
Translating Workflow Nets to BPEL

Wil M.P. van der Aalst1,2 and Kristian Bisgaard Lassen2

1 Department of Technology Management, Eindhoven University of Technology, P.O. Box 513,
NL-5600 MB, Eindhoven, The Netherlands. w.m.p.v.d.aalst@tm.tue.nl

2 Department of Computer Science, University of Aarhus, IT-parken, Aabogade 34, DK-8200
Aarhus N, Denmark. krell@daimi.au.dk

Abstract. The Business Process Execution Language for Web Services (BPEL)
has emerged as the de-facto standard for implementing processes. Although in-
tended as a language for connecting web services, its application is not limited
to cross-organizational processes. It is expected that in the near future a wide va-
riety of process-aware information systems will be realized using BPEL. While
being a powerful language, BPEL is difficult to use. Its XML representation is
very verbose and only readable for the trained eye. It offers many constructs and
typically things can be implemented in many ways, e.g., using links and the flow
construct or using sequences and switches. As a result only experienced users are
able to select the right construct. Several vendors offer a graphical interface that
generates BPEL code. However, the graphical representations are a direct reflec-
tion of the BPEL code and not easy to use by end-users. Therefore, we provide
a mapping from Workflow Nets (WF-nets) to BPEL. This mapping builds on the
rich theory of Petri nets and can also be used to map other languages (e.g., UML,
EPC, BPMN, etc.) onto BPEL.

Keywords: BPEL4WS, Petri nets, workflow management, business process management.

1 Introduction

After more than a decade of attempts to standardize workflow languages (cf. [6, 41]), it
seems that the Business Process Execution Language for Web Services (BPEL4WS or
BPEL for short) [13] is emerging as the de-facto standard for executable process speci-
fication. Systems such as Oracle BPEL Process Manager, IBM WebSphere Application
Server Enterprise, IBM WebSphere Studio Application Developer Integration Edition,
and Microsoft BizTalk Server 2004 support BPEL, thus illustrating the practical rele-
vance of this language.

Interestingly, BPEL was intended initially for cross-organizational processes in a
web services context: “BPEL4WS provides a language for the formal specification of
business processes and business interaction protocols. By doing so, it extends the Web
Services interaction model and enables it to support business transactions.” (see page
1 in [13]). However, it can also be used to support intra-organizational processes. The
authors of BPEL [13] envision two possible uses of the language: “Business processes
can be described in two ways. Executable business processes model actual behavior
of a participant in a business interaction. Business protocols, in contrast, use process
descriptions that specify the mutually visible message exchange behavior of each of the
parties involved in the protocol, without revealing their internal behavior. The process
descriptions for business protocols are called abstract processes. BPEL4WS is meant to

be used to model the behavior of both executable and abstract processes.” In this paper
we focus on the use of BPEL as an execution language.

BPEL is an expressive language [52] (i.e., it can specify highly complex processes)
and is supported by many systems. Unfortunately, BPEL is not a very intuitive lan-
guage. Its XML representation is very verbose and there are many, rather advanced,
constructs. Clearly, it is at another level than the graphical languages used by the tradi-
tional workflow management systems (e.g., Staffware, FileNet, COSA, Lotus Domino
Workflow, SAP Workflow, etc.). This is the primary motivation of this paper. How to
generate BPEL code from a graphical workflow language?

The modeling languages of traditional workflow management systems are executable
but at the same time they appeal to managers and business analysts. Clearly, managers
and business analysts will have problems understanding BPEL code. As a Turing com-
plete3 language BPEL can do, well, anything, but to do this it uses two styles of model-
ing: graph-based and structured. This can be explained by looking at its history: BPEL
builds on IBM’s WSFL (Web Services Flow Language) [37] and Microsoft’s XLANG
(Web Services for Business Process Design) [46] and combines accordingly the features
of a block structured language inherited from XLANG with those for directed graphs
originating from WSFL. As a result simple things can be implemented in two ways. For
example a sequence can be realized using the sequence or flow elements, a choice
based on certain data values can be realized using the switch or flow elements, etc.
However, for certain constructs one is forced to use the block structured part of the
language, e.g., a deferred choice [8] can only be modeled using the pick construct.
For other constructs one is forced to use the links, i.e., the more graph-based oriented
part of the language, e.g., two parallel processes with a one-way synchronization re-
quire a link inside a flow. In addition, there are very subtle restrictions on the use of
links: “A link MUST NOT cross the boundary of a while activity, a serializable scope,
an event handler or a compensation handler... In addition, a link that crosses a fault-
handler boundary MUST be outbound, that is, it MUST have its source activity within
the fault handler and its target activity within a scope that encloses the scope associated
with the fault handler. Finally, a link MUST NOT create a control cycle, that is, the
source activity must not have the target activity as a logically preceding activity, where
an activity A logically precedes an activity B if the initiation of B semantically requires
the completion of A. Therefore, directed graphs created by links are always acyclic.”
(see page 64 in [13]). All of this makes the language complex for end-users. Therefore,
there is a need for a “higher level” language for which one can generate intuitive and
maintainable BPEL code.

