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Abstract. Enterprise Systems need to be configured to fit organiza-
tional requirements and to provide support for their business operations.
Reference models aim at supporting this task but fail in providing ad-
equate conceptual support due to missing configurability of the models
themselves. Our research extends the work on a configurable reference
modeling approach. In previous research we developed a conceptual no-
tation for configurable reference models. This paper considers a syntactic
perspective of reference model configuration. We discuss the lawful envi-
ronments of configurable nodes and report about syntactic implications
of model configuration in these environments. We then apply these find-
ings in the design of an interchange format for configurable reference
models and discuss its applicability for the XML-based design of tool
support, which ultimately will facilitate the automatic verification and
transformation of reference process models to executable workflow spec-
ifications.

1 Reference Models and Enterprise Systems

Many organizations suffer problems from poorly implemented Enterprise Sys-
tems (ES) [1]. Both academia and industry state that these problems result
from a misalignment gap between business and IT, which, once closed, would
lead to significantly improved business performance [2]. The notion of (mis-)
alignment primarily embraces the process dimension, i.e. the alignment of IT
functionality to the actual business processes of an organization. In many cases,
it is observed that the system hampers the normal way of handling processes
instead of supporting it. This is even more surprising given the fact that business
process orientation as a concept has been a major topic in both academia and
practice at least since the 1990’s [3, 4]. Alongside this trend, the IS community
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has experienced the proliferation of an enormous number of process modeling
methods, including the Event-Driven Process Chains (EPC) [5], which itself is
used within the Enterprise System SAP.

The term Enterprise Systems represents integrated information systems that
aim at holistically supporting the operational processes of organizations. Though
ES packages are distributed as Commercial Off-The-Shelf (COTS) software, their
implementation often results in tremendous configuration efforts. Given the fact
that the alignment of “generic” ES solutions to “specific” organizational needs
denotes a highly complex task, it was found that a model-driven solution would
provide a more intuitive approach towards configuring, adapting and customiz-
ing ES software to customer demands. Such a model-driven approach naturally
would take on existing reference models, which have already been developed by
ES vendors in order to improve the understandability of their systems. In the
context of Enterprise Systems, such application reference models that describe
structure and functionality of software solutions on different levels of conceptual
abstraction are of particular interest. Due to their prescriptive nature, i.e. appli-
cation reference models usually depict the complete functionality of the system
[6], they are however only of limited use to the ES configuration process, mainly
due to a lack of conceptual support in the form of a configurable modeling lan-
guage underlying the reference models.

Addressing this issue, we have developed a new reference modeling approach
which considers the configurable nature of an Enterprise System. The represen-
tation language of this approach is called Configurable EPCs (C-EPCs). While
previous research efforts have focused on the meta model and the notation of C-
EPCs [7], this paper discusses syntactical problems of C-EPCs in the process of
reference model configuration. The scope of our paper is the translation of (con-
figured) C-EPCs to lawful (regular) EPCs. We will show that the application
of C-EPC in the process of ES reference model configuration leads to syntactic
problems and we will outline an approach how to handle these problems when
translating C-EPC models into lawful process models. More specifically, the aim
of our paper is to outline a XML schema-based approach using the EPC Markup
Language (EPML) [8] for the task of syntactical validation of reference process
model configuration.

The remainder of our paper is structured as follows: Section 2 presents issues
and shortcomings of the EPC notation in light of reference model configuration
and introduces the notion of a configurable reference process modeling technique.
Also, it briefly reports on related work in the field of configurable reference
modeling. Section 3 discusses problems that occur when configuring reference
process models. We present a XML-based specification of C-EPCs on which the
design of tool support for syntax validation and automatic model translation
will be based. We briefly summarize our work in Section 4 and propose some
conclusions.
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2 A Configurable Reference Modeling Language

2.1 On the Syntax and Semantics of EPCs

In order to gain an understanding for the C-EPC notation and to raise aware-
ness of problems we encounter during reference process model configuration, we
briefly outline the notion of classical EPC models and discuss some issues related
to the informal semantics and syntax of EPC.

