
Configurable Process Models as a Basis for
Reference Modeling
– position paper –

W.M.P. van der Aalst1,3, A. Dreiling2,3, M. Rosemann3, and M.H.
Jansen-Vullers1

1 Department of Technology Management, Eindhoven University of Technology, P.O.
Box 513, NL-5600 MB, Eindhoven, The Netherlands.

w.m.p.v.d.aalst@tm.tue.nl
2 European Research Center for Information Systems, University of Münster

Leonardo-Campus 3, 48149 Münster, Germany.
3 Centre for IT Innovation, Queensland University of Technology Level 5 / 126

Margaret St, Brisbane, QLD 4000, Australia.

Abstract. Off-the-shelf packages such as SAP need to be configured
to suit the requirements of an organization. Reference models support
the configuration of these systems. Existing reference models use rather
traditional languages. For example, the SAP reference model uses Event-
driven Process Chains (EPCs). Unfortunately, traditional languages like
EPCs do not capture the configuration-aspects well. Consider for exam-
ple concept of “choice” in the control-flow perspective. Although any
process modeling language, including EPCs, offers a choice construct
(e.g., the XOR connector in EPCs), a single construct will not be able
to capture the time dimension, scope, and impact of a decision. Some
decisions are taken at run-time for a single case while other decisions
are taken at configuration time impacting a whole organization and all
current and future cases. This position paper discusses the need for con-
figurable process models as a basic building block for reference modeling.
The focus is on the control-flow perspective.

1 Introduction

The main objective of reference models is to streamline the design of particular
models by providing a generic solution [15]. The application of reference models
is motivated by the “Design by Reuse” paradigm. Reference models accelerate
the modeling and configuration process by providing a repository of potentially
relevant models. These models are ideally “plug and play” but often require some
customization/configuration [5]. Unfortunately, the languages used for reference
modeling [4, 6, 11, 14] provide little of no support for configuration. The goal of
this position paper is to discuss the need for configurable process models.

One of the most comprehensive models is the SAP reference model [6, 11].
Its data model includes more than 4000 entity types and the reference process

models cover more than 1000 business processes and inter-organizational busi-
ness scenarios [15]. Most of the other dominant ERP vendors have similar or
alternative approaches towards reference models. Foundational conceptual work
for the SAP reference model has been conducted by SAP AG and the IDS
Scheer AG in a collaborative research project in the years 1990-1992 [10]. The
outcome of this project was the process modeling language Event-Driven Pro-
cess Chains (EPCs) [10, 12], which has been used for the design of the reference
process models in SAP. EPCs also became the core modeling language in the
Architecture of Integrated Information Systems (ARIS) [16, 17]. It is now one of
the most popular reference modeling languages and has also been used for the
design of many SAP-independent reference models (e.g., the ARIS-based refer-
ence model for Siebel CRM or industry models for banking, retail, insurance,
telecommunication, etc.). Despite its success the basic EPC model offers little
support for process configuration. It contains (X)OR connectors but it is unclear
whether the corresponding decisions need to be taken at run-time (e.g., based
on the stock-level), at build-time (e.g., based on the size of the organization
using SAP), or somewhere in-between (e.g., the period of the year or based on
work-in-progress or resource availability). Therefore, we developed the so-called
Configurable EPCs (C-EPCs) [15, 7]. However, these C-EPCs only provide a par-
tial solution and are based on a specific language (EPCs). In this position paper,
we would like to trigger a discussion on requirements for configurable process
models in a broader perspective.

The remainder of the paper is organized as follows. First, we elaborate on the
concept of “choice” which is essential for configurable process models. Second, we
briefly discuss Configurable EPCs as a first step towards such models. Finally,
we approach the problem from a more theoretical viewpoint, i.e., what is the
essence of configuration?