Such a “higher level” language will not describe certain implementation details, e.g.,
particularities of a given legacy application. This needs to be added to the generated
BPEL code. Therefore, it is important that the generated BPEL code is intuitive and
maintainable. If the generated BPEL code is unnecessary complex or counter-intuitive,
it cannot be extended or customized.

Note that tools such as Oracle BPEL Process Manager and IBM WebSphere Studio
offer graphical modeling tools. However, these tools reflect directly the BPEL code, i.e.,

3 Since BPEL offers typical constructs of programming languages, e.g., loops and if-the-else
constructs, and XML data types it is easy to show that BPEL is Turing complete.

the designer needs to be aware of structure of the XML document and required BPEL
constructs. For example, to model a deferred choice in the context of a parallel process
[8] the user needs to add a level to the hierarchy (i.e., a pick defined at a lower level
than the flow). Moreover, subtle requirements such as links not creating a cycle still
apply in the graphical representation. Therefore, it is interesting to look at a truly graph-
based language with no technological-oriented syntactical restrictions and see whether
it is possible to generate BPEL code.

In this paper we use a specific class of Petri nets, named WorkFlow nets (WF-nets)
[1–3], as a source language to be mapped onto the target language BPEL. There are
several reasons for selecting Petri nets as a source language. It is a simple graphical
language with which a strong theoretical foundation. Petri nets can express all the
routing constructs present in existing workflow languages [4, 21, 49] and enforce no
technological-oriented syntactical restrictions (e.g., no loops). Note that WF-nets are
classical Petri nets without data, hierarchy, time and other extensions. Therefore, their
applicability is limited. However, we do not propose WF-nets as the language to be
used by end-users; we merely use it as the theoretical foundation. It can capture the
control-flow structures present in other graphical languages, but it abstracts from other
aspects such as data flow, work distribution, etc. Using a real-life example, we will
show that the mapping from WF-nets to BPEL presented in this paper can also be used
to map Colored Petri Nets (CPNs) onto BPEL. Similarly, the mapping can be used as
a basis for translations from other source languages such as UML activity diagrams
[26], Event-driven Process Chains (EPCs) [30, 44], and the Business Process Modeling
Notation (BPMN) [51]. Moreover, the basic ideas can also be used to map graph-based
languages onto other (partly) block-structured languages.

The remainder of this paper is organized as follows. First, we provide an overview of
related work. Then, we present some preliminaries including the BPEL language (Sec-
tion 3.1), Petri nets (Section 3.2), WF-nets (Section 3.3), and soundness (Section 3.4).
Then, in Section 4, we show the how and when WF-nets can be decomposed into com-
ponents. These decomposition results are used in Section 5 to map WF-nets onto BPEL.
Finally, in Section 6, we present a case study, and in Section 7 we conclude the paper
with some conclusions.

2 Related Work

Since the early nineties workflow technology has matured [24] and several textbooks
have been published, e.g., [7, 16, 28, 38]. During this period many languages for mod-
eling workflows have been proposed, i.e., languages ranging from generic Petri-net-
based languages to tailor-made domain-specific languages. The Workflow Management
Coalition (WfMC) has tried to standardize workflow languages since 1994 but failed to
do so [21]. XPDL, the language proposed by the WfMC, has semantic problems [4] and
is rarely used. In a way BPEL [13] succeeded in doing what the WfMC was aiming at.
However, BPEL is really at the implementation level rather than the workflow modeling
level or the requirements level (thus providing the motivation for this paper).

Several attempts have been made to capture the behavior of BPEL [13] in some
formal way. Some advocate the use of finite state machines [22, 23], others process

algebras [20, 36], and yet others abstract state machines [18, 19] or Petri nets [42, 40,
45, 48]. For a detailed analysis of BPEL based on the workflow patterns [8] we refer to
[52].

The work reported in this paper is also related to the various tools and mappings
used to generate BPEL code being developed in industry. Tools such as the IBM Web-
Sphere Choreographer and the Oracle BPEL Process Manager offer a graphical notation
for BPEL. However, this notation directly reflects the code and there is no intelligent
mapping as shown in this paper. This implies that users have to think in terms of BPEL
constructs (e.g., blocks, syntactical restrictions on links, etc.). More related is the work
of Steven White that discusses the mapping of BPMN onto BPEL [50] and the work
by Jana Koehler and Rainer Hauser on removing loops in the context of BPEL [35].
Note that none of these publications provides a mapping of some (graphical) process
modeling language onto BPEL: [50] merely presents the problem and discusses some
issues using examples and [35] focusses on only one piece of the puzzle.

The work presented in this paper is related to [9] where we describe a case study
where for a new bank system requirement are mapped onto Colored Workflow Nets (a
subclass of Colored Petri Nets) which are then implemented using BPEL in the IBM
WebSphere environment (cf. Section 6).

3 Preliminaries

This section provides the preliminaries used to map WF-nets onto BPEL.

3.1 Business Process Execution Language for Web Services (BPEL)

As indicated in the introduction, BPEL [13] intends to support the modeling of two
types of processes: executable and abstract processes. An abstract, (not executable)
process is a business protocol, specifying the message exchange behavior between dif-
ferent parties without revealing the internal behavior for anyone of them. An executable
process, which is also the focus of this paper, specifies the execution order between a
number of activities constituting the process, the partners involved in the process, the
messages exchanged between these partners, and the fault and exception handling spec-
ifying the behavior in cases of errors and exceptions.