The EPC language was developed at the University of Saarland, Germany, in
collaboration with SAP AG (see [5]). A simple EPC consists of events as passive
states, functions as active transformations, and logical connectors that connect
events and states through control flow. EPCs have - amongst others - been
used for the design of the reference process models in SAP [6]. As discussed
quite intensively in academia, see e.g. [9, 10], the definition of EPC in [5], on
which we based our research on the C-EPC language, leads to syntactic and
semantic problems. The syntax of EPCs as deployed in our research context can
be found in [7]. However, this definition does not cover behavioral aspects of
EPCs and thus may contain semantic ambiguities. For instance, the informal
semantics of an OR-join causes confusion as a joining OR-connector may or
may not synchronize incoming process flows [10]. While these problems have
been addressed in academic contributions, see e.g. [9, 11, 12], and while there
exist approaches to provide semantics to EPCs, see e.g. [13], there is not yet a
generally accepted solution to the issue of EPC semantics.

Considering such problems before the background of ES configuration, the
informal semantics of EPC lead to severe issues: EPC models, which depict those
process scenarios that are deemed relevant to a particular organization, need to
be translated into executable process specifications, which an Enterprise System
can execute at run-time. Or, consider a workflow management system that de-
fines, executes, manages and controls business processes based on these models.
In whatever case, it is of paramount importance to have syntactically correct,
i.e. lawful EPC process models as an outcome of the configuration process.

Yet, we did not want to further complicate the semantics of EPCs by intro-
ducing new semantic elements to the language specification but instead decided
to express the semantics of Configurable EPCs in terms of traditional EPCs.
Hence, we seek to validate the behavior of configurable processes through their
translation to regular EPCs. Then, any of the formalization approaches men-
tioned in [9, 11–13] can be used as a semantic foundation, and we may stop the
discussion of semantics here. However, we later need to some semantic implica-
tions when translating Configurable EPCs into lawful process models.

2.2 On Configurable Reference Process Models: The C-EPC
Notation

Current reference modeling languages lack configuration support. As an example,
the SAP reference model [6], which is depicted in the EPC notation, covers in the
version 4.6 more than 1,000 business processes and inter-organizational business
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scenarios. As the main objective of reference models is to streamline the design
of particular models, they are coined by the “Design by Reuse” paradigm. To in-
crease their applicability, such models typically not include merely one proposed
alternative for conducting business in a certain domain but a range of often mu-
tually exclusive alternatives. Hence it denotes an ‘upperbound’ of process models
that may possibly be implemented in a particular enterprise. As an organization
might merely favor one of the depicted alternatives, they potentially only refer
to a subset of ES functionality to be implemented and accordingly only to a sub-
set of the reference model. Until today, however, these types of decision cannot
be reflected within the ’upperbound’ reference model due to lacking configura-
tion support of the underlying reference modeling language. Existing reference
modeling techniques neither support the highlighting nor selection of (process)
configuration alternatives. This lack of expressiveness obviously denotes a major
issue for reference model users.

Addressing these issues, this section introduces Configurable EPCs (C-EPCs)
as an extension to the popular EPC modeling technique [5]. Focus was spent to
the active parts of process models, i.e. functionality (functions, tasks, transitions,
and the like) and control flow. We have not examined the configurability of
events (or states) as more passive parts of processes since they cannot actively be
influenced by an organization. It is the reaction to events that can be influenced
and this reaction is covered in C-EPCs. The notion of a Configurable EPC
has been introduced and formalized in [7], therefore we only discuss the basic
notation here. Fig. 1 shows an example of a C-EPC model, with the left part
showing the configuration alternatives, the middle part showing one selected
alternative after configuration, and the right part showing a possible lawful EPC
model resulting from the configuration.

In a C-EPC functions and connectors can be configured. Notation-wise, these
configurable nodes are highlighted by bold lines. Configurable functions may
be included (ON ), excluded (OFF ), or conditionally skipped (OPT ). To be
more specific, for configurable functions, a decision has to be made whether to
perform this function in every process instance at run-time, whether to exclude
this function permanently, i.e. it will not be executed in any process instance, or
whether to defer this decision to run time, i.e. for each process instance it has
to be decided whether or not to execute the function.