2 Configuration: It is all about making choices

This paper focuses on configurable process models, i.e., we restrict ourselves to
the control-flow perspective [9]. There are many languages to model processes
ranging from formal (e.g., Petri nets and process algebras such as Pi calculus)
to informal (flow charts, activity diagrams, EPCs, etc.). Each of these languages
provides some notion of choice. For example, two transitions sharing a single
input place in a Petri net or an (X)OR-split connector in an EPC. Typically, it
is not possible to describe the nature of such a choice. At best one can specify
a Boolean condition based on some data element. The typical interpretation is
that the choice is made at run-time based on such a Boolean condition. In the
context of reference models, this interpretation too narrow. To illustrate this we
use Figure 1.

The scope of a decision may be limited to a single case or a set of cases.
For example, if a hospital uses a rule like “If a patient has high blood pressure
a day before the planned operation, the operation is canceled”, then the scope
of each choice (operate or not) is limited to a single patient. There may also

2

single
case

multiple
cases

single
process

multiple
processes

seconds

minutes

hours

days

weeks

months

years

scope
tim

e

normal
choice

co
nfig

ura
tio

n

Fig. 1. The scope and time impact of a choice.

be choices which affect more cases, e.g., consider the rule “If there is a major
disaster in the region, all planned operations are canceled.” or even an entire
process, e.g., “The admittance process requires patients to pre-register.”. There
may also be choices that affect all process in some organizations. Related to
this is the time impact : a decision may have only have short term effects (say
minutes) or also long term effects (e.g., years). Typically, the scope and time
impact correlate positively as shown in Figure 1. The classical process modeling
languages, e.g., the languages used in workflow management systems [2, 9], allow
only for choices in the lower-left quadrant (labeled “normal choice”). Reference
models allow for a broader spectrum of choices. At configuration time, one also
needs to make choice which will affect choices at run-time. For example, at
configuration time one can choose not to use specific functionality offered by
the system. It may also be possible, to use the functionality conditionally (e.g.,
depending on the workload). One can view configuration as limiting choices by
making choices. Seen from this viewpoint, process modeling languages need to
distinguish between run-time choices and configuration choices (i.e., at build-
time). Note that the borderline between run-time and build-time may be a bit
fuzzy as the following examples show.

– Based on the volume of the order, the goods are shipped by truck or mail.
– On Saturday, goods are shipped by truck.
– If it rains for more than five hours, the shop is closed.
– If stock is below 100 items, only preferred customers are serviced.
– The Dutch branches require a deposit, while this is not needed for branches

in other countries.
– The organization chooses not to allow for pre-shipments.

Note that each of these choices is at another level. However, the processes in
e.g. the SAP reference model show only one type of choice: the (X)OR-split
connector. This triggered us to develop the so-called C-EPCs.

3

3 Configuration: An example of a language

This section introduces Configurable EPCs (C-EPCs) as an extension of the clas-
sical EPCs [10]. A classical EPC consists of functions (i.e., the activities), events
and connectors. Functions follow events and events follow functions. Moreover,
to models splits and joins in a process connectors may be used. There are three
types of connectors: AND, OR and XOR. AND-splits and AND-joins may be
used to model parallel routing. XOR-splits and XOR-joins may be used to model
the selection of specific routes (e.g., an “if then else” construct). OR-splits and
OR-joins may be used to model a mixture of conditional and parallel routing.
(However, the semantics of the OR-join is still debated [12].)

In a C-EPC both functions and connectors may be configurable. Configurable
functions may be included (ON), skipped (OFF) or conditionally skipped (OPT).
Configurable connectors may be restricted at build-time time, e.g., a config-
urable connector of type OR may be mapped onto an AND connector. Local
configuration choices like skipping a function may be limited by configuration
requirements. For example, if one configurable connector c of type OR is mapped
onto an XOR connector, then another configurable function f needs to be in-
cluded. This configuration requirement may be denoted by the logical expres-
sion; c = OR ⇒ f = ON . In addition to these requirements it is possible to add
guidelines, supporting the configuration process.