A BPEL process itself is a kind of flow-chart, where each element in the process
is called an activity. An activity is either a primitive or a structured activity. The set
of primitive activities contains: invoke, invoking an operation on some web service;
receive, waiting for a message from an external source; reply, replying to an ex-
ternal source; wait, waiting for some time; assign, copying data from one place
to another; throw, indicating errors in the execution; terminate, terminating the
entire service instance; and empty, doing nothing.

To enable the presentation of complex structures the following structured activi-
ties are defined: sequence, for defining an execution order; switch, for conditional
routing; while, for looping; pick, for race conditions based on timing or external
triggers; flow, for parallel routing; and scope, for grouping activities to be treated
by the same fault-handler. Structured activities can be nested and combined in arbitrary

ways. Within activities executed in parallel the execution order can further be controlled
by the usage of links (sometimes also called control links, or guarded links), which
allows the definition of directed graphs. The graphs too can be nested but must be
acyclic and satisfy other subtle requirements as indicated in the introduction.

A detailed or complete description of BPEL is out-of-the-scope of this paper. For
more details, the reader is referred to [13] and various web sites such as: http://
www.oasis-open.org/committees/tc home.php?wg abbrev=wsbpel.

3.2 Petri nets

This section introduces the basic Petri net terminology and notations. Readers familiar
with Petri nets can skip this section.

The classical Petri net is a directed bipartite graph with two node types called places
and transitions. The nodes are connected via directed arcs. Connections between two
nodes of the same type are not allowed. Places are represented by circles and transitions
by rectangles.

Definition 1 (Petri net). A Petri net is a triple (P, T, F):

- P is a finite set of places,
- T is a finite set of transitions (P ∩ T = ∅),
- F ⊆ (P × T) ∪ (T × P) is a set of arcs (flow relation)

Note that we do not consider multiple arcs from one node to another. In the context
of workflow procedures it makes no sense to have other weights, because places corre-
spond to conditions.

Elements of P ∪T are called nodes. A node x is an input node of another node y iff
there is a directed arc from x to y (i.e., (x, y) ∈ F). Node x is an output node of y iff
(y, x) ∈ F . For any x ∈ P ∪ T , N• x = {y | (x, y) ∈ F} and x

N•= {y | (x, y) ∈ F};
the superscript N may be omitted if clear from the context.

The projection and union of a Petri net are defined as follows.

Definition 2 (Projection). Let PN = (P, T, F) and PN ′ = (P ′, T ′, F ′) be a Petri
nets and X ⊆ P ∪ T a set of nodes. PN |X = (P ∩ X, T ∩ X, F ∩ (X × X)) is the
projection of PN onto X . PN ∪ PN ′ = (P ∪ P ′, T ∪ T ′, F ∪ F ′) is the union of PN
and PN ′.

At any time a place contains zero or more tokens, drawn as black dots. The state,
often referred to as marking, is the distribution of tokens over places, i.e., M ∈ P → IN.
We will represent a state as follows: 1p1 +2p2 +1p3 +0p4 is the state with one token in
place p1, two tokens in p2, one token in p3 and no tokens in p4. We can also represent
this state as follows: p1 + 2p2 + p3. To compare states we define a partial ordering. For
any two states M1 and M2, M1 ≤ M2 iff for all p ∈ P : M1(p) ≤ M2(p).

The number of tokens may change during the execution of the net. Transitions are
the active components in a Petri net: they change the state of the net according to the
following firing rule:

(1) A transition t is said to be enabled iff each input place p of t contains at least one
token.

(2) An enabled transition may fire. If transition t fires, then t consumes one token from
each input place p of t and produces one token for each output place p of t.

Given a Petri net (P, T, F) and a state M1, we have the following notations:

- M1
t→ M2: transition t is enabled in state M1 and firing t in M1 results in state M2

- M1 → M2: there is a transition t such that M1
t→ M2

- M1
σ→ Mn: the firing sequence σ = t1t2t3 . . . tn−1 leads from state M1 to state

Mn via a (possibly empty) set of intermediate states M2, ...Mn−1, i.e., M1
t1→

M2
t2→ ...

tn−1→ Mn

A state Mn is called reachable from M1 (notation M1
∗→ Mn) iff there is a firing

sequence σ such that M1
σ→ Mn. Note that the empty firing sequence is also allowed,

i.e., M1
∗→ M1.

We use (PN ,M) to denote a Petri net PN with an initial state M . A state M ′ is a
reachable state of (PN , M) iff M

∗→ M ′.
Let us define some standard properties for Petri nets. First, we define properties

related to the dynamics of a Petri net, then we give some structural properties.

Definition 3 (Live). A Petri net (PN ,M) is live iff, for every reachable state M ′ and
every transition t ∈ T there is a state M ′′ reachable from M ′ which enables t.

A Petri net is structurally live if there exists an initial state such that the net is live.

