (issuing payments, handling complaints and appeals),

• Banks and insurance companies (credit facilities, claims processing),

• Government bodies (processing vertical products),

• Telecommunications (client and contract administration),

• Housing corporations (real estate administration),

• Educational institutions (student and course administration),

• Health care (patient registration and administrative processing),

• Police (supporting police field work),

• Courts of law (writs, summonses), and

• IT companies and departments (incidents, requests for changes).

It is important to note that FLOWer has been applied in each of these application domains,
i.e., it is not only a list of possible applications: It lists areas where case handling has been
applied using FLOWer.

27

7 Related work

As was mentioned in the introduction, many researchers have recently addressed the issue
of workflow flexibility; a number of workshop reports, edited books, and special issues
of journals were devoted to this topic, e.g., [6, 9, 16, 23, 27, 29, 30]. Agostini and De
Michelis [11] argue that very simple workflow models should be used and exceptions
should be dealt with by hand through so-called “linear jumps”. Other authors, e.g., [15],
give concrete adaptation rules. Some authors even state that “workflow change is a work-
flow” [19]. Several authors propose a more declarative style of specifying workflows, for
example the Vortex paradigm [25]. Approaches like [16, 23, 27] use the metaphor of an
active document. These are just a few pointers to the elaborate literature on workflow
flexibility.

The problems with respect to designing process models for real-life processes have
been recognized in [24, 41]. Herrmann [24] seeks a solution by using semi-structured
workflow models. Reijers et al. [41] propose a product-driven approach to emphasize
the role of data objects in the design of workflows. The latter approach can easily be
combined with the case handling paradigm.

This paper builds on [5] which introduced the basic idea of case handling without
providing a meta model, formalization, realistic examples, etc. In [10] we presented the
application of case handling in a concrete project. In [40] we put this work in the context
of traditional workflow systems.

Schuschel et al. introduce an integrated approach for process planning and coordi-
nation, based on planning algorithms developed by the artificial intelligence community.
Pre conditions and post conditions are used to derive goals based on a current situation.
While this work is on a conceptual level and no implementation of the ideas is given, it
introduces planning as a vehicle for flexible process modeling, which is strongly related
to case handling [42].

Increasingly, agent technology is used to build workflow management systems [49,
36, 37, 48]. The agent architecture allows for additional flexibility. Despite the many
agent-based workflow prototypes, the authors are unaware of any commercial applica-
tions of agents in the workflow domain. The approach based on agents is related to the
work on proclets [4], where complex workflows are partitioned into interacting simple
workflows using the ideas of [50].

Vendors of workflow management systems have also been struggling with flexibility
issues. Systems such as InConcert (TIBCO, [47]) allow for ad-hoc routing of workflow
instances (i.e. cases). However, these systems require on-the-fly modifications of process
models by end-users. We know of only few systems that claim to support case handling.
We elaborated on FLOWer developed by Pallas Athena [5, 13, 12]. The functionality
of FLOWer is more-or-less consistent with the meta model and formalizations given in
this paper. Vectus (London-Bridge/Hatton Blue) and the Staffware Case Manager [44]
are two other systems also aiming at case handling. Initially the focus of Vectus was on
workflow support for legal applications. Since London-Bridge has acquired Hatton Blue,
the focus has shifted to Customer Relationship Management (CRM). The Staffware Case
Manager (SCM) extends the Staffware workflow management system with case handling
functionality. The SCM can be seen as a layer between the workflow management system
and the applications. The SCM allows for easy access to case related documents and
is able to refine Staffware steps (i.e., workflow activities) into more fine-grained tasks.
In essence, the resulting approach is still process-driven and not data-driven. The only
way to get to the SCM is through the standard work-queue mechanism of the Staffware

28

workflow management system. Therefore, the meta model and the formal framework for
case handling systems do not apply to the SCM. Similar to SCM is the COSA Activity
Manager (CAM) [43]. Both SCM and CAM are based on the Activity Manager of BPi
[14].

Besides contemplating concrete case handling systems, it is interesting to consider
case handling in the context of Computer Supported Cooperative Work and, more specifi-
cally, groupware systems [18, 28]. An interesting classification of collaborative technolo-
gies is given in [17]. There Ellis presents a taxonomy dividing collaborative technologies
into four classes of functionality:

• Keepers support the access and change to shared artifacts. Typical issues that are
of primary concern to keepers are access control, versioning, backup, recovery,
and concurrency control. Examples of keepers include the vault in a Product Data
Management (PDM) system, a repository with drawings in a CAD/CAM system,
and a multi media database system.

• Coordinators are concerned with the ordering and synchronization of individual
activities that make up the whole process. Typical issues addressed by coordinators
are process design, process enactment, enabling of activities, and progress moni-
toring. The key functionality of a workflow management system is playing the role
of coordinator.

• Communicators are concerned with explicit communication between participants
in collaborative endeavors. Typical examples are electronic mail systems and video
conferencing systems, and basic issues that need to be addressed are message pass-
ing (broadcast, multicast, etc.), communication protocols, and conversation man-
agement.

• Team-agents are specialized domain-specific pieces of functionality. A team agent
is typically a system acting on behalf of a specific person or group and executing a
specific task. Examples include an electronic agenda and a meeting scheduler.

The functionality of workflow management systems is usually limited to the coordinator
role. Clearly a case handling system supports the keeper, coordinator, and communicator
roles. A case handling system extends the traditional workflow management system with
the keeper role (data objects are under the control of the case handling system) and better
support for the communicator role (the separation for work distribution and authoriza-
tion and the ability to attach semi-structured information to cases). Groupware systems
(i.e., excluding workflow technology) tend to be weak on the coordination dimension,
and stronger on the keeper, communicator, and team-agent functions. Many groupware
systems provide various kinds of support for group decision-making, but they do not have
any explicit notion of workflow processes. Lotus Notes combined with Domino Workflow
[38] forms an exception, which does provide all four functions. Therefore, it is interesting
to compare Lotus Notes/Domino Workflow with the case handling paradigm presented in
this paper. Domino Workflow supports the so-called binder concept which is a logical
structure grouping documents related to one case. Moreover, the keeper, coordinator and
communicator roles are truly integrated. However, the routing between activities is com-
parable to a traditional workflow management system, i.e., the approach is process-driven
rather than data-driven. Therefore, Lotus Notes/Domino Workflow should not be consid-
ered a case-handling system. Nevertheless, Lotus Notes/Domino Workflow is targeting
similar problems.

29

explicitly
structured

implicitly
structured

ad-hoc
structured

unstructured

data-driven process-driven

ad-hoc workflow

groupware

production
workflow

case handling

Figure 14: Positioning case handling.

8 Conclusions

This paper introduced case handling as a new paradigm for supporting flexible business
processes. Using the “Blind Surgeon Metaphor” we introduced case handling and high-
lighted the problems with respect to contemporary workflow technology. In Section 2
we compared case handling with traditional workflow management. Striking differences
are the difference in focus (on the whole case rather than an individual work-item) and
the difference in driving force (also data-driven, not only process-driven). To precisely
define the case handling metaphor we provided a meta model at both the schema level
and the instance level, and a formal mathematical framework specifying the dynamics of
case handling in terms of state-transition diagrams and ECA rules. Finally, we presented
an example and discussed related work and products.

In the introduction of this paper, we identified four problems. These problems are
addressed by case handling in the following way:

• context tunneling is avoided by providing all information available (i.e., present the
case as a whole rather than showing just bits and pieces),

• activities are enabled on the basis of the information available rather than the activ-
ities already executed,

• work distribution is separated from authorization and additional types of roles (i.e.,
not just the execute role) are added,

• workers are allowed to view and add/modify data before or after the correspond-
ing activities have been executed (e.g., information can be entered the moment it
becomes available).

To conclude this paper, we position case handling in the context of groupware, pro-
duction workflow, and ad-hoc workflow using Figure 14. Traditional groupware products
like Lotus Notes and MS Exchange and production workflow systems like Staffware and

30

MQSeries Workflow form two ends of a spectrum. As Figure 14 shows, traditional group-
ware products are data-driven (focus on the sharing of information rather than the pro-
cess) and support only unstructured processes. Note that Lotus Notes and Exchange are
not “process-aware” (unless components like Domino Workflow are added). Production
workflow are process-aware and aim at structured processes. In order to enact a workflow
using a production workflow system one needs to explicitly specify all possible routes.
If something is not explicitly specified at design time, it is not possible. Ad-hoc work-
flow management systems like InConcert (TIBCO), Ensemble (Filenet), and TeamWARE
Flow (TeamWARE Group) allow for the creation and modification of workflow processes
during the execution of the processes. Each case has a private process model and there-
fore the traditional problems encountered when changing a workflow specification can
be avoided. Ad-hoc workflow management systems allow for a lot of flexibility. The
workflow management system InConcert even allows the user to initiate a case having
an empty process model. When the case is handled, the workflow model is extended to
reflect the work conducted. Another possibility is to start using a template. The moment
a case is initiated, the corresponding process model is instantiated using a template. After
instantiation, the case has a private copy of the template, which can be modified while the
process is running. InConcert also supports “workflow design by discovery”: The rout-
ing of any completed workflow instance can be used to create a new template. This way
actual workflow executions can be used to create workflow process definitions. Figure 14
shows that ad-hoc workflow management systems like InConcert are process-driven and
ad-hoc structured. Note that, per case, there has to be an explicit process model. Al-
though interesting, the practical relevance of ad-hoc workflow is limited since it assumes
that workers can modify models at run-time. Although flexible, this poses many problems
ranging from unauthorized actions to incomplete cases.

As Figure 14 shows, case handling should be positioned in-between groupware, pro-
duction workflow, and ad-hoc workflow. Note that case handling is both process driven
and data driven. On the one hand, it is possible to create data-driven workflows by using
mandatory data objects. On the other hand, it is possible to define causal dependencies
like in a traditional workflow system. Using a data-driven approach it is possible to allow
for many routes without explicitly specifying them. Moreover, additional roles like skip
and redo also enable implicit routes through the workflow. If each task has “everyone” as
its execute, skip, and redo role, there are hardly any constraints. If all data elements are
mandatory and restricted and each task has “nobody” as its skip and redo role, one ob-
tains the functionality comparable to a traditional workflow system. Hence case handling
encompasses the traditional workflow paradigm.

Clearly there is a trade-off between support and flexibility. Systems that offer a lot
of support tend to be inflexible (e.g., production workflow). Systems that offer a lot
of flexibility tend to offer less support to the process (e.g., groupware products). At a
first glance, support and flexibility may even seem to be contrasting. As demonstrated
in this paper, the case handling paradigm offers an interesting balance between support
and flexibility. Nevertheless, future research will be aiming at further developing the case
handling concepts and empirical proof of the statements made in this paper. Moreover, the
case handling paradigm does not solve all problems related to change. Note that structural
changes will still lead to problems such as the dynamic change bug [3, 20, 39, 51].

31

Acknowledgements

We thank all the people from the FLOWer development team of Pallas Athena for their
insights in case handling and their support with respect to the use of FLOWer. Specifi-
cally we would like to thank Paul Berens for sharing knowledge of case handling. We also
thank Eric Verbeek for his technical support in using FLOWer and Moniek Stoffele for
applying the case handling concept to the building processes of Heijmans [10]. Finally,
we thank the three reviewers for their useful comments.

References

[1] W.M.P. van der Aalst. The Application of Petri Nets to Workflow Management. The
Journal of Circuits, Systems and Computers, 8(1):21–66, 1998.

[2] W.M.P. van der Aalst. On the automatic generation of workflow processes based on
product structures. Computers in Industry, 39:97–111, 1999.

[3] W.M.P. van der Aalst. Exterminating the Dynamic Change Bug: A Concrete Ap-
proach to Support Workflow Change. Information Systems Frontiers, 3(3):297–317,
2001.

[4] W.M.P. van der Aalst, P. Barthelmess, C.A. Ellis, and J. Wainer. Proclets: A Frame-
work for Lightweight Interacting Workflow Processes. International Journal of Co-
operative Information Systems, 10(4):443–482, 2001.

[5] W.M.P. van der Aalst and P.J.S. Berens. Beyond Workflow Management: Product-
Driven Case Handling. In S. Ellis, T. Rodden, and I. Zigurs, editors, International
ACM SIGGROUP Conference on Supporting Group Work (GROUP 2001), pages
42–51. ACM Press, New York, 2001.

[6] W.M.P. van der Aalst, J. Desel, and A. Oberweis, editors. Business Process Manage-
ment: Models, Techniques, and Empirical Studies, volume 1806 of Lecture Notes in
Computer Science. Springer-Verlag, Berlin, 2000.

[7] W.M.P. van der Aalst and K.M. van Hee. Workflow Management: Models, Methods,
and Systems. MIT press, Cambridge, MA, 2002.

[8] W.M.P. van der Aalst, A.H.M. ter Hofstede, B. Kiepuszewski, and A.P. Barros.
Workflow Patterns. Distributed and Parallel Databases, 14(1):5–51, 2003.

[9] W.M.P. van der Aalst and S. Jablonski. Dealing with Workflow Change: Identifica-
tion of Issues and Solutions. International Journal of Computer Systems, Science,
and Engineering, 15(5):267–276, 2000.

[10] W.M.P. van der Aalst, M. Stoffele, and J.W.F. Wamelink. Case Handling in Con-
struction. Automation in Construction, 12(3):303–320, 2003.

[11] A. Agostini and G. De Michelis. Improving Flexibility of Workflow Management
Systems. In W.M.P. van der Aalst, J. Desel, and A. Oberweis, editors, Business
Process Management: Models, Techniques, and Empirical Studies, volume 1806 of
Lecture Notes in Computer Science, pages 218–234. Springer-Verlag, Berlin, 2000.

32

[12] Pallas Athena. Case Handling with FLOWer: Beyond workflow. Pallas Athena BV,
Apeldoorn, The Netherlands, 2002.

[13] Pallas Athena. Flower User Manual. Pallas Athena BV, Apeldoorn, The Nether-
lands, 2002.

[14] BPi. Activity Manager: Standard Program - Standard Forms (Version 1.2). Work-
flow Management Solutions, Oosterbeek, The Netherlands, 2002.

[15] F. Casati, S. Ceri, B. Pernici, and G. Pozzi. Workflow Evolution. In Proceedings of
ER ’96, pages 438–455, Cottubus, Germany, Oct 1996.

[16] P. Dourish, W.K. Edwards, J. Howell, A. LaMarca, J. Lamping, K. Petersen, M. Sal-
isbury, D. Terry, and J. Thornton. A programming model for active documents. In
Proceedings of the 13th annual ACM symposium on User interface software and
technology, pages 41–50. ACM Press, 2000.

[17] C.A. Ellis. An Evaluation Framework for Collaborative Systems. Technical Report,
CU-CS-901-00, University of Colorado, Department of Computer Science, Boulder,
USA, 2000.

[18] C.A. Ellis, S.J. Gibbs, and G. Rein. Groupware: Some issues and experiences.
Communications of the ACM, 34(1):38–58, 1991.

[19] C.A. Ellis and K. Keddara. A Workflow Change Is a Workflow. In W.M.P. van
der Aalst, J. Desel, and A. Oberweis, editors, Business Process Management: Mod-
els, Techniques, and Empirical Studies, volume 1806 of Lecture Notes in Computer
Science, pages 201–217. Springer-Verlag, Berlin, 2000.

[20] C.A. Ellis, K. Keddara, and G. Rozenberg. Dynamic change within workflow sys-
tems. In N. Comstock, C. Ellis, R. Kling, J. Mylopoulos, and S. Kaplan, editors,
Proceedings of the Conference on Organizational Computing Systems, pages 10 –
21, Milpitas, California, August 1995. ACM SIGOIS, ACM Press, New York.

[21] L. Fischer, editor. Workflow Handbook 2001, Workflow Management Coalition.
Future Strategies, Lighthouse Point, Florida, 2001.

[22] M. Hammer and J. Champy. Reengineering the corporation. Nicolas Brealey Pub-
lishing, London, 1993.

[23] E. Heinrich and H. Maurer. Active Documents: Concept, Implementation and Ap-
plications. Journal of Universal Computer Science, 6(12):1197–1202, 2000.

[24] T. Herrmann, M. Hoffmann, K.U. Loser, and K. Moysich. Semistructured models
are surprisingly useful for user-centered design. In G. De Michelis, A. Giboin,
L. Karsenty, and R. Dieng, editors, Designing Cooperative Systems (Coop 2000),
pages 159–174. IOS Press, Amsterdam, 2000.

[25] R. Hull, F. Llirbat, E. Simon, J. Su, G. Dong, B. Kumar, and G. Zhou. Declarative
Workflows that Support Easy Modification and Dynamic Browsing. In G. Geor-
gakopoulos, W. Prinz, and A.L. Wolf, editors, Work Activities Coordination and
Collaboration (WACC’99), pages 69–78, San Francisco, February 1999. ACM
press.

33

[26] S. Jablonski and C. Bussler. Workflow Management: Modeling Concepts, Archi-
tecture, and Implementation. International Thomson Computer Press, London, UK,
1996.

[27] B. Karbe and N. Ramsperger. Support of cooperative work by electronic circulation
folders. In Conference on Office Information Systems, ACM Special Interest Group
on Office Information Systems, pages 109 – 117. ACM SIGOIS, ACM Press, New
York, 1990.

[28] S. Khoshanfian and M.Buckiewicz. Introduction to Groupware, Workflow, and
Workgroup Computing. John Wiley and Sons, New York, 1995.

[29] M. Klein, C. Dellarocas, and A. Bernstein, editors. Proceedings of the CSCW-
98 Workshop Towards Adaptive Workflow Systems, Seattle, Washington, November
1998.

[30] M. Klein, C. Dellarocas, and A. Bernstein, editors. Adaptive Workflow Systems,
volume 9 of Special issue of the journal of Computer Supported Cooperative Work,
2000.

[31] P. Lawrence, editor. Workflow Handbook 1997, Workflow Management Coalition.
John Wiley and Sons, New York, 1997.

[32] F. Leymann and D. Roller. Production Workflow: Concepts and Techniques.
Prentice-Hall PTR, Upper Saddle River, New Jersey, USA, 1999.

[33] London Bridge Group. Vectus Application Developer’s Guide. London Bridge
Group, Wellesbourne, Warwick, UK, 2001.

[34] London Bridge Group. Vectus Technical Architecture. London Bridge Group,
Wellesbourne, Warwick, UK, 2001.

[35] D.C. Marinescu. Internet-Based Workflow Management: Towards a Semantic
Web, volume 40 of Wiley Series on Parallel and Distributed Computing. Wiley-
Interscience, New York, 2002.

[36] M. Merz, B. Liberman, and W. Lamersdorf. Using Mobile Agents to Support In-
terorganizational Workflow-Management. International Journal on Applied Artifi-
cial Intelligence, 11(6):551–572, 1997.

[37] M. Merz, B. Liberman, and W. Lamersdorf. Crossing Organisational Boundaries
with Mobile Agents in Electronic Service Markets. Integrated Computer-Aided En-
gineering, 6(2):91–104, 1999.

[38] S.P. Nielsen, C. Easthope, P. Gosselink, K. Gutsze, and J. Roele. Using Lotus
Domino Workflow 2.0, Redbook SG24-5963-00. IBM, Poughkeepsie, USA, 2000.

[39] M. Reichert and P. Dadam. ADEPTflex: Supporting Dynamic Changes of Workflow
without Loosing Control. Journal of Intelligent Information Systems, 10(2):93–129,
1998.

[40] H. Reijers, J. Rigter, and W.M.P. van der Aalst. The Case Handling Case. Interna-
tional Journal of Cooperative Information Systems, 12(3):365–391, 2003.

34

[41] H. Reijers and K. Voorhoeve. On the Optimal Design of Processes and Information
Systems (in Dutch). Informatie, 42:50–57, December 2000.

[42] H. Schuschel and M. Weske. Integrated Workflow Planning and Coordination. In
14th International Conference on Database and Expert Systems Applications, vol-
ume 2736 of Lecture Notes in Computer Science, pages 771–781, Prague, Czech
Republic, 2003. Springer-Verlag, Berlin.

[43] Software-Ley. COSA Activity Manager. Software-Ley GmbH, Pullheim, Germany,
2002.

[44] Staffware. Staffware Case Handler — White Paper. Staffware PLC, Berkshire, UK,
2000.

[45] M. Stonebraker. The integration of rule systems and database systems. TKDE,
4(5):415–423, 1992.

[46] D.M. Strong and S.M. Miller. Exceptions and exception handling in computerized
information processes. ACM Transactions on Information Systems, 13(2):206–233,
1995.

[47] Tibco. TIB/InConcert Process Designer User’s Guide. Tibco Software Inc., Palo
Alto, CA, USA, 2000.

[48] E. Verharen, F. Dignum, and S. Bos. Implementation of a cooperative agent ar-
chitecture based on the language-action perspective. In M. Singh, A.. Rao, and
M. Wooldridge, editors, Agent Theories, Architectures, and Languages, volume
1365 of Lecture Notes in Computer Science, pages 31–44. Springer-Verlag, Berlin,
1998.

[49] E.M. Verharen, F. Dignum, and S. Bos. Implementation of a cooperative agent
architecture based on the language-action perspective. In Intelligent Agents, vol-
ume 1365 of Lecture Notes in Artificial Intelligence, pages 31–44. Springer-Verlag,
Berlin, 1998.

[50] Peter Wegner. Why interaction is more powerful than algorithms. Communications
of the ACM, 40(5):80–91, 1997.

[51] M. Weske. Formal Foundation, Conceptual Design, and Prototypical Implemen-
tation of Workflow Management Systems. Habilitation’s thesis, University of
Münster, Germany, 2000.

[52] M. Weske. Formal Foundation and Conceptual Design of Dynamic Adaptations in
a Workflow Management System. In R. Sprague, editor, Proceedings of the Thirty-
Fourth Annual Hawaii International Conference on System Science (HICSS-34).
IEEE Computer Society Press, Los Alamitos, California, 2001.

35

About the authors

Wil van der Aalst is a full professor of Information Systems and head of the Information
Systems department of the Faculty of Technology Management at Eindhoven University
of Technology. Currently he is also an adjunct professor at Queensland University of
Technology (QUT) working within the Centre for Information Technology Innovation
(CITI). His research interests include information systems, simulation, process mining,
Petri nets, process models, workflow management systems, verification techniques, en-
terprise resource planning systems, computer supported cooperative work, and interorga-
nizational business processes.

Mathias Weske is a professor of computer science and chair of the business process
technology research group at Hasso Plattner Institute for Software Systems Engineering at
the University of Potsdam. His research interests include workflow management, business
process management, software architectures for process-oriented information systems,
service oriented computing, and software product lines. He is a member and Vice Chair of
the executive committee of GI SIG EMISA (German Computer Science Society Special
Interest Group on Development Methods for Information Systems and their Application),
and a member of IEEE and ACM.

Dolf Grünbauer is a senior software engineer of FLOWer, a product developed by Pallas
Athena. He has a Master of Science degree in Applied Mathematics at the Univeristy
of Twente. Since 1990 he has been working on architecture, design, theoretical founda-
tion and implementation of workflow- and case handling systems for different companies
across the software industry.

36