Purchase
order

created

Service is
accepted

Goods
receipt
posted

Invoice
received

V

V

Process
Invoice

XOR

G /R to be
settled

automa -
tically

Evaluated
Receipt

Settlement
(ERS)

Invoice
transmitted
for vendor’s

records

Material is
released

Invoice
posted

and blocked
for release

Invoicing
plans

require
settlement

Invoicing
Plan

Settlement

V

Release
Invoice

manually

Invoice
released

V

GUIDELINE
ERS = ON, if long term
contract with suppliers

and goods and
conditions are specified

REQUIREMENT
IPS = ON

ERS = ON

Consign -
ment /

pipeline
liability is

created

Consign -
ment /

pipeline
liabilities
are to be
settled

Consign -
ment /

Pipeline
Settlement

V

XOR

V

Consign -
ment /

pipeline
settlement
document

transmitted

XOR

XOR

Invoice
posted

(not blocked
for release)

Release
Invoice

a utoma -
tically

Fig. 2. A Configurable EPC.

4

Figure 2 shows a C-EPC describing an invoice verification process. The figure
shows an EPC extended with configurable functions and connectors (indicated
using thick lines). For example function Invoicing Plan Settlement is config-
urable, i.e., it may be included (ON), skipped (OFF) or conditionally skipped
(OPT). The diagram shows also some configurable connectors. In this position
paper we do not further elaborate on C-EPCs. For more information, we refer
to [15, 7]. The important thing to note is that it is possible to extend a language
like EPCs with configurable elements. Moreover, there are two types of choices:
(1) configuration choices (i.e., decisions made at build-time) and (2) “normal”
choices (i.e., decisions made at run-time).

4 Configuration: A theoretical perspective

To conclude this position paper, we discuss configuration more from a theoreti-
cal perspective. A reference model provides a generic solution that needs to be
configured for a specific situation. Therefore, the goal of configuration is to spe-
cialize and there seems to be a natural link to inheritance of dynamic behavior
[1, 3]. This suggests that a reference model can be seen as a superclass and a
concrete model as one of its subclasses. However, this creates a problem because
in the traditional notion of inheritance the subclass adds things to the superclass
(e.g., additional methods or attributes). For reference models this view seems
to be less suitable because configuration does not add things but rather selects
the desired parts. If one considers multiple inheritance, a superclass can be seen
as the “greatest common denominator” of all of its subclasses. However, for ref-
erence models, the superclass (i.e., the reference model) is more like the “least
common multiple” [1]. Nevertheless, we can use some of the ideas described in
[1, 3], in particular we use the idea of hiding and blocking.

Any process model having formal semantics can be mapped onto a labeled
transition system. The nodes in a labeled transition system represent states, the
directed edges represent transitions, and each transition has a label denoting
some event, action or activity. Traditional choices in the process model, cor-
respond to nodes in the labeled transition system with multiple output arcs.
Consider Figure 3(a) showing a labeled transition system. In the initial state
(the top node, edges go from top to bottom) there is a choice between a and b.
If a is selected, the next step is c and then there is a choice between d and e,
etc. If we consider Figure 3(a) to be a reference model, a configuration of this
model should select the desired parts. This can be done by blocking and hiding
edges or labels. In Figure 3(b) one edge is blocked and three edges are hidden.
Hiding and blocking should be interpreted as in [1, 3], i.e., hiding corresponds
to abstraction and blocking corresponds to encapsulation. If an edge is blocked,
it cannot be taken anymore. By hiding an edge the path is still possible but
the associated label is no longer relevant, i.e., it is renamed to a silent step τ .
One can think of the latter as simply skipping the edge. Figure 3(c) shows the
resulting model after blocking and hiding the edges indicated in Figure 3(b).

5

a
b

c

d e

f g

h i

j

k

l

m n

a
b

c

d e

f g

h i

j

k

l

m n

a
b

c

e

i

l

m n

= block = hide

(a) (b) (c)

Fig. 3. Three labelled transition systems: (a) the initial model (e.g., the reference
model), (b) a particular configuration hiding and blocking specific edges/labels, and
(c) the resulting model.

A configurable process model should allow for the specification of which
edges/labels can be blocked and hidden. An interesting question is whether it
should be possible to defer this decision to run-time. In the latter case, there
would be two more options: optional blocking and optional hiding (to be de-
cided at run-time). C-EPCs can be seen as a rather naive, but very intuitive,
configuration language that allows for the specification of the edges/labels can
be (optionally) blocked and hidden at build-time. Using the theory developed in
[1, 3] and basic notions such as simulation, bisimulation, and branching bisim-
ulation [8, 13] on the one hand and practical experiences using C-EPCs on the
other hand, we hope to develop more mature configuration languages.