Definition 4 (Bounded, safe). A Petri net (PN ,M) is bounded iff for each place p ∈ P
there is a natural number n such that for every reachable state the number of tokens in
p is less than n. The net is safe iff for each place the maximum number of tokens does
not exceed 1.

A Petri net is structurally bounded if the net is bounded for any initially state.
For PN = (P, T, F) we also define some standard structural properties.

Definition 5 (Strongly connected). A Petri net is strongly connected iff, for every pair
of nodes (i.e., places and transitions) x and y, there is a path leading from x to y.

Definition 6 (Free-choice). A Petri net is a free-choice Petri net iff, for every two tran-
sitions t1 ∈ T and t2 ∈ T , •t1 ∩ •t2 6= ∅ implies •t1 = •t2.

Definition 7 (State machine). A Petri net is state machine iff each transition has at
most one input place and at most one output place, i.e., for all t ∈ T : |• t| ≤ 1 and
|t • | ≤ 1.

Definition 8 (Marked graph). A Petri net is marked graph iff each place has at most
one input transition and at most one output transition, i.e., for all p ∈ P : |• p| ≤ 1 and
|p • | ≤ 1.

See [15, 43] for a more elaborate introduction to these standard notions.

3.3 WF-nets

A Petri net which models the control-flow dimension of a workflow, is called a Work-
Flow net (WF-net, [1]). In WF-net the transitions correspond to activities. Some of
the transitions represent “real activities” while others are added for routing purposes
(i.e., similar to the structured activities in BPEL). Places correspond to pre- and post-
conditions of these activities. It should be noted that a WF-net specifies the dynamic
behavior of a single case (i.e., process instance in BPEL terms) in isolation.

Definition 9 (WF-net). A Petri net PN = (P, T, F) is a WF-net (Workflow net) if and
only if:

(i) There is one source place i ∈ P such that •i = ∅.
(ii) There is one sink place o ∈ P such that o• = ∅.

(iii) Every node x ∈ P ∪ T is on a path from i to o.

A WF-net has one input place (i) and one output place (o) because any case handled by
the procedure represented by the WF-net is created when it enters the WFM system and
is deleted once it is completely handled by the system, i.e., the WF-net specifies the life-
cycle of a case. The third requirement in Definition 9 has been added to avoid “dangling
activities and/or conditions”, i.e., activities and conditions which do not contribute to
the processing of cases.

Given the definition of a WF-net it is easy derive the following properties [3].

Proposition 1 (Properties of WF-nets). Let PN = (P, T, F) be Petri net.

– If PN is a WF-net with source place i, then for any place p ∈ P : •p 6= ∅ or p = i,
i.e., i is the only source place.

– If PN is a WF-net with sink place o, then for any place p ∈ P : p• 6= ∅ or p = o,
i.e., o is the only sink place.

– If PN is a WF-net and we add a transition t∗ to PN which connects sink place o
with source place i (i.e., •t∗ = {o} and t∗• = {i}), then the resulting Petri net is
strongly connected.

– If PN has a source place i and a sink place o and adding a transition t∗ which
connects sink place o with source place i yields a strongly connected net, then
every node x ∈ P ∪ T is on a path from i to o in PN and PN is a WF-net.

3.4 Soundness

In this section we summarize some of the basic results for WF-nets presented in [1–3].
The three requirements stated in Definition 9 can be verified statically, i.e., they

only relate to the structure of the Petri net. However, there is another requirement which
should be satisfied:

For any case, the procedure will terminate eventually and the moment the pro-
cedure terminates there is a token in place o and all the other places are empty.

Moreover, there should be no dead activities, i.e., it should be possible to execute an
arbitrary transition by following the appropriate route though the WF-net. These two
additional requirements correspond to the so-called soundness property [2].

Definition 10 (Sound). A procedure modeled by a WF-net PN = (P, T, F) is sound if
and only if:

(i) For every state M reachable from state i, there exists a firing sequence leading
from state M to state o. Formally:4

∀M (i ∗→ M) ⇒ (M ∗→ o)

(ii) State o is the only state reachable from state i with at least one token in place o.
Formally:

∀M (i ∗→ M ∧ M ≥ o) ⇒ (M = o)

(iii) There are no dead transitions in (PN , i). Formally:

∀t∈T ∃M,M ′ i
∗→ M

t→ M ′

Note that the soundness property relates to the dynamics of a WF-net. The first require-
ment in Definition 10 states that starting from the initial state (state i), it is always pos-
sible to reach the state with one token in place o (state o). If we assume a strong notion
of fairness, then the first requirement implies that eventually state o is reached. Strong
fairness means that in every infinite firing sequence, each transition fires infinitely of-
ten. The fairness assumption is reasonable in the context of WFM: All choices are made
(implicitly or explicitly) by applications, humans or external actors. Clearly, they should
not introduce an infinite loop. Note that the traditional notions of fairness (i.e., weaker
forms of fairness with just local conditions, e.g., if a transition is enabled infinitely of-
ten, it will fire eventually) are not sufficient. See [2, 33] for more details. The second
requirement states that the moment a token is put in place o, all the other places should
be empty. The last requirement states that there are no dead transitions (activities) in the
initial state i.

Given a WF-net PN = (P, T, F), we want to decide whether PN is sound. In
[1] we have shown that soundness corresponds to liveness and boundedness. To link
soundness to liveness and boundedness, we define an extended net PN = (P , T , F).
PN is the Petri net obtained by adding an extra transition t∗ which connects o and i.
The extended Petri net PN = (P , T , F) is defined as follows: P = P , T = T ∪ {t∗},
and F = F ∪ {(o, t∗), (t∗, i)}. In the remainder we will call such an extended net
the short-circuited net of PN . The short-circuited net allows for the formulation of the
following theorem.

Theorem 1. A WF-net PN is sound if and only if (PN , i) is live and bounded.

Proof. See [1]. ut
This theorem shows that standard Petri-net-based analysis techniques can be used to
verify soundness.

Sometimes we require a WF-net to be safe, i.e., no marking reachable from (PN , i)
marks a place twice. Although safeness is defined with respect to some initial marking,
we extend it to WF-nets and simply state that a WF-net is safe or not.

4 Note that there is an overloading of notation: the symbol i is used to denote both the place i
and the state with only one token in place i (see Section 3.2).

In literature there exist many variants of the “classical” notion of soundness used
here. Juliane Dehnert uses the notion of relaxed soundness where proper termination is
possible but not guaranteed [14, 17]. The main idea is that the scheduler of the workflow
system should avoid problems like deadlocks etc. In [34] Ekkart Kindler et al. define
variants of soundness tailored towards interorganizational workflows. Kees van Hee et
al. [27] define a notion of soundness where multiple tokens in the source place are
considered. A WF-net is k-sound if it “behaves well” when there are k tokens in place
i, i.e., no deadlocks and in the end there are k tokens in place o. Robert van der Toorn
uses the same concept in [47]. In [11, 5] stronger notions of soundness are used and
places have to be safe. Another notion of soundness is used in [31, 32] where there is
not a single sink place but potentially multiple sink transitions. See [47] for the relation
between these variants of the same concept. Other references using (variants of) the
soundness property include [25, 39]. For simplicity we restrict ourselves to the classical
notion of soundness described in Definition 10.

4 Decomposing a WF-net into Components

After introducing the preliminaries we focus on the actual problem: mapping WF-nets
onto BPEL. As indicated in the introduction, it is important that the generated BPEL
code is intuitive and maintainable. If the generated BPEL code is unnecessary complex
or counter-intuitive, it cannot be extended or customized. Therefore, we try to map
parts of the WF-net onto BPEL constructs that fit best. For example, a sequence of
transitions connected through places should be mapped onto a BPEL sequence. We
aim at recognizing “sequences”, “switches”, “picks”, “while’s”, and “flows” where the
most specific construct has our preference, e.g., for a sequence we prefer to use the
sequence element over the flow element even though both are possible. We aim at
an iterative approach where the WF-net is reduced by packaging parts of the network
into suitable BPEL constructs.

We would like to stress that our goal is not to provide just any mapping of WF-nets
onto BPEL. Note that a large class of of WF-nets can be mapped directly onto a BPEL
flow construct. However, such a translation results in unreadable BPEL code. Instead
we would like to map a graph-based language like WF-nets onto a hierarchical decom-
position of specific BPEL constructs. For example, if the WF-net contains a sequence
of transitions (i.e., activities) this should be mapped onto the more specific sequence
construct rather than the more general (and more verbose) flow construct. Hence, our
goal is to generate readable and compact code.

To map WF-nets onto (readable) BPEL code, we need to transform a graph struc-
ture to a block structure. For this purpose we use components. A component should
be seen as a selected part of the WF-net that has a clear start and end. One can think
of it as subnet satisfying properties similar to a WF-net. However, unlike a WF-net, a
component may start and/or end with a transition, i.e., WF-nets are “place bordered”
while components may be “place and/or transition bordered”. The goal is to map com-
ponents onto “BPEL blocks”. For example, a component holding a purely sequential
structure should be mapped onto a BPEL sequence while a component holding a
parallel structure should be mapped onto a flow.

Section 5 describes the mapping of components in the WF-net to BPEL constructs.
However, before describing the mapping, this section formalizes the notion of compo-
nents and analyzes some of their properties.

Definition 11 (Component). Let PN = (P, T, F) be a WF-net. C is a component of
PN if and only if

(i) C ⊆ P ∪ T ,
(ii) there exists different source and sink nodes iC , oC ∈ C such that

- •(C \ {iC}) ⊆ C \ {oC},
- (C \ {oC})• ⊆ C \ {iC}, and
- (oC , iC) 6∈ F .

Note that any component contains at least a place and a transition. A component
is trivial if it only contains one transition (and one or two places). Note that trivial
components contain two or three nodes.

As indicated above components may be “place and/or transition bordered”. The
following definition provides some notations and terminology to deal with components
having a transition as source or sink node.