Configurable connectors subsume possible build-time connector types that
are less or equally expressive. Hence, a configurable connector can only be config-
ured to a connector type that restricts its behavior. A configurable OR-connector
may be mapped to a regular OR-, XOR-, or AND-connector. Or, the configurable
OR-connector may be mapped to a single sequence of events and functions (in-
dicated by SEQn for some process path starting with node n). A configurable
AND-connector may only be mapped to a regular AND-connector. A config-
urable XOR-connector may be mapped to a regular XOR-connector or to a
single sequence SEQn .

In order to depict inter-dependencies between configurable EPC nodes, the
concept of configuration requirements has been introduced. Inter-related config-
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Fig. 1. A simple C-EPC (before configuration, after configuration, and resulting EPC)

uration nodes may be constrained by such requirements. Consider the example
given in the left part of Figure 1. If the configurable function A is excluded,
the inter-related configurable OR-connector must be mapped to a regular AND-
connector. Such configuration requirements are best defined via logical expres-
sions in the form of If-Then-statements.

Additionally, configuration guidelines provide input in terms of recommenda-
tions and proposed best practices (also in the form of logical If-Then-expressions)
in order to support the configuration process semantically. Consider again the
example given in the left part of Figure 1. A recommendation could be that
if function D is included, then so should be function E (but not necessarily
vice versa). Summarizing, requirements and guidelines represent hard (must)
respectively soft (should) constraints.

Concluding, we introduced a configurable reference modeling notation which
potentially facilitates a model-driven selection and modification of process flows
and process activities.

2.3 Related Work

Related work on configurable reference modeling includes the perspectives-based
configurative reference process modeling approach by Becker et al. [14]. This
approach focuses on adaptation mechanisms and proposes several mechanisms
for automatically transforming a reference model into an individual model. While
the work of Becker et al. focuses on generic adaptation mechanisms, this research
pursues a reference model-driven approach towards ES configuration.
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Soffer et al.’s suggestions on ERP modeling [15] can also be regarded as close
to our proposed ideas. Following the concept of scenario-based requirements
engineering, they evaluate the Object-Process Modeling Methodology in order
to determine a most appropriate ERP system representation language. The so-
called argumentation facet, related to the ability of a modeling language to
express optionality-related information, is just one of many of their criteria.
Their work does not comprehensively analyze requirements related to modeling
ERP configurability and focuses on technique evaluation rather than on the
development of a more appropriate technique.

Gulla and Brasethvik [16] introduce three process modeling tiers to manage
the complexity of process modeling in comprehensive ERP Systems projects.
Their functional tier dimension deals with the functionality of the Enterprise
System. However, they do not study how reference models fit into in this tier.

Based on this brief review we find that the notion of a C-EPC is the only
dedicated Configurable Modeling approach that supports systems configuration
aspects on a conceptual level. This paper extends our preceding work on the
notation and formalization of C-EPCs [7] and on the process of Enterprise Sys-
tems configuration using C-EPCs [17] in the way that it considers more technical
aspects of model configuration and translation.

3 On the Syntax of Reference Model Configuration

3.1 Configuration Using the C-EPC Modeling Language

The task of configuring reference models that have been deemed configurable
by highlighting variation points in the model embraces both a semantic and a
syntactic dimension. While the former is concerned with making business config-
uration decisions in order to match organizational strategy and requirements, the
latter is concerned with maintaining syntactical correctness within the config-
ured models to ensure a lawful translation to executable workflow specifications
at run-time. We will show, that these dimensions are inter-related during config-
uration as syntactic considerations of implementing the models have semantic,
i.e. business consequences and must hence be considered during configuration
and translation.

We have described the semantic dimension of configuration in [17]. Basically,
through the use of the C-EPC notation, process scenarios and process alterna-
tives that are deemed desirable for a particular organization are selected. This is
done by switching configurable nodes within a C-EPC model to a desired setting.
Configuration requirements and configuration guidelines restrict respectively aid
this task. The outcome of this phase is a C-EPC model where all configurable
nodes have been switched to a certain setting. What, however, hasn’t been en-
sured yet, is that these configured C-EPC models apply to the formal syntax
of regular EPC. As an example, the middle part of Fig. 1 shows a configured
version of the C-EPC model shown in the left part, where the configurable OR-
connector has been switched to a regular AND-connector and where function A
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and D have been excluded (shaded grey). As can be seen, the resulting process
model would be syntactically inconsistent: Consider function A: Assuming the
control flow is reconnected where the excluded function is missing, two events
would follow each other. This is syntactically incorrect. Or, consider function
D: Its exclusion leads to an “empty” branch. As this branch is subsequent to
an AND-connector, it has to be removed because it does not make sense to do
“something” (i.e. executing function E) while at the same time to do “nothing”
(i.e. propagating a process folder without any transformation from event 4 to
event 7).

Inadvertently, the step beyond semantic configuration of C-EPC models from
a business perspective is the task of re-establishing syntactical correctness and
consistency, i.e. the translation of configurable process model into lawful regular
process specifications (as an example refer to the right part of Fig. 1).

3.2 Translating C-EPCs to EPCs: Syntactical and Semantic
Problems

Now, in order to approach the syntactic and inherent semantic problems that
arise due to the configuration of C-EPCs, we need to develop a translation
approach that maps a configured C-EPC to a lawful regular EPC. As discussed
above, this is a delicate task due to the semantic problems of EPCs themselves.
There are in principle several options to approach this task:

– Refine the EPC specification to arrive at rigorously and unambiguously de-
fined semantics for EPCs and thus, for C-EPCs.

– Ignore the semantics of EPCs and merely focus on specifying an unambigu-
ous translation of C-EPCs to EPCs, which themselves may then be further
discussed.

Here, we opted for the latter alternative: We wanted to extend the work on refer-
ence modeling techniques rather than developing new ones. Due to its popularity
for the design of reference models and referring to the extensive academic work
on its formalization and definition we deemed it better to take EPCs as both
starting and ending point for our design of configurable process models instead
of proposing yet another semantic and synactic definition of EPCs.

Looking at the configuration of reference process models, this task can be
divided into global and local decisions, with the former being based on the general
model context and which can be made without studying the individual process
model. Local decisions on the other hand require an explicit study of the relevant
(parts of) process models. Our forthcoming discussion is focusing on the local
aspects of configuration. We do not deem it necessary to explicitly address global
decisions for the following reasons:

1. EPCs and thus C-EPCs can be hierarchically structured by decomposing
single EPCs into more detailed sub-models. Analogously, each (C-) EPC
may be generalized to a simpler model on a coarser level of detail. Hence, all
contexts of configurable nodes may eventually be drilled up to the smallest
possible local environment, as will be discussed below.
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2. The notion of C-EPCs provides explicit representations for the depiction of
inter-dependencies between configurable nodes. Hence, global dependencies
between processes depicted in separate process models may be expressed,
thereby not needing an explicit addressing of a global process context.

3. As current practice shows (consider e.g. the configuration of the SAP sys-
tem), the process of reference model configuration starts at a very coarse level
of detail with industry sector-spanning process models (in the SAP context:
collaborative business scenarios). At this stage, configuration refers to delet-
ing dispensable processes from high-level process models. It can be seen as
more of a scoping exercise in a pre-implementation stage. Hence, global con-
figuration decisions merely are decisions as to the inclusion or exclusion of
processes, the former of which then need to be locally configured.

Concluding, we argue that configured C-EPC models can be transferred into
lawful EPC models in accordance to laws based on the local syntactic environ-
ment of configurable nodes. We must, for the purpose of this paper, limit some of
the discussions to examples. A complete discussion of all local environments for
configurable nodes and the entire resulting process model variants would require
more space and is furthermore deemed unnecessary for making our argument.

Configurable Functions Firstly, we investigate the local environments of con-
figurable functions. As an EPC consists of events (E), functions (F), and splitting
(S) respectively joining (J) connectors, there are nine different local environments
for a configurable function A (see Fig. 2).

Studying the local environments of configurable functions reveals that, once a
configurable function A has been switched to a desirable setting, the syntactical
clean-up of the process model is not a purely technical decision. Due to missing
formal semantics of the EPC notation - e.g. the EPC modeling language does
not explicitly differ between triggering and resulting events that pre-/succeed a
function - removals or inclusions of process model elements may have semantic
and thus, business-related consequences. Bearing that in mind, syntactic valida-
tion may lead to various syntactically lawful yet semantically different process
models.

Consider the following example. Referring to the local environment ‘Event-
Function-Event, EFE’ - the configurable function A is embedded in the context
of a preceding event EP and a succeeding event ES - configuration and syntactic
validation may lead to the process model variants shown in Fig. 3. Now, as can
be seen in Fig. 3, the syntactic handling of switching configurable functions ON
or OFF are simple, according to the definitions in [7]. Functions mapped to
OPT , however, are trickier.

Consider the configuration decision of switching the function A to OPT . The
resulting process model must cater for a run time decision to either bypass the
function or execute it. Due to the informal EPC semantics, it is not necessarily
obvious whether the succeeding event ES denotes a triggering state for a subse-
quent business function or a resulting state for A. In the former case, the bypass
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Fig. 2. Local environments for configurable functions

does not need to include ES (variant 1). In the latter case, EP needs not to be by-
passed (variant 2). Maybe both states surrounding A may be bypassed, thereby
passing a new state EP/S (variant 3). Another syntactically valid solution is to
introduce a ’dummy’ function skipA which just propagates a process folder from
EP to ES without any transformation (variant 4). Or, a new decision function Z
and an additional event Ex are introduced to augment the configuration decision
of switching A to OPT (variant 5). This case, obviously, requires the inclusion
of knowledge external to the model in order to specify the decision function Z.

Configurable Connectors Considering configurable connectors and referring
back to the configuration constraints described in Section 2.2, these nodes may
appear in any of the local environments shown in Fig. 4.
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According to the syntax rules of lawful EPCs, some local environments are
restricted to the AND connector, since both OR- and XOR-connectors need to
be linked to a preceding function that allows for the decision which process path
to take. With respect to syntactically lawful process variants for these local envi-
ronments, configurable connectors are relatively easy to handle, as shown in Fig.
5. As can be seen, for each configuration decision there exists exactly one syn-
tactic lawful process variant. Moreover, for each of the configurable XOR- and
AND-connectors there exists merely one syntactic variant per desired setting as
both configurable nodes may only be restricted in their behavior or mapped to a
single sequence SEQn . Analogously, as configurable connectors are defined to be
mapped to an equal or less expressive behavior, it is obvious that for each con-
figuration in whatever local environment there can only exist one corresponding
syntactically lawful process variant.

Synopsis The syntactic alternatives for all other local environments of config-
urable nodes, as depicted in Fig. 2 and Fig. 4 are constructed in a similar way.
We examined the lawful environments of all configurable nodes and constructed
syntactic alternatives for all combinations of predecessors and successors. As
already mentioned, we cannot discuss them in detail here.

Yet, as can be shown through our examples, the syntactic clean-up of con-
figured reference process models bears some semantic decisions in itself. The
syntactical validation of C-EPC models may lead to several syntactically lawful
yet semantically different EPC model variants. Since we decided not to modify
the EPCs but instead base our work on the (arguably ambiguous) traditional
EPC definition, it is sufficient to design adequate tool support that facilitates
and aids the translation process from C-EPCs to EPCs. We will thus, in the next
section, address this translation task by presenting a XML-based schema speci-
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fication of C-EPCs that will be used to aid the syntax validation and translation
of C-EPCs to regular lawful process models.

3.3 Towards Tool Support for Reference Model Configuration

Research towards tool support for C-EPCs based on an interchange format was
motivated by two facts:

– The configuration of a C-EPC should correspond to a concrete EPC [7].
However, as we discussed in this paper, it is not possible to automate such
mapping, hence adequate tool support is needed to facilitate and aid this
task.
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Fig. 5. Lawful alternatives for configuring an OR-connector in the FSE environment
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– EPCs and C-EPCs are not executable and thus cannot serve as direct spec-
ifications for process or workflow execution engines - which would, however,
be desirable especially in the context of Enterprise Systems. In order to facil-
itate the interchange of configured reference process models to other process
specifications, a standardized interchange format for “cutting-edge” process
execution languages is needed.

Contemplating available options, we deemed a design specification based on a
XML schema to be the best alternative. In particular, we opted for the EPC
Markup Language (EPML) [8]. This selection was made for the following reasons:

1. EPML is able to perform syntax validations of EPCs [18].
2. EPML leverages the interchange of EPCs to other process modeling and

execution languages [19].
3. EPML can be generated from the ARIS Markup Language (AML) [20] and is

also supported by open source modeling solutions such as EPC Tools. Hence,
tool platforms are available for implementing reference model configuration
tool support based on C-EPCs.

Due to space limitations we cannot describe the EPML definition in any detail,
which can be found in [8]. Instead, we merely introduce the main extensions to
EPML to cater for the C-EPC specification (see Table 1).

As can be seen from Table 1, for each configurable node we introduce an
EPML representation element. A configurable function is defined as an exten-
sion to a regular EPC function in EPML, merely annotating a new attribute
element configuration, which is optional and may take a value of on, off ,
or opt . Configurable connectors are likewise specified as extensions to regular
connectors, with the option of setting the attribute element configuration to a
concrete value - in accordance to the definitions outlined in Section 2.2. Specifi-
cally, if for a configurable connector the value seq is selected, an attribute goto
specifies the ID of the starting EPC node of the process path selected. Configura-
tion requirements and guidelines, respectively, are defined as logical expressions
involving a number of configurable nodes. In EPML they are thus defined as
part of the root epc element, with a list containing the IDs of involved ele-
ments (idRefs). The logical expressions themselves can be modeled via XPath
expressions, for instance

<configurationRequirement idRefs="2 4">
<if xpath="function[@id=’2’]//configuration[@value=’off’]">
<then xpath="function[@id=’4’]/ /configuration[@value=’on’]">

</configurationRequirement>

Note that this specification allows for a representation of C-EPCs both before
configuration (such as the one depicted in the left part of Fig. 1), and after
configuration (such as the one depicted in the middle part of Fig. 1). Also, as
our definitions are mere extensions to the traditional EPC specification in EPML
such that one the one hand traditional EPC models represented in EPML can
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still be validated against the extended EPML schema, and on the other hand
EPML tools that are not aware of configuration aspects are still able to process
C-EPCs as traditional EPCs by simply ignoring the additional configuration
element information.

Table 1. EPML representations for the C-EPC notation
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<xs:element name ="configurableFunction ">
 <xs:complexType >
  <xs:choice minOccurs ="0">
   <xs:element name ="configuration ">
    <xs:complexType >
     < xs:attribute name ="value" use="optional ">
      < xs:simpleType >
       < xs:restriction base ="xs:string">
        < xs:enumeration value ="on"/>
        < xs:enumeration value ="off"/>
        < xs:enumeration value ="opt"/>
       < /xs:restriction >
      < /xs:simpleType >
     < /xs:attribute >
    </xs:complexType >
   </xs:element >
  </xs:choice>
 </xs:complexType >
</xs:element >

<xs:element name ="configurableConnector ">
 <xs:complexType >
  <xs:choice minOccurs ="0">
   <xs:element name ="configuration ">
    <xs:complexType >
     <xs:attribute name ="value" use="optional ">
      < xs:simpleType >
       < xs:restriction base ="xs:string">
        < xs:enumeration value ="or"/>
        < xs:enumeration value ="and"/>
        < xs:enumeration value ="xor"/>
        < xs:enumeration value ="seq"/>
       < /xs:restriction >
      < /xs:simpleType >
     </xs:attribute >
     <xs:attribute name ="goto" type="xs:integer "/>
    </xs:complexType >
   </xs:element >
  </xs:choice>
 </xs:complexType >
</xs:element >

<xs:element name ="configurableConnector ">
 <xs:complexType >
  <xs:choice minOccurs ="0">
   <xs:element name ="configuration ">
    <xs:complexType >
     < xs:attribute name ="value" use="optional ">
      < xs:simpleType >
       < xs:restriction base ="xs:string">
        < xs:enumeration value ="xor"/>
        < xs:enumeration value ="seq"/>
       < /xs:restriction >
      < /xs:simpleType >
     < /xs:attribute >
     < xs:attribute name ="goto" type="xs:integer "/>
    </xs:complexType >
   </xs:element >
  </xs:choice>
 </xs:complexType >
</xs:element >

X

V

<xs:element name ="configurableConnector ">
 <xs:complexType >
  <xs:choice minOccurs ="0">
   <xs:element name ="configuration ">
    <xs:complexType >
     <xs:attribute name ="value" default="and"
     use ="optional ">
      < xs:simpleType >
       < xs:restriction base ="xs:string">
        < xs:enumeration value ="and"/>
       < /xs:restriction >
      < /xs:simpleType >
     </xs:attribute >
    </xs:complexType >
   </xs:element >
  </xs:choice>
 </xs:complexType >
</xs:element >

<xs:element name ="configurationRequirement "
 <xs:complexType >
  <xs:sequence >
   <xs:element name ="if">
    <xs:complexType >
     < xs:attribute name ="xpath" type="xs:string"/>
    </xs:complexType >
   </xs:element >
   <xs:element name ="then" maxOccurs ="unbounded ">
    <xs:complexType >
     < xs:attribute name ="xpath" type="xs:string"/>
    </xs:complexType >
   </xs:element >
  </xs:sequence >
  <xs:attribute name ="idRefs">
   <xs:simpleType >
    <xs:list itemType ="xs:integer"/>
   </xs:simpleType >
  </xs:attribute >
 </xs:complexType >
</xs:element >

<xs:element name ="configurationGuideline ">
 <xs:complexType >
 </xs:sequence >
   <xs:element name ="if">
    <xs:complexType >
     <xs:attribute name ="xpath" type="xs:string "/>
    </xs:complexType >
   </xs:element >
   <xs:element name ="then" maxOccurs ="unbounded ">
    <xs:complexType >
     <xs:attribute name ="xpath" type="xs:string "/>
    </xs:complexType >
   </xs:element >
  </xs:sequence >
  <xs:attribute name ="idRefs">
   <xs:simpleType >
    <xs:list itemType ="xs:integer "/>
   </xs:simpleType >
  </xs:attribute >
 </xs:complexType >
</xs:element >

C-EPC
representation

EPML representationC-EPC
representation

EPML representation

Now, based on these EPML specifications, reference model configuration tool
support may be designed that facilitates the model-driven configuration and
translation of C-EPCs. In particular, the EPML specifications will be used to:

– leverage the modeling of C-EPCs via existing modeling tools, such as ARIS
or the open source platform EPC Tools,

– design a XML schema-based tool for checking the validity of configurations,
– implement an EPML-based algorithm for translating C-EPCs to EPCs, and
– facilitate the interchange of C-EPCs to other process specifications.
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4 Summary and Conclusions

This paper reported on syntactical and semantic challenges of reference model
configuration, using the example of translating C-EPC models to lawful reg-
ular EPCs. We showed that both syntactical and semantic perspectives must
be considered when mapping configurable nodes to desired regular EPC nodes.
Resulting from these elaborations, we presented initial conceptual work towards
adequate tool support for the configuration of process models. Based on our re-
search, such tool support can be designed that embeds our recommendations and
thereby guides users when configuring Enterprise Systems based on configurable
reference process models.

Our research has a few limitations. First, our conceptual approach needs to
be empirically validated to prove its feasibility and applicability. However, we are
currently undertaking this task and already conducted a laboratory experiment
with postgraduate IT students on the perceived usefulness and perceived ease
of use of C-EPCs in comparison to EPCs. Initial results show that C-EPCs
are in fact perceived as more useful and easier to use for the task of reference
model configuration [21]. Second, we focused the EPC notation and neglected the
question of its executability. However, we selected the EPML interchange format
as a basis for tool support for good reason, as it may facilitate the translations
from (C-) EPCs to other executable process specifications.

Acknowledgements The authors would like to express their gratitude towards
the continuous fruitful contributions of Alexander Dreiling and Wasim Sadiq to
the C-EPC research project and Markus Nüttgens to the EPML initiative. The
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In: Nüttgens, M., Rump, F.J. (eds.): Proceedings of the GI-Workshop EPK 2002.
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In: Nüttgens, M., Rump, F.J. (eds.): Proceedings of the 3rd GI Workshop on
Event-Driven Process Chains. GI-Arbeitskreis Geschäftsprozessmanagement mit
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