The aim of this position paper is to trigger a discussion on configurable
process models. To do this we argued that configuration is highly related to the
timing and scope of choices. We also showed an example of a language (C-EPCs).
However, to allow for a more language-independent discussion we also tried to
capture the essence of configuration in terms of (optional) hiding and blocking
of edges or labels.

References

1. W.M.P. van der Aalst and T. Basten. Inheritance of Workflows: An Approach
to Tackling Problems Related to Change. Theoretical Computer Science, 270(1-
2):125–203, 2002.

2. W.M.P. van der Aalst and K.M. van Hee. Workflow Management: Models, Methods,
and Systems. MIT press, Cambridge, MA, 2002.

3. T. Basten and W.M.P. van der Aalst. Inheritance of Behavior. Journal of Logic
and Algebraic Programming, 47(2):47–145, 2001.

6

4. J. Becker, M. Kugeler, and M. Rosemann, editors. Process Management: A Guide
for the Design of Business Processes. Springer-Verlag, Berlin, 2003.

5. P. Bernus. Generalised Enterprise Reference Architecture and Methodology, Ver-
sion 1.6.3. IFIPIFAC Task Force on Architectures for Enterprise Integration, March
1999.

6. T. Curran and G. Keller. SAP R/3 Business Blueprint: Understanding the Busi-
ness Process Reference Model. Upper Saddle River, 1997.

7. A. Dreiling, M. Rosemann, W.M.P. van der Aalst, W. Sadiq, and S. Khan. Model-
driven process configuration of enterprise systems. In O.K. Ferstl, E.J. Sinz, S. Eck-
ert, and T. Isselhorst, editors, Wirtschaftsinformatik 2005. eEconomy, eGovern-
ment, eSociety, pages 687–706, Heidelberg, Germany, 2005. Physica-Verlag.

8. R.J. van Glabbeek and W.P. Weijland. Branching Time and Abstraction in Bisim-
ulation Semantics. Journal of the ACM, 43(3):555–600, 1996.

9. S. Jablonski and C. Bussler. Workflow Management: Modeling Concepts, Architec-
ture, and Implementation. International Thomson Computer Press, London, UK,
1996.

10. G. Keller, M. Nüttgens, and A.W. Scheer. Semantische Processmodellierung auf
der Grundlage Ereignisgesteuerter Processketten (EPK). Veröffentlichungen des
Instituts für Wirtschaftsinformatik, Heft 89 (in German), University of Saarland,
Saarbrücken, 1992.

11. G. Keller and T. Teufel. SAP R/3 Process Oriented Implementation. Addison-
Wesley, Reading MA, 1998.

12. E. Kindler. On the Semantics of EPCs: A Framework for Resolving the Vicious
Circle. In J. Desel, B. Pernici, and M. Weske, editors, International Conference
on Business Process Management (BPM 2004), volume 3080 of Lecture Notes in
Computer Science, pages 82–97. Springer-Verlag, Berlin, 2004.

13. R. Milner. A Calculus of Communicating Systems, volume 92 of Lecture Notes in
Computer Science. Springer-Verlag, Berlin, 1980.

14. M. Rosemann. Application Reference Models and Building Blocks for Management
and Control (ERP Systems). In P. Bernus, L. Nemes, and G. Schmidt, editors,
Handbook on Enterprise Architecture, pages 596–616. Springer-Verlag, Berlin, 2003.

15. M. Rosemann and W.M.P. van der Aalst. A Configurable Reference Modelling
Language. Information Systems (to appear, alaso aviable from BPMCenter.org),
2005.

16. A.W. Scheer. Business Process Engineering, Reference Models for Industrial En-
terprises. Springer-Verlag, Berlin, 1994.

17. A.W. Scheer. ARIS: Business Process Modelling. Springer-Verlag, Berlin, 2000.

7