Definition 12. Let PN = (P, T, F) be a WF-net and let C be a component of PN with
source iC and sink oC . We introduce the following notations and terminology:

– C is a PP-component if iC ∈ P and oC ∈ P ,
– C is a TT-component if iC ∈ T and oC ∈ T ,
– C is a PT-component if iC ∈ P and oC ∈ T ,
– C is a TP-component if iC ∈ T and oC ∈ P ,
– C = C \ {iC , oC},
– PN ||C =

• PN |C if iC ∈ P and oC ∈ P ,
• PN |C ∪({p(i,C)}, {iC}, {p(i,C), iC})∪({p(o,C)}, {oC}, {oC , p(o,C)}) if iC ∈

T and oC ∈ T ,5

• PN |C ∪ ({p(o,C)}, {oC}, {oC , p(o,C)}) if iC ∈ P and oC ∈ T ,
• PN |C ∪ ({p(i,C)}, {iC}, {p(i,C), iC}) if iC ∈ T and oC ∈ P .

– [PN] is the set of non-trivial components of PN , i.e., all components containing
two or more transitions.

PN ||C transforms a component into a place-bordered component, i.e., a classical
WF-net. In case of a TP-component or PT-component one place needs to be added.
In case of a TT-component two places need to be added: p(i,C) are p(o,C). Using the
following lemma we will show that the result is indeed a WF-net.

Lemma 1. Let PN = (P, T, F) be a WF-net. Components of PN are uniquely defined
by their source and sink nodes, i.e., for any two components C1, C2: C1 = C2 if and
only if iC1 = iC2 and oC1 = oC2 .

5 Note that p(i,C) are p(o,C) are the (fresh) identifiers of the places added to make a transition
bordered component place bordered.

Proof. Clearly, C1 = C2 implies iC1 = iC2 and oC1 = oC2 . Now assume that iC1 =
iC2 and oC1 = oC2 but there is a node x ∈ C1 \ C2. This is not possible because x
must be on a path from iC1 to oC1 and therefore also on a path from iC2 to oC2 and
in C2. Similarly, there cannot be a node in x ∈ C2 \ C1, and therefore, C1 and C2

coincide. ut
The next theorem not only shows that PN ||C results in a WF-net, but that, provided

the initial WF-net is safe and sound, the component is also safe a sound. This result will
be used to prove the compositional nature of safe and sound WF-nets and, consequently,
allow us to incrementally transform a “componentized” WF-net into a block-structured
BPEL specification.

Theorem 2. Let PN = (P, T, F) be a WF-net and C is a component of PN .

– PN ||C is a WF-net.
– If PN is safe and sound, then PN ||C is safe and sound.

Proof. First, we prove that PN ||C is a WF-net. Assume C is a PP -component. iC is
the source place of PN ||C because (C \ {oC})• ⊆ C \ {iC}. iC is not the output node
of any node x in C because if x ∈ (C \ {oC}) then x• ⊆ C \ {iC} and if x = oC

then (oC , iC) 6∈ F . Similarly, oC can be shown to be a sink place of PN ||C . Every
node x ∈ C is on a path from iC to oC in PN ||C . Since PN is a WF-net there is a path
from the source node to the sink node visiting x in PN . Clearly, this path also visits iC
and oC . If C is not a PP -component, the same argumentation can be used. However, a
dummy node is added before the source node iC and/or after the sink node oC .

Second, we prove that PN ||C is safe and sound if PN is safe and sound. This result
can be obtained by applying Theorem 3.4 in [3]. Let PN = (P, T, F) be safe and
sound. Assume C is a PP -component. Consider the subnet PN ||C = (P1, T1, F1).
Create another Petri net PN ′ = (P2, T2, F2) resulting from replacing the nodes in C
(cf. Definition 12) by a transition t+. Note that the only overlap between PN ||C and
PN ′ is {iC , oC}. If in PN a transition in •iC fires, then it should be possible to fire a
transition in oC• because of the liveness of the original net. If a transition in oC• fires,
the places in C should become empty. If the places in C are not empty after firing a
transition in oC•, then there are two possibilities: (1) it is possible to move the subnet
to a state such that a transition in oC• can fire (without firing transitions in T \C) or (2)
it is not possible to move to such a state. In the first case, the place oC in PN is not safe.
In the second case, a token is trapped in the subnet or the subnet is not safe the moment
a transition in •iC fires. Hence, PN ||C sound and safe. If C is not a PP -component,
the same argumentations can be used. ut

Soundness and safeness are desirable properties. Theorem 2 shows that these desir-
able properties are propagated to any component in the net. A similar result holds in
the other direction. To prove this we define function fold that replaces a component by
a single transition. This function will play a crucial role in the next section where we
incrementally replace components by BPEL code.

Definition 13 (Fold). Let PN = (P, T, F) be a WF-net and let C be a non trivial com-
ponent of PN (i.e., C ∈ [PN]). Function fold replaces C in PN by a single transition
tC , i.e., fold(PN , C) = (P ′, T ′, F ′) with:

- P ′ = P \ C,
- T ′ = (T \ C) ∪ {tC},
- F ′ = (F ∩((P ′×T ′)∪(T ′×P ′)))∪{(p, tC)|p ∈ P ∩({iC}∪•iC)}∪{(tC , p)|p ∈

P ∩ ({oC} ∪ oC•)}.

Note that folding can also be defined for trivial components. However, in the re-
sult fold(PN , C) the only transition in C is renamed to tC without changing the net
structure. Figure 1 illustrates the basic idea of function fold . Fort the moment, please
ignore the illustration behind each of the transitions tC for the moment: It symbolizes
the BPEL code attached to tC describing component C (as will be explained later).
Note that Figure 1 shows each of the four possible component types: PP, TP, PT, and
TT.

C

p1

p2

p1

tC C

t1

p1

tC

p1p2

C

p1

t1

p1

tC C

t1

tC

t2

Figure 1. Folding a component C into a single transition tC .

Now we can formulate the main result of this section. Using the fold operator it is
possible to replace a component by a single transition. The resulting Petri net is again a
WF-net. Moreover, desirable properties such as soundness and safeness are not affected
by folding or unfolding the component.

Theorem 3. Let PN = (P, T, F) be a WF-net and let C ∈ [PN] be a non-trivial
component.

– fold(PN , C) is a WF-net.
– PN is safe and sound if and only if both PN ||C and fold(PN , C) are safe and

sound.

Proof. It is easy to see that fold(PN , C) is indeed a WF-net. Folding C does not re-
move source place i or sink place o of PN . Moreover, folding does not introduce any
new source of sink nodes. It also does not disable any paths from i to o: any path in PN
through C is still possible in fold(PN , C) by going through transition tC .

Assume PN is safe and sound. Theorem 2 already showed that in this case PN ||C is
safe and sound. Remains to prove that fold(PN , C) is safe and sound. Here we can use
the same line of reasoning as in the proof of Theorem 2. Component C in PN becomes
“active” if one of its transitions fires. Then there may be several internal steps in C ex-
ecuted in parallel with the rest of PN but eventually oC (if oC is a place) or the places
in oC• (if oC is a transition) get marked. Since PN is safe, C can be activated only
once. Hence, if one abstracts from the internal states of C, PN and fold(PN , C) have
identical behaviors and clearly fold(PN , C) is safe and sound. In other words: since
the subnet which corresponds to tC behaves like a transition which may postpone the
production of tokens, we can replace the subnet by tC without changing dynamic prop-
erties such as safeness and soundness. This can be shown more formally by establishing
a relation between the markings of (PN , i) and (fold(PN , C), i). Let M1 be a marking
of (PN , i) and let M2 be a marking of (fold(PN , C), i). M1 corresponds to M2 if and
only if (1) M1 = M2 (i.e., the component is not activated) or (2) M1(p) = M2(p) for
all p 6∈ P ∩ ({iC}∪ •iC) and M1(p) = M2(p) + if (M1 ∩C) 6= ∅ then 1 else 0 for all
p ∈ P ∩ ({iC} ∪ •iC).

Assume both PN ||C and fold(PN , C) are safe and sound. We can use a similar
approach to show that PN is safe and sound. Again the states in PN can be related
to states in PN ||C and fold(PN , C). The subnet of PN corresponding to tC can only
postpone the production of tokens on the output places of tC and therefore cannot in-
validate properties such as safeness and soundness. ut

Theorem 3 shows that desirable properties such as safeness and soundness are not
affected by the folding or unfolding of components. Assume we have a component C
having not only a Petri net representation PN ||C but also an equivalent BPEL repre-
sentation. If we associate the BPEL representation to some activity tC , we can replace
C by tC without changing safeness and soundness.

The focus of Theorem 3 is on safeness and soundness. However, as the proof of
this theorem suggest, it is possible to make a much more direct relationship between
the states of the folded and unfolded net. As is shown in [11] notions such as branch-
ing bisimulation can be used reason about the observational equivalence of the folded
and unfolded net. However, we do not show this here because it only makes sense to
formalize this if there is a manageable formalization of BPEL. At this point in time
such as formalization does not exist. There have been several approaches using finite
state machines [22, 23], process algebras [20, 36], abstract state machines [18, 19], and
Petri nets [42, 40, 45, 48]. However, these formalizations are either incomplete or very

complicated. Since we are not attempting to provide a formal semantics for BPEL, we
can take a more pragmatic approach. We simply map WF-nets onto BPEL and restrict
ourselves to a simple subset of BPEL.

5 Mapping WF-nets onto BPEL

This section introduces the mapping from WF-nets onto BPEL. First, we discuss possi-
ble annotations of transitions to refer to primitive BPEL activities. Second, we describe
the algorithm used to generate BPEL code. Finally, we present an example.

The basic idea of the approach was already shown in Figure 1. The idea is to
start with an annotated WF-net where each transition is labeled with references to
primitive activities such as invoke (invoking an operation on some web service),
receive (waiting for a message from an external source), reply (replying to an ex-
ternal source), wait (waiting for some time), assign (copying data from one place to
another), throw (indicating errors in the execution), and empty (doing nothing). Tak-
ing this as starting point, a component in the annotated WF-net is mapped onto BPEL
code. The component C is replaced by transition tC whose inscription (cf. Figure 1)
describes the BPEL code associated to the whole component. This process is repeated
until there is just a single transition whose inscription corresponds to the BPEL specifi-
cation of the entire process. How this can be done is detailed in the remainder.

5.1 Annotating WF-nets

For the translation to BPEL the nature of choices is important, i.e., a place with multiple
output transitions can be mapped onto a pick or a switch. Similarly, it is important
to annotate transitions to which the primitive activities they refer to. Therefore, we an-
notate places with information on the nature of choices and transitions with references
to primitive activities such as invoke, receive, reply, wait, assign, throw,
and empty.

Definition 14 (Annotated WF-net). PN = (P, T, F, τP , τG, τMA, τT) is annotated
WF-net if and only if:

(i) (P, T, F) is a WF-net.
(ii) τP is a function with domain dom(τP) = {p ∈ P | |p • | ≥ 2} such that for all

p ∈ dom(τP): τP (p) ∈ {explicit, implicit},
(iii) τG is a function with domain dom(τG) = {t ∈ T | ∃p∈•t p ∈ dom(τP) ∧ τP (p) =

explicit} such that for all t ∈ dom(τG): τG(t) is a boolean expression (i.e. the
guard of one of the alternatives in an explicit choice),

(iv) τMA is a function with domain dom(τMA) = {t ∈ T | ∃p∈•t p ∈ dom(τP) ∧
τP (p) = implicit} such that for all t ∈ dom(τMA): τMA(t) is a string describing
a message (in case of a message trigger, i.e., the BPEL onMessage construct)
or a time trigger (i.e., the BPEL onAlarm construct). Note that a time trigger
has a for attribute (to specify a timeout) and/or an until attribute (to specify a
deadline).

(v) τT is a function with domain T such that for all t ∈ T : τT (t) ∈ {receive, reply,
wait, empty, . . .}.

We do not associate any semantics to these annotations and just use them to guide
the generation of BPEL code. Moreover, we assume that for any p ∈ dom(τP), the out-
put transitions t ∈ p• have guards, where τP (p) = explicit, that are mutually exclusive
and together cover all possibilities for guards. In any “context”: ∀t1,t2∈p• (τG(t1) ∧
τG(t2)) ⇒ (t1 = t2) and ∃t∈p• τG(t). In the rest of the paper we will use the shorthand
expr on an arc from place p, where τP (p) = explicit, to transition t for the annotation
τG(t) = expr.

Output transitions t ∈ p• where τP (p) = implicit have a label τMA(t) describ-
ing the trigger to select this specific branch in a choice situation. The pick construct
in BPEL allows for two types of triggers: message triggers and time triggers. In case
of a message trigger, τMA(t) denotes the message expected (e.g., the corresponding
operation attribute). In case of a time trigger, τMA(t) denotes the attributes ex-
pected by the onAlarm construct. There may be a for attribute denoting the timeout
(i.e., a duration expression) and/or an until attribute denoting the deadline (i.e., an
absolute time). In the rest of the paper we will use the shorthand msg1, msg2, ..., to1,
to2, ..., dl1, dl2, ..., (to1,dl1), etc. to denote τMA(t) in the figures.

We assume all definitions for WF-nets to be defined for annotated WF-nets.
Note that we abstract from the actual BPEL syntax here. One can think of the range

of function τT as the set of possible primitive activities; the default τT of a transition
t is invoke. The algorithm does not depend on the precise syntax of these activities
and therefore we consider this just to be a label (e.g., a piece of text). The focus is on
the control-flow, e.g., we do not do any checking on variables. This focus is justified by
our starting point: an annotated WF-net.

5.2 Algorithm

As indicated before and partly illustrated by Figure 1, our approach iteratively folds an
annotated WF-net into a WF-net with just one transition whose label contains the com-
plete BPEL specification. The algorithm starts with the complete WF-net and in each
step part of this net (i.e., a component) is replaced by a single transition whose label
captures the behavior of the component in terms of BPEL. This is repeated until no
further folding is possible, i.e., there is just one activity left. Initially transitions corre-
spond to primitive BPEL activities. However, while folding the WF-net, the “composite
transitions” refer to structured BPEL activities (i.e., containing primitive activities).

Again we would like to stress that our goal is not to provide just any mapping of
WF-nets onto BPEL (cf. Section 4). The mapping should be compact and intuitive.
In a way, the mapping should try to select the BPEL constructs an experienced BPEL
designer would use. Therefore, we do a kind of “pattern matching”, i.e., we scan the
WF-net for components that can be mapped onto a suitable structured BPEL activity.
The structured activities BPEL relevant for this paper are: sequence, switch (for
conditional routing), while (for looping), pick (for race conditions based on timing
or external triggers), and flow (for parallel subprocesses). The flow construct can
also be used to model sequential and conditional processes. Therefore, it is possible to

use the flow construct instead of the sequence and switch constructs. However,
as indicated before, we try to use the most compact and intuitive construct. Clearly, a
sequence in the WF-net should be mapped onto a sequence rather than a flow.

t
2

t
n

t
1

p
1

p
2

... t
1 p t

3

t
2

(b) while net(a) choice net

Figure 2. Two subclasses (while net and choice net) inspired by the switch, pick and while
in BPEL.

To be able to automate the “pattern matching” required to spot components that can
be easily mapped onto a suitable BPEL component, we define three subclