
When Are Two Workflows the Same?

Jan Hidders1, Marlon Dumas2, Wil M.P. van der Aalst3,
Arthur H.M. ter Hofstede2, Jan Verelst4

1 Dept. of Mathematics and Computer Science, University of Antwerp, Antwerp, Belgium
E-Mail: jan.hidders@ua.ac.be

2 Centre for IT Innovation, Queensland University of Technology, Brisbane, Australia
E-Mail: {m.dumas,a.terhofstede}@qut.edu.au

3 Dept. of Technology Management, Eindhoven University of Technology, Eindhoven, The Netherlands
E-Mail: W.M.P.v.d.Aalst@tm.tue.nl

4 Dept. of Management Information Systems, University of Antwerp, Antwerp, Belgium
E-Mail: jan.verelst@ua.ac.be

Abstract

In the area of workflow management, one is con-
fronted with a large number of competing languages
and the relations between them (e.g. relative expres-
siveness) are usually not clear. Moreover, even within
the same language it is generally possible to express
the same workflow in different ways, a feature known
as variability. This paper aims at providing some of
the formal groundwork for studying relative expres-
siveness and variability by defining notions of equiva-
lence capturing different views on how workflow sys-
tems operate. Firstly, a notion of observational equiv-
alence in the absence of silent steps is defined and re-
lated to classical bisimulation. Secondly, a number of
equivalence notions in the presence of silent steps are
defined. A distinction is made between the case where
silent steps are visible (but not controllable) by the
environment and the case where silent steps are not
visible, i.e., there is an alternation between system
events and environment interactions. It is shown that
these notions of equivalence are different and do not
coincide with classical notions of bisimulation with
silent steps (e.g. weak and branching).

1 Introduction

Workflow systems support the coordination of man-
ual and automated activities on the basis of explicit
process models. In the last two decades, there has
been significant interest in the possibilities offered by
these systems and other similar tools for automating
business processes. Unfortunately, a lack of formal
foundation coupled with failed standardization efforts
have led to a plethora of similar but subtly different
workflow modeling languages.

The resulting babel has raised the issue of com-
paring the relative expressiveness between languages
and translating models defined in one language into
“equivalent” models defined in another language. In
addition, even within the same language it is often
possible to define multiple “equivalent” models of the
same workflow. This in turn raises the following ques-
tions: (1) In which ways are these workflow models
different? (2) Are these differences significant or is
their nature superficial and of limited consequence?
(3) If they are significant, how can they be dealt with?

Copyright c©2005, Australian Computer Society, Inc. This pa-
per appeared at Computing: The 11th Australasian Theory
Symposium (CATS 2005), The University of Newcastle, Aus-
tralia. Conferences in Research and Practice in Information
Technology, Vol. 41. Mike Atkinson and Frank Dehne, Eds.
Reproduction for academic, not-for profit purposes permitted
provided this text is included.

We use the term variability to refer to the possi-
bility of defining multiple models of a workflow in a
given modeling language. We are not aware of any
research that systematically categorizes variability in
workflow modeling. In the field of conceptual model-
ing of information systems, variability is a recognized
phenomenon. For example, (Verelst 2004) proposes a
framework in which three types of variability are iden-
tified in UML class diagrams and Entity Relationship
diagrams. In this framework, variability in conceptual
modeling was shown to be of a rather fundamental
nature: even under considerable restrictions (differ-
ences in layout and notation were not considered; only
differences between models in the same modeling lan-
guage), it was shown to be possible to model the same
set of concepts in the real world in very different ways.
Following this experience in the conceptual modeling
field, we have observed that also in the workflow field
there are examples of variability, thus raising a num-
ber of issues. For instance, two modelers may produce
different models when faced with the same modeling
problem. This in turn may hinder the reuse of work-
flow models (Janssens, Verelst & Weyn 1998), since
it makes it difficult to compare a (sketch of) work-
flow model required by a given modeler with workflow
models available for reuse. A similar problem arises
in the setting of inter-organizational workflows, where
it is sometimes necessary to compare a model of a
workflow required by a partner with that provided by
another (Wombacher & Mahleko 2002).

In order to study the relative expressiveness of
workflow languages and to deal with variability in
workflow modeling, a formal foundation is needed
that defines what “equivalence of workflow models”
means. The work reported in this paper aims at con-
tributing to the establishment of this formal founda-
tion. The specific question addressed can be stated as
follows: When and why two workflows can be consid-
ered to be equivalent? The paper provides elements
of an answer to this question while abstracting from
the language used to describe workflows. The results
can be applied to specific languages or pairs thereof,
like for example WF nets (van der Aalst 1998),
YAWL (van der Aalst & ter Hofstede 2003), or
BPEL (Andrews, Curbera, Dholakia, Goland, Klein,
Leymann, Liu, Roller, Smith, Thatte, Trickovic &
Weerawarana 2003), but this is outside the scope of
this paper.

Workflows (sometimes called “workflow processes”
or “business processes” although the latter term is
used with various connotations) can be seen from a
number of perspectives (Jablonski & Bussler 1996).
The control-flow (or process) perspective describes
the execution ordering between the basic activities
involved in the workflow. The data (or information)



perspective captures the structure of the data in-
volved in the execution of activities and how data are
passed between activities. The resource (or organiza-
tional) perspective provides an organizational anchor
to the workflow and determines the resources that
are involved in the execution of activities. The opera-
tional perspective describes the internal structure of
activities by mapping them to manual or automated
actions. In terms of the languages used to specify
workflows, the control flow perspective plays a cen-
tral role. Indeed, the data perspective is constrained
by it (and can be defined on top of it), while the orga-
nizational and operational perspectives are ancillary.
Hence, this paper considers workflows abstracted at
the level of control flow.

In previous work, well-known notions of equiv-
alence such as trace equivalence (Wombacher &
Mahleko 2002), weak bisimulation (Kiepuszewski, ter
Hofstede & van der Aalst 2003), and branching bisim-
ulation (van der Aalst & Basten 2002) have been used
in the area of workflow.1 Practical examples show
that trace equivalence is too weak. Accordingly, most
authors have adopted either weak or branching bisim-
ulation. However, there has been no formal argumen-
tation as to which notion of equivalence is more ap-
propriate for workflow modeling. We argue that a
well-motivated notion of equivalence for workflows is
imperative to study expressiveness and for defining
(possibly partial) inter-language process mappings.

Indeed, when defining mappings between differ-
ent languages, one is often confronted with the sit-
uation where a language defines a construct that can
be mapped in several ways in terms of constructs of
the other language. For example, the “OR-split” con-
struct represents a multi-choice between a number of
branches, such that none, some or all branches are
chosen, and if several branches are chosen they are ex-
ecuted in parallel. This construct is not supported by
all workflow languages (van der Aalst, ter Hofstede,
Kiepuszewski & Barros 2003) but it can be mapped
into a combination of constructs for parallel execution
and exclusive choice. Specifically, an OR-split lead-
ing to two tasks A and B can be translated into either
an exclusive system-controlled choice between doing
nothing, only A, only B, or both A and B in paral-
lel. An alternative translation is a parallel execution
of two branches: one in which an exclusive system
choice is made between A or nothing, and another
branch where an exclusive system choice is made be-
tween B or nothing. To be able to properly capture
the OR-split pattern in a given language, it is imper-
ative to have a well-defined notion of equivalence that
captures the language’s semantics.

In this setting, this paper defines notions of equiv-
alence from an observational viewpoint that reflect
the way(s) workflow systems operate. Observational
equivalence is defined in terms of the sets of tasks
that the workflow offers to its environment in re-
sponse to the inputs that the environment provides.
Such sets of tasks are known as work-sets (or “work-
lists” when they are prioritized) and are central
to generally accepted conceptions of workflow sys-
tems (Hollingsworth 1995).

Where possible, the observational equivalence no-
tions defined are related to known bisimilarity rela-
tions. In particular, we define six notions of equiv-
alence for workflows with silent steps, and we show
that these notions are distinct and that none of them
coincides with either weak or branching bisimulation.

1Note that concurrent bisimulation and related notions have
not been considered in workflow systems. Instead, each task in a
workflow is expanded into a “begin task” and an “end task” and
equivalence notions are then defined on the expanded workflow (a
typical approach in process algebra (Baeten & Weijland 1990)).
This approach is followed in e.g. (Kiepuszewski et al. 2003).

The paper is structured as follows. Section 2 con-
siders the case of workflow models without silent steps
(but with non-determinism). A notion of observa-
tional equivalence is defined under this assumption
and related to bisimulation. Section 3 considers the
case where silent steps are allowed. Notions of obser-
vational equivalence for this general case are defined
and classified according to whether they make silent
steps visible to the environment or not. Finally, Sec-
tion 4 concludes.

2 Workflows without Silent Steps

We begin this section with an informal description of
what we define as a workflow and its observable be-
havior. Based upon this description we then present
a formalization of these notions.

A workflow is a set of activities related by control-
flow dependencies. When executed by a workflow
(management) system, a workflow behaves as a re-
active system where alternatively the system makes
an offer to the environment in the form of a set of ac-
tivity identifiers, and the environment responds with
a choice of one of the elements in the offer and any
additional information that is required to complete
the activity.

To remain at a high level of abstraction, we de-
scribe the behavior of a workflow with a transition
tree, i.e., a connected, rooted, edge-labeled and di-
rected graph without cycles. For example, a work-
flow that first offers the set {A, B} and then always
offers {C} is represented as shown in Figure 1. This

A

B

C

C

Figure 1: A transition tree

definition is independent of the language used to de-
scribe workflows. Typically, such languages rely on
constructs such as task node, parallel split nodes,
synchronization nodes, decision/choice nodes, merge
nodes, etc. But in any case, the resulting descriptions
can be “expanded” into transition trees.

The above definition of workflows suggests that the
observable behavior of a workflow can be described as
a possibly infinite set of traces that consist of alterna-
tions of offers, containing a set of activity identifiers,
and acceptances, containing a single activity identifier
that is an element of the preceding offer. Since this
describes the observable behavior of the workflow, two
workflows should then be considered the same if they
define the same set of traces. Note that, up to this
point, we could adopt the usual definition of traces
by not including the offers in the trace (i.e., we could
define a trace as a list of activity identifiers) and this
would lead to the same equivalence relation.

However, as is often argued in concurrency theory,
such a trace-based model does not seem to capture
all there is to know about the control flow since the
“moment of choice” is not represented. The standard
example is the distinction between the transition trees
in Figure 2. In T1 it is modeled that the choice of how
the process will end is taken at the step A whereas
in T2 it is taken at the step B. From a workflow per-
spective, this distinction captures the fact that the
environment does not just pick an activity identifier
(say A), but in addition to this, it supplies external
information needed to conclude the activity. For ex-
ample, in the case of an activity “Get age”, when the



A

A

B

B

C

D

T'1

A
B

B

C

D

T'2

Figure 2: Abstract transition trees T1 and T2

environment picks this activity it must supply the re-
quested information. This information may then be
used by the system that executes the workflow to de-
termine the offer to be made in the next step (e.g.,
different continuations may be observed depending on
the age entered). Therefore the “moment of choice”
is observable by the environment because it can see
whether certain information that was supplied made
a difference for the subsequent offers that were made.
Indeed, if the logs of a workflow would contain the
supplied information we would be able to tell the dif-
ference between a workflow described by T1 and one
described by T2.

Consider, for example, the two transition trees in
Figure 3 where we label the edges not only with the
activity identifiers (in uppercase) but also with the
supplied information (in lowercase). In this example,
the supplied information correspond to decisions (‘y’
for yes, and ‘n’ for no) by the environment. It should

T5

A,n
B,y

B,n

D,-

D,-

B,y

B,n

C,-

C,-
A,y

T6

A,n
B,y

B,n

C,-

D,-

B,y

B,n

C,-

D,-
A,y

Figure 3: Concrete transition trees T ′
1 and T ′

2

be clear that T1 in Figure 2 is an abstraction of T ′
1 but

not of T ′
2, and T2 is an abstraction of T ′

2 but not of
T ′

1. Moreover, these two concrete transition trees can
be distinguished by their traces and therefore by their
observable behavior, because the environment can see
which of the decisions actually matter for the final of-
fer. Thus the intuition of “moment of choice” seems
to be captured by the assumption that the (abstract)
transition tree is an abstraction of the concrete transi-
tion tree that ignores the information that is provided
by the environment.

In process algebra the intuition about “moment
of choice” is captured by the notion of bisimulation.
In the following we will give a formal argument that
shows that the intuition about externally supplied in-
formation indeed justifies the use of this equivalence
notion for workflows.

We begin by postulating an infinite set A of ac-
tivity identifiers such as “Receive goods”, “Check
credit”, ”Get patient information”. These will be the
activities that are offered to the environment (i.e., set
of users and applications that interact with the work-
flow system). Next to this set we assume an infinite
set I of input data. These represent units of informa-
tion that can be supplied by the environment of the
system for the completion of an activity. Examples of
such data are a simple boolean such as for the activ-

ity “Check credit” or a complex data structure such
as for “Get patient information”. We also postulate
an infinite set V of nodes.

Definition 2.1 (Abstract Workflow). An abstract
workflow (AW) is a tuple (V, E, r) which represents a
rooted edge-labeled tree with nodes V ⊆ V , edges
E ⊆ V ×A× V , and root r ∈ V .

As already explained an abstract workflow ab-
stracts from the data that is supplied by the exter-
nal environment. Therefore we introduce the notion
of concrete workflow that does take this information
into account by labeling the edges with a pair (a, i)
where a is an activity identifier and i the externally
supplied information.

Definition 2.2 (Concrete Workflow). A concrete
workflow (or CW) is a tuple (V, E, r) which represents
a rooted edge-labeled tree with nodes V ⊆ V , edges
E ⊆ V × (A× I) × V , and root r ∈ V .

We will require concrete workflow to be consistent,
which means that a certain activity always accepts
the same set of input data. More formally we call a
CW (V, E, r) consistent if it holds that if there is an
edge (n1, (a, i), n2) ∈ E and an edge (n3, (a, j), n4) ∈
E then there is also an edge (n1, (a, j), n5) ∈ E. Fi-
nally we introduce the usual notion of determinism for
CWs such that every specific choice and input action
by the environment leads always to the same state. In
other words, a system that executes a deterministic
process does not make arbitrary choices. Formally, a
CW (V, E, r) is called deterministic if for every node
n ∈ V and pair (a, i) ∈ A×I there is at most one edge
(n, (a, i), n′) ∈ E. Note that in deterministic CWs the
environment can still make arbitrary choices when se-
lecting an activity or supplying input information.

The interpretation of a CW is that in each state
the system offers the environment a choice in the form
of a work-set: a set of identifiers corresponding to
the activities that the environment can perform in
this state. The environment then makes a choice a
from the work-set and supplies the information i, after
which the system moves to the state that is indicated
by the edge labeled with (a, i). The work-set is more
formally defined as follows. Given a CW (V, E, r) the
work-set of a node n ∈ V , denoted as W (n), is defined
such that W (n) = {a|(n, (a, i), n′) ∈ E}.

Because we want to base our notion of equivalence
on observational equivalence we have to define what
it exactly is that is observed about the workflow sys-
tem. For this purpose we introduce the notion of
workflow trace. The events we record in this trace are
(1) the work-set that the system offers to the environ-
ment and which consists of a set of activity identifers;
(2) the choice that the environment makes from this
work-set, represented by an activity identifer; and (3)
the data that is supplied by the environment for com-
pleting the activity, represented by an element of I.
This leads to the following definition.

Definition 2.3 (Workflow Trace). The set of
workflow traces of a CW (V, E, r) is defined as a set
of lists of the form (2A · A · I)∗ · 2A such that the list
〈W1, a1, i1, . . . , Wk, ak, ik, Wk+1〉 is in this set iff there
is a path 〈(n1, (a1, i1), n2), . . . , (nk, (ak, ik), nk+1)〉 in
E such that r = n1 and Wi = W (ni) for each
1 ≤ i ≤ k + 1.

The final extra offer Wk+1 in a trace is necessary
to distinguish the trees shown in Figure 4.

We note that this definition of workflow trace is
equivalent to that of colored trace defined in (van
Glabbeek & Weijland 1996) (also called decorated
trace by some authors) if we equate an offer to a color.



A,a

A,a B,b

T3

A,a B,b

T4

Figure 4: The final offer is needed to be able to dis-
tinguish transition trees T3 and T4

It is easy to see that deterministic CWs are character-
ized up to isomorphism by their workflow traces, i.e.,
two deterministic CWs are isomorphic iff they have
the same set of workflow traces (Engelfriet 1985).

We proceed with establishing the relationship be-
tween CWs and AWs. This is done with an instance
relation that relates the nodes in the AW and the CW.
We will require that such a relation at least relates the
root nodes. Furthermore, for each abstract transition
in the AW there should at least be one corresponding
concrete transition in the CW that justifies its exis-
tence. On the other hand, every concrete transition in
the CW must be justified by a corresponding abstract
transition in the AW.

Definition 2.4 (Instance Relation). An in-
stance relation between an AW (V1, E1, r1) and CW
(V2, E2, r2) is a relation H ⊆ V1 × V2 such that
(1) H(r1, r2), (2) if (n1, a, n′

1) ∈ E1 and H(n1, n2)
then there is an edge (n2, (a, i), n′

2) ∈ E2 such
that H(n′

1, n
′
2), and (3) if (n2, (a, i), n′

2) ∈ E2 and
H(n1, n2) then there is an edge (n1, a, n′

1) ∈ E1 and
H(n′

1, n
′
2).

Using this notion we can now define what a con-
crete instance of an abstract workflow is.

Definition 2.5 (Instance). A CW T is called an
instance of an AW T ′ if (1) T is consistent and (2)
there is an instance relation between T ′ and T .

The similarity between the instance relation and a
bisimulation relation leads to the following observa-
tion.

Proposition 2.1. A consistent CW T is an instance
of an AW T ′ iff the AW T ′′ that is obtained from T
by replacing all edge labels (a, i) with a is bisimilar
with T ′.

Proof. (Sketch) It can be shown that the instance re-
lation H from T ′ to T indeed defines a bisimulation
relation between T ′′ and T ′. Vice versa it can be
shown that the bisimulation relation B from T ′′ to T ′
indeed defines an instance relation from T to T ′.

Since we already had a notion of observational
equivalence for CWs in the form of sets of workflow
traces, we can now extend this notion to AWs.

Definition 2.6 (Observational Equivalence).
Two AWs are called observation equivalent if the sets
of workflow trace sets of their instances are the same.

Note that this indeed captures the intuition that
two AWs are distinguishable iff it is possible, by look-
ing at the workflow trace sets, to detect an instance
that belongs to the one but not to the other. The def-
inition of an instance relation is very similar to that of
a bisimulation relation, which leads to the following
lemma.

Lemma 2.2. Two AWs are bisimilar iff they have
the same set of instances.

Proof. (Sketch) The only-if part is shown by demon-
strating that a consistent CW is an instance iff it is
bisimilar to the AW if we ignore the input data, and
the fact that the bisimulation relation is an equiva-
lence relation. The same fact can be used to show that
the if-part follows because every AWS has at least one
instance and so the two AWs will have at least one
common instance and therefore be bisimilar.

It is not hard to see that for every AW there is
a deterministic instance. Since we already observed
that two deterministic CWs have the same trace set
iff they are isomorphic, it follows that if we had only
allowed deterministic instances then we would have
indeed by now have shown that two AWs are bisimilar
iff they are observation equivalent.

In order to make the proposed equivalence no-
tions as general as possible, we now consider the case
of non-deterministic CWs. The problem with non-
deterministic CWs is that different edges with identi-
cal labels may leave from the same node and therefore
the CWs are no longer defined up to isomorphism by
the set of workflow traces. Consider the examples in
Figure 5.

T5

A,a
B,b

C,c

E,e

D,d

B,b

C,c

D,d

E,e
A,a

T6

A,a
B,b

C,c

D,d

D,d

B,b

C,c

E,e

E,e
A,a

Figure 5: Non-deterministic CWs

Both CWs have the same trace sets:

1. 〈{A}, A, a, {B, C}, B, b, {D}, D, d, ∅〉
2. 〈{A}, A, a, {B, C}, C, c, {E}, E, e, ∅〉
3. 〈{A}, A, a, {B, C}, B, b, {E}, E, e, ∅〉
4. 〈{A}, A, a, {B, C}, C, c, {D}, E, d, ∅〉

This is not surprising since our type of trace-
equivalence for CWs is essentially the same as ready
trace semantics which is known to be less strict than
bisimulation but more strict than the standard trace
semantics (van Glabbeek 1993). However, this is at
the level of CWs and in the following it will be shown
that it is not a problem at the level of AWs.

We already observed that deterministic CWs are
characterized up to isomorphism by their trace sets.
We will now show a similar result for a wider class,
viz., the CWs that are deterministic up to bisimula-
tion.

Definition 2.7 (Deterministic up to bisimula-
tion). A CW T = (V, E, r) is said to be determinis-
tic up to bisimulation if for every two distinct edges
(n1, (a, i), n2) and (n1, (a, i), n3) in E it holds that n2
and n3 are bisimilar in T .

An alternative characterization of this weaker form
of determinism is given by the following proposition.

Proposition 2.3. A CW is deterministic up to
bisimulation iff it is bisimilar to a deterministic CW.



Proof. (Sketch) The if-part holds because if
(n1, (a, i), n2) and (n1, (a, i), n3) in the CW then
n2 and n3 will be bisimilar to the same node in
the deterministic CW, and therefore also bisimilar
themselves.

The only-if part holds because we can simply
merge any two edges (n1, (a, i), n2) and (n1, (a, i), n3)
with n2 and n3 bisimilar in the CW, until no more
such edges are found (possibly only after an infinite
number of steps). The result will be bisimilar to the
original and deterministic.

Although such CWs are not characterized by their
workflow traces up to isomorphism, it can be shown
that they are characterized by their workflow traces
up to bisimulation.

Lemma 2.4. If two CWs are deterministic up to
bisimulation then they have the same set of workflow
traces iff they are bisimilar.

Proof. (Sketch) We first prove the if part. For
every path 〈(n1, (a1, i1), n2), . . . , (nk−1, (ak, ik), nk)〉
from the root in one CW there will be a similar
path 〈(n′

1, (a1, i1), n′
2), . . . , (n

′
k, (ak, ik), n′

k+1)〉 from
the root in the other CW such that for all 1 ≤ i ≤ k+1
the nodes ni and n′

i are bisimilar, and therefore define
the same work-set Wi.

Now we prove the only-if part. Let T1 and T2 be
the two CWs that are deterministic up to bisimula-
tion. A CW that is deterministic up to bisimulation
is bisimilar with a deterministic CW, viz., the one we
obtain when we merge the edges (n1, (a, i), n2) and
(n1, (a, i), n3) for which n2 and n3 are bisimilar. Be-
cause two CWs have the same set of workflow traces
if they are bisimilar this deterministic CW has the
same set of workflow traces. Since deterministic CWs
are characterized up to isomorphism by their work-
flow traces, it follows that for both T1 and T2 the
corresponding deterministic CWs are isomorphic, and
therefore that T1 and T2 are bisimilar.

Another useful observation is that the CWs that
are deterministic up to bisimulation and those that
are not, are observationally distinct, i.e., they cannot
have the same set of workflow traces.

Lemma 2.5. If T1 is a CW that is deterministic up
to bisimulation, and T2 a consistent CW that is not,
then T1 and T2 cannot have the same set of workflow
traces.

Proof. (Sketch) Suppose we try to make T2 de-
terministic by merging pairs of edges of the form
(n1, (a, i), n2) and (n1, (a, i), n3) until we find no more
such pairs of edges (possibly after an infinite number
of steps). If during this process at each step we only
merged nodes that had the same abstract work-set
(and because T2 is consistent therefore also the same
concrete work-set) then we know that (1) the result is
bisimilar to T2 and (2) the result has the same set of
workflow traces as T2. However, by Proposition 2.3
it would then follow that T2 is deterministic up to
bisimulation, which contradicts the original assump-
tion. Therefore there must have been a step were we
merged nodes with different abstract work-sets. The
paths to these nodes must therefore define two dif-
ferent workflow traces that are the same except for
the last work-set. Since the merging does not change
the set of workflow traces it follows that these are
workflow traces of T2. It is clear that such workflow
traces can never be in the set of workflow traces of a
deterministic CW. Moreover, by Proposition 2.3 and
the fact that two CWs have the same set of workflow
traces if they are bisimilar we know that the set of

workflow traces of T1 must be equal to that of a de-
terministic CW. So it follows that these traces cannot
be in the set of workflow traces of T1.

Finally we are ready to show the main theorem of
this section that states that for AWs the notions of
bisimulation and observation equivalence coincide.

Theorem 2.6. Two AWs are bisimilar iff they are
observation equivalent.

Proof. (Sketch) We first show the if-part. Assume
that the AWs T1 and T2 are not bisimilar. Then we
construct the CW T ′

1 by taking T1 and replacing the
activity identifiers a with a pair (a, i) where i ∈ I such
that we obtain a deterministic CW. Note that this is
possible because we assume that I is infinite. Since
T1 and T2 are not bisimilar it follows that there is no
instance of T2 that is bisimilar to T ′

1. So let us assume
that there is an instance of T2 that is not bisimilar to
T ′

1 but still has the same set of workflow traces. This
CW cannot be deterministic up to bisimulation be-
cause by Lemma 2.4 it would then be bisimilar to T ′

1.
However, if it is not deterministic up to bisimulation
then it follows by Lemma 2.5 that it could not have
the same set of workflow traces as T ′

1. It follows then
there cannot be an instance of T2 that has the same
set of workflow traces as T ′

1. Consequently there is
a set of workflow traces for T1 that is not a set of
workflow traces from T2 and therefore the two are
not observation equivalent.

We now proceed with the only-if-part. By
Lemma 2.2 we know that two bisimilar AWs have
the same instances, and therefore they also have the
same sets of workflow traces.

3 Workflows with Silent Steps

In the area of concurrency theory, it is common to dis-
tinguish between steps of a process that are directly
observable and controllable by the environment, and
those that are not. An observable step occurs if the
process is ready to perform it (in workflow terms: the
corresponding task appears in the offered work-set)
and the environment allows it to occur (e.g., the task
is picked from the work-set). In contrast, the silent
step (denoted τ) is entirely controlled by the system
and the environment cannot directly observe its oc-
currence. In Workflow nets (van der Aalst 1998) for
example, τ steps appear in the form of unlabeled tran-
sitions and play an important role in describing the
semantics of xor-split, and-split, or-join and
and-join nodes in workflow models. They corre-
spond to internal tasks and decisions performed by
the workflow system, such as for example updating
a variable of the workflow, evaluating a boolean con-
dition to select an execution path, executing a script
within the workflow system, or synchronizing tasks.
These types of steps are system-controlled (i.e., the
system decides when and how to do them), as op-
posed to the other steps (e.g., performing a human or
automated task) that are interpreted as environment-
controlled steps. This, however, does not indicate to
what extent they should be considered part of the ob-
servable behavior of the workflow. Indeed, even if the
environment cannot directly observe the occurrence
of a τ step, it can indirectly detect it if the process
has less options for continuation after the occurrence
than before (i.e., if it causes tasks to be added or
removed from the offered work-set).

It turns out that the introduction of silent steps
has strong implications in terms of workflow equiv-
alence. To discuss these implications, we adapt the
definitions given in Section 2 to workflows with silent
steps as follows:



• The definition of AW remains unchanged except
that a distinguished task τ ∈ A is introduced.

• The definition of CW remains unchanged except
that a constraint is added to enforce that the ac-
tivity identifier τ is only associated to the empty
input data (denoted ⊥), i.e., if an edge is labeled
with (τ, i) then i = ⊥.

• The definitions of instance relation and instance
remain unchanged.

• The definition of work-set W (n) will exclude
τ , i.e., for a CW (V, E, t) we define W (n) =
{a|(n, (a, i), n′) ∈ E ∧ a 	= τ}.

• The definitions of workflow trace and observa-
tional equivalence vary depending on the inter-
pretation of silent steps as discussed below.

3.1 Classical notions of equivalence

In this section we present two existing notions of
equivalence for processes with τ steps: weak bisim-
ulation (Milner 1980) and branching bisimulation
(Basten 1996, van Glabbeek 1993).

In the following of this paper we use s ⇒ s′ to
denote a path of zero or more τ edge from s to s′.

Definition 3.1 (Weak Bisimilarity). Two AWs T1
and T2 are weakly bisimilar, denoted ≡wbs, iff there
exists a symmetric relation R between the nodes of
T1 and T2 such that:

1. The roots are related by R

2. If R(r, s) and r
a⇒ r′ then there exists a path

s
a⇒ s′ such that R(r′, s′), where r

a⇒ r′ denotes
a path r ⇒ r1

a→ r2 ⇒ r′ if a 	= τ and a path
r ⇒ r′ if a = τ .

If we consider the AWs that correspond to the
CWs in Figure 6 then it can be seen that T7 ≡wbs T9,
T10, and T12. On the other hand AW T8 is not equiv-
alent to any of the other corresponding AWs. The
same applies to T11.

The intuition behind this notion of equivalence is
that every activity including any preceding and fol-
lowing τ steps should be mirrored by a similar path
in the “equivalent workflow”.

Definition 3.2 (Branching Bisimilarity). Two
AWs T1 and T2 are branching bisimilar, denoted ≡bbs,
iff there exists a symmetric relation R between the
nodes of T1 and T2 such that:

1. The roots are related by R

2. If R(r, s) and r
a→ r′ then either a = τ and

R(r′, s) or there exists a path s ⇒ s1
a→ s′ such

that R(r, s1) and R(r′, s′).

For the AWs in Figure 6 we get the same equiva-
lence classes for ≡bbs as for ≡wbs: {T7, T9, T10, T12},{T8} and {T11}.

The intuition behind these two equivalence notions
is that in order to “mirror” a step A of a given pro-
cess, it is possible to precede and follow A with a
number of τ steps in the “equivalent” process. The
difference between the two notions is that branching
bisimilarity preserves the branching structure of the
process by further imposing that all the τ steps taken
before A lead to states that offer identical sets of pos-
sible future choices, and similarly all the τ steps taken
after A must lead to states that offer identical sets
of possible future choices (though not necessarily the

T7

B,b

A,a

B,b

A,a

B,b

A,a

A,a

T8 T9

B,b

A,a

B,b

A,a

B,b

A,a

B,b

T10 T11

B,b

A,a

T12

Figure 6: Examples illustrating the concept of silent
steps

same set of future choices as before A). A compar-
ison of branching bisimilarity, weak bisimilarity, and
other equivalences can be found in (van Glabbeek &
Weijland 1996).

Both notions of equivalence are generalization of
bisimulation and seem good candidates for defining
the semantics of workflows. We will investigate this
in the following sections by comparing them to several
observational semantics that seem reasonable and cor-
respond to different interpretations of the τ steps. To
structure the presentation we consider two options in
turn: (i) we let τ steps appear in the traces but then
define an equivalence relationship over the traces that
captures when certain τ steps cannot be observed;
and (ii) traces are defined such that τ steps do not
appear in them.

3.2 Semantics with visible silent steps

We explore three types of semantics where τ steps
may be observed in the traces: full semantics, change
semantics, and non-empty semantics.

3.2.1 Full semantics

The full semantics considers each τ step to be visible.
This semantics can be formalized simply by taking
Definition 2.3 but with the new notion of work-set,
i.e., we exclude τ from the offered work-sets Wi. For
example, T7 has two possible traces: 〈{A, B}, A, a, ∅〉
and 〈{A, B}, B, b, ∅〉. T8 also has two possible traces:
〈∅, τ,⊥, {A}, A, a, ∅〉 and 〈∅, τ,⊥, {B}, B, b, ∅〉. With
this modified version of Definition 2.3, the definition
of observational equivalence under full semantics for
AWs, denoted ≡fs, is the same as Definition 2.6.
Clearly, all six AWs in Figure 6 can be distinguished
using this semantics.

3.2.2 Change semantics

The change semantics considers only τ steps that re-
sult in a modified work-set to be visible. The inter-
pretation of this semantics is that the environment
cannot see explicit τ steps but it can see changes in
the activities offered by the system. The traces of T7,
T8, T9, T11, T12 are identical to the full semantics.
However, for T10 there is a difference between the full
semantics and the change semantics. In the change se-
mantics there are two possible traces (〈{A, B}, A, a, ∅〉
and 〈{A, B}, B, b, ∅〉) while in the full semantics
there are four possible traces: 〈{A, B}, A, a, ∅〉,
〈{A, B}, B, b, ∅〉, 〈{A, B}, τ,⊥, {A, B}, A, a, ∅〉, and
〈{A, B}, τ,⊥, {A, B}, B, b, ∅〉. We use ≡cs to denote



that two AWs are observation equivalent under the
change semantics. This can be formalized as follows.

Definition 3.3 (Equivalence relation of traces
under change semantics). Let ≡t

cs be the small-
est equivalence relation such that for any pair of
workflow traces t1 = 〈X1, A1, a1, . . ., Xn, τ,⊥,
Xn+1, An+1, an+1, Xn+2, . . ., Xm〉 and t2 =
〈X1, A1, a1, . . ., Xn, An+1, an+1, Xn+2, . . ., Xm〉:
t1 ≡t

cs t2 if Xn = Xn+1.

Informally the requirement for ≡t
cs can be formu-

lated as follows: if a trace t contains a sublist of the
form X, τ,⊥, X and we replace this sublist in t with
X then we obtain an equivalent trace.

Definition 3.4 (Equivalence relation of CWs
and AWs under change semantics). Let T1 and
T2 be two CWs, T1 ≡cs T2 iff in the full semantics for
every workflow trace t1 of T1 there exists a workflow
trace t2 of T2 such that t1 ≡t

cs t2 and vice versa.
Let T1 and T2 be two AWs, then T1 ≡cs T2 iff for

every instance T ′
1 of T1 there is an instance T ′

2 of T2
such that T ′

1 ≡cs T ′
2 and vice versa.

It follows that for any two AWs T1 and T2, T1 ≡fs
T2 implies T1 ≡cs T2 but the implication does not
necessarily hold the other way, i.e., ≡fs⊂≡cs. The
inclusion is strict since in Figure 6 T10 	≡fs T7 but
T10 ≡cs T7.

3.2.3 Non-empty semantics

The non-empty semantics abstracts from τ steps that
occur when the work-set is empty. The interpreta-
tion of this semantics is that the environment cannot
see explicit τ steps that leave from a state where no
actions are offered to the environment. If we remove
from the traces the empty offers that are followed
by a τ step then the traces of T7, T9, T10, and T11
remain identical. However, for T8 and T12 we ob-
tain different traces; for T8 we get 〈{A}, A, a, ∅〉 and
〈{B}, B, b, ∅〉, and for T12 we get 〈{A, B}, A, a, ∅〉 and
〈{A, B}, B, b, ∅〉. We write ≡nes to denote that two
AWs are observation equivalent under the non-empty
semantics.2 This can be formalized as follows.

Definition 3.5 (Equivalence relation of traces
under non-empty semantics). Let ≡t

nes be the
smallest equivalence relation such that for any pair
of workflow traces t1 = 〈X1, A1, a1, . . ., Xn, An, an,
∅, τ,⊥, Xn+2, . . . , Xm〉 and t2 = 〈X1, A1, a1, . . .,
Xn, An, an, Xn+2, . . ., Xm〉: t1 ≡t

nes t2.

Informally the requirement for ≡t
nes can be formu-

lated as follows: If a trace t contains a sublist of the
form 〈∅, τ,⊥〉 and we remove this sublist from t then
we obtain an equivalent trace.

Definition 3.6 (Equivalence relation of CWs
and AWs under non-empty semantics). Let T1
and T2 be two CWs, T1 ≡nes T2 iff in the full seman-
tics for every workflow trace t1 of T1 there exists a
workflow trace t2 of T2 such that t1 ≡t

nes t2 and vice
versa.

Let T1 and T2 be two AWs, then T1 ≡nes T2 iff for
every instance T ′

1 of T1 there is an instance T ′
2 of T2

such that T ′
1 ≡nes T ′

2 and vice versa.

It follows that for any two AWs T1 and T2, T1 ≡fs
T2 implies T1 ≡nes T2 but the implication does not
necessarily hold in the other way, i.e., ≡fs⊆≡nes.
Also this inclusion is strict since in Figure 6 T7 	≡fs
T12 but T7 ≡nes T12. Moreover, there are AWs T and

2Note that T7 ≡nes T12, i.e., the trace sets of T7 and T12 coin-
cide because the initial state of T12 is invisible.

T ′ such that T ≡nes T ′ but T 	≡cs T ′, e.g., T7 and T12
in Figure 6. Similarly, there may be AWs T and T ′
such that T ≡cs T ′ but T 	≡nes T ′, e.g., T7 and T10.

Surprisingly none of the above three semantical
definitions coincides with standard equivalence no-
tions such as branching bisimulation or weak bisim-
ulation. Of the three equivalence notions given, the
change semantics seems to be the most suitable one.
Indeed, it corresponds to the case where the workflow
system updates the work-set immediately after every
step (whether the step is internal to the system or
the result of an external action) and makes the new
work-set visible to the environment. Hence, the en-
vironment is able to detect the occurrence of any τ
step that changes the contents of the work-set.

Unfortunately, an elegant bisimulation-like formu-
lation of these notions seems unlikely, as evidenced
by the two AWs in Figure 7. Here T1 ≡cs T2 and so
the bisimulation relation would have to relate the root
nodes of T1 and T2 but at the same time relate the
end node of the first τ edge in T1 with the end node
of the second τ edge in T2 and vice versa. The reason
for this is that in the visible step semantics, the en-
vironment can observe the options are available to it
(i.e., the work-set) without having to try an option.

C

A

B

A

B

A

C

A

Figure 7: Problematic examples for defining a
bisimulation-like formulation of the change semantics

3.3 Semantics with invisible silent steps

We also explore three types of semantics where τ steps
cannot be observed: eager semantics, far-sighted se-
mantics, and near-sighted semantics. For each of
these three semantical definitions, the observable
traces do not show τ steps.

3.3.1 Eager semantics

In the eager semantics the system gives priority to
τ steps, i.e., as long as τ steps are possible no offer
is made to the environment. For example, T7, T9,
T10, T12 have two possible traces: 〈{A, B}, A, a, ∅〉
and 〈{A, B}, B, b, ∅〉. T8 also has two possible traces:
〈{A}, A, a, ∅〉 and 〈{B}, B, b, ∅〉 and T11 only has one
possible trace: 〈{B}, B, b, ∅〉. Note that in T11 a is
never offered. One of the problems of the eager se-
mantics is divergence, i.e., for some AWs it is possible
to have an infinite path of τ steps in the tree. This
may lead to the situation that the workflow does not
make an offer, not even the empty one.

We now proceed with the formal definition of these
semantics.
Definition 3.7 (Eager Workflow Trace). The set
of eager workflow traces of a CW (V, E, r) is defined
as a set of lists of the form (2A · A · I)∗ · 2A such that
the list 〈W1, a1, i1, . . . , Wk, ak, ik, Wk+1〉 is in this set

iff there is a path n1 ⇒ n′
1

(a1,i1)→ n2 ⇒ n′
2

(a2,i2)→ n3 ⇒
. . . n′

k

(ak,ik)→ nk+1 ⇒ n′
k+1 such that r = n1 and for

each 1 ≤ j ≤ k + 1 it holds that Wj = W (n′
j) and

there is no edge with label (τ,⊥) that leaves from n′
j.

Based upon these traces we then define the equiv-
alence relation ≡es as in Definition 2.6 but replac-
ing the original workflow traces with eager workflow



traces. Under these semantics it holds for example
that T7 ≡es T9.

3.3.2 Far-sighted semantics

In the far-sighted semantics the system looks at all
states that can be reached through zero or more τ
steps and offers all activity identifiers of edges that
leave from such states. For example, T8 has two pos-
sible traces: 〈{A, B}, A, a, ∅〉 and 〈{A, B}, B, b, ∅〉.

Formally we can define this as follows. Given a
CW (V, E, r) we let W ∗(n) denote the far-sighted
work-set of n, i.e., W ∗(n) is the set of all activity

identifers a such that there is a path n ⇒ n′ (a,i)→ n′′
in E and a 	= ⊥.

Definition 3.8 (Far-sighted Workflow Trace).
The set of far-sighted workflow traces of a CW
(V, E, r) is defined as a set of lists of the form (2A ·
A·I)∗ ·2A such that 〈W1, a1, i1, . . . , Wk, ak, ik, Wk+1〉
is in this set iff there is a path n1 ⇒ n′

1

(a1,i1)→ n2 ⇒
n′

2

(a2,i2)→ n3 ⇒ . . . n′
k

(ak,ik)→ nk+1 such that r = n1

and for each 1 ≤ j ≤ k+1 it holds that Wj = W ∗(nj)
and there is no edge with label (τ,⊥) that arrives in
nj .

As before we then define the equivalence relation
≡fss as in Definition 2.6 but replacing the origi-
nal workflow traces with far-sighted workflow traces.
Note that the trace sets of all six CWs shown in Fig-
ure 6 are identical under the far-sighted semantics.

It is not hard to see that we obtain the same se-
mantics if we omit from the full-semantics all the
work-sets except the final work-set, i.e., at the level
of CWs the far-sighted semantics is equivalent with
the trace semantics in which the τ steps are ignored.
Note that this does not mean that the “moment of
choice” is no longer captured since such semantics at
the level of CWs would still lead to a semantics at the
level of AWs that is a generalization of bisimulation.

3.3.3 Near-sighted semantics

In the near-sighted semantics the system can make
a choice between making an offer or taking a τ step.
If the current state has only τ steps then the sys-
tem picks one of the τ steps. If there are also visible
steps available then the system either makes an offer
that corresponds to the edges (labeled with visible
steps) leaving from this state and waits for the envi-
ronment to respond, or picks one of the τ steps. For
example, T9 has three possible traces: 〈{A}, A, a, ∅〉
(i.e., the system only offers a), 〈{A, B}, A, a, ∅〉, and
〈{A, B}, B, b, ∅〉. T11 also has three possible traces:
〈{A, B}, A, a, ∅〉, 〈{A, B}, B, b, ∅〉, and 〈{B}, B, b, ∅〉
(i.e., the system only offers b).

Formally we can define these semantics as follows.

Definition 3.9 (Near-sighted Workflow Trace).
The set of near-sighted workflow traces of a CW
(V, E, r) is a set of lists of the form (2A · A · I)∗ · 2A
such that 〈W1, a1, i1, . . . , Wk, ak, ik, Wk+1〉 is in this

set iff there is a path n1 ⇒ n′
1

(a1,i1)→ n2 ⇒ n′
2

(a2,i2)→
n3 ⇒ . . . n′

k

(ak,ik)→ nk+1 ⇒ n′
k+1 such that r = n1 and

for each 1 ≤ j ≤ k + 1 it holds that Wj = W (n′
j) and

(aj , ij) 	= (τ,⊥).

We then define the equivalence relation ≡nss as
in Definition 2.6 but replacing the original workflow
traces with near-sighted workflow traces.

3.4 Summary and related work

Table 1 summarizes our findings. It lists the equiva-
lence classes induced by each of the equivalence no-
tions previously discussed on the set of examples of
Figure 6. The purpose of the table is to illustrate
that the six proposed equivalence notions are differ-
ent from each other and different from the two equiv-
alence notions introduced in Section 3.1 (weak and
branching bisimilarity). It should be noted that the
table suggests that the eager semantics coincides with
weak and branching bisimilarity. However, this is not
generally true. For instance, consider the AW T ′

9 ob-
tained by changing the first “A, a” into a “C, c” in
T9. It can be seen that T9 ≡es T ′

9 but T9 	≡bbs T ′
9. In-

deed, in the eager semantics the τ step would always
be taken before an offer is made, and thus, it is ir-
relevant whether the alternative transition is labeled
A, a or C, c. Also, weak and branching bissimilar-
ity coincide on the six working examples, but it is
well known that these notions differ (van Glabbeek
& Weijland 1996). Hence, all the equivalence notions
listed in Table 1 are distinct.

In the literature, many equivalence notions have
been defined (van Glabbeek 1993, van Glabbeek &
Weijland 1996). Some of them are similar to our no-
tions of equivalence, e.g., the readiness semantics de-
fined by Olderog and Hoare (Olderog & Hoare 1986) is
close to the eager semantics. In (Ingólfsdóttir 1997), a
bisimulation-like characterization of readiness seman-
tics for non-divergent processes is provided, under the
assumption that taking a τ step never causes a task to
be removed from the offered work-set. Also, parallels
can be drawn between the treatment of τ steps in the
full semantics, and the notion of autonomous actions
discussed in (Voorhoeve & Basten 1996). In this ref-
erence, autonomous actions are defined as steps of a
process that may be observed but not controlled by
the environment, which captures the intuition that in
the full semantics τ steps are internal actions that can
be observed by the environment whether they change
the work-set or not.

4 Conclusion

Which of the eight equivalence notions presented in
Table 1 is most suitable for workflow systems? The
two classical ones (trace semantics and branching
bisimilarity) are less suitable because they do not con-
sider explicit offers. Of the three equivalence notions
where τ steps may be visible (full, change, and non-
empty semantics), the change semantics seems the
most realistic one since it captures the intuition that
the work-set is all that the environment can perceive
in-between two inputs. Of the three equivalence no-
tions where τ steps are invisible (eager, far-sighted,
and near-sighted semantics), the near-sighted seman-
tics seems to be the most realistic one. Indeed, the
eager semantics may create “dead branches” in the
transition tree while the far-sighted semantics lets the
choice of the τ steps be influenced by the environ-
ment, contradicting the assumption that τ steps are
entirely controlled by the system.

This paper provides a starting point for defining
equivalence relations for workflows. We do not pro-
vide a definitive answer to the question raised above.
Instead, we have provided a number of formal notions
(e.g., AWs, CWs) and raised key issues that need to
be considered when choosing an equivalence notion.
In addition, we have formalized a notion of equiva-
lence for workflows in the absence of silent steps.

This work could be further pursued in both theo-
retical and practical directions. From a theoretical
perspective, interesting issues include studying the



weak bisimilarity ≡wbs {T7, T9, T10, T12}, {T8}, {T11}
branching bisimilarity ≡bbs {T7, T9, T10, T12}, {T8}, {T11}
full semantics ≡fs {T7}, {T8}, {T9}, {T10}, {T11}, {T12}
change semantics ≡cs {T7, T10}, {T8}, {T9}, {T11}, {T12}
non-empty semantics ≡nes {T7, T12}, {T8}, {T9}, {T10}, {T11}
eager semantics ≡es {T7, T9, T10, T12}, {T8}, {T11}
far-sighted semantics ≡fss {T7, T8, T9, T10, T11, T12}
near-sighted semantics ≡nss {T7, T10, T12}, {T8}, {T9}, {T11}

Table 1: Equivalences for the AWs corresponding to the CWs of Figure 6 under various notions of equivalence

properties of the notions of equivalence introduced
and in particular, characterizing classes of workflows
for which these notions of equivalence (in particu-
lar those involving invisible silent steps) correspond
with well-understood notions of equivalence such as
weak and branching bisimulation. From a practi-
cal perspective, the notions of equivalence presented
could be applied to proving the correctness of map-
pings between workflow modeling languages (or prov-
ing the impossibility of defining full mappings be-
tween certain languages). This is relevant in light
of the emergence of proposed standards for business
process execution that support silent steps, most no-
tably BPEL (Andrews et al. 2003).

Acknowledgements. This work is partially
funded by an ARC Discovery Grant “Expressiveness
Comparison and Interchange Facilitation between
Business Process Execution Languages”.

References

van der Aalst, W. (1998), ‘The Application of Petri
Nets to Workflow Management’, The Journal of
Circuits, Systems and Computers 8(1), 21–66.

van der Aalst, W. & Basten, T. (2002), ‘Inheritance
of Workflows: An Approach to Tackling Prob-
lems Related to Change’, Theoretical Computer
Science 270(1-2), 125–203.

van der Aalst, W. & ter Hofstede, A. (2003), ‘YAWL:
Yet Another Workflow Language’, Accepted for
publication in Information Systems, and also
available as QUT Technical report, FIT-TR-
2003-04, Queensland University of Technology,
Brisbane.

van der Aalst, W., ter Hofstede, A., Kiepuszewski, B.
& Barros, A. (2003), ‘Workflow Patterns’, Dis-
tributed and Parallel Databases 14(1), 5–51.

Andrews, T., Curbera, P., Dholakia, H., Goland,
Y., Klein, J., Leymann, F., Liu, K., Roller,
D., Smith, D., Thatte, S., Trickovic, I.
& Weerawarana, S. (2003), ‘Business pro-
cess execution language for web services
version 1.1’. Accessed 5 May 2004 from
http://www-106.ibm.com/developerworks/
webservices/library/ws-bpel.

Baeten, J. & Weijland, W. (1990), Process Alge-
bra, Vol. 18 of Cambridge tracts in theoretical
computer science, Cambridge University Press,
Cambridge.

Basten, T. (1996), ‘Branching Bisimilarity is an
Equivalence indeed!’, Information Processing
Letters 58(3), 141–147.

Engelfriet, J. (1985), ‘Determinacy → (observation
equivalence = trace equivalence)’, Theoretical
Computer Science 36, 21–25.

van Glabbeek, R. (1993), The Linear Time - Branch-
ing Time Spectrum II: The Semantics of Se-
quential Systems with Silent Moves, in E. Best,
ed., ‘Proceedings of CONCUR 1993’, Vol. 715
of Lecture Notes in Computer Science, Springer-
Verlag, Berlin, pp. 66–81.

van Glabbeek, R. & Weijland, W. (1996), ‘Branching
Time and Abstraction in Bisimulation Seman-
tics’, Journal of the ACM 43(3), 555–600.

Hollingsworth, D. (1995), Workflow Management
Coalition – The Workflow Reference Model,
Document number WFMC-TC-1003, Workflow
Management Coalition, UK.

Ingólfsdóttir, A. (1997), Weak semantics based on
lighted button pressing experiments, in ‘Pro-
ceedings of the 10th International Workshop on
Computer Science Logic (CSL), Utrecht, The
Netherlands, September 1996’, Springer Verlag,
pp. 226–243.

Jablonski, S. & Bussler, C. (1996), Workflow Manage-
ment: Modeling Concepts, Architecture, and Im-
plementation, International Thomson Computer
Press, London, UK.

Janssens, G., Verelst, J. & Weyn, B. (1998), Reuse-
oriented workflow modelling with Petri nets, in
W. M. P. van der Aalst, ed., ‘Proceedings of
the Workshop on Workflow Management at the
19th International Conference on Application
and Theory of Petri Nets’, Lisboa, pp. 40–59.

Kiepuszewski, B., ter Hofstede, A. & van der Aalst,
W. (2003), ‘Fundamentals of Control Flow in
Workflows’, Acta Informatica 39(3), 143–209.

Milner, R. (1980), A Calculus of Communicating Sys-
tems, Vol. 92 of Lecture Notes in Computer Sci-
ence, Springer-Verlag, Berlin.

Olderog, E. & Hoare, C. (1986), ‘Specification-
Oriented Semantics for Communicating Pro-
cesses’, Acta Informatica 23(1), 9–66.

Verelst, J. (2004), A framework for classifying vari-
ability in conceptual models, Technical Report
RPS-2004-019, University of Antwerp, Dept. of
Management Information Systems.

Voorhoeve, M. & Basten, T. (1996), Process alge-
bra with autonomous actions, Technical report
96/01, Eindhoven University of Technology, De-
partment of Mathematics and Computing Sci-
ence, Eindhoven, the Netherlands.

Wombacher, A. & Mahleko, B. (2002), Finding trad-
ing partners to establish ad-hoc business pro-
cesses, in ‘On the Move to Meaningful In-
ternet Systems, 2002 - Proceedings of the
DOA/CoopIS/ODBASE Confederated Interna-
tional Conferences, Irvine CA, USA’, Springer
Verlag, pp. 339–355.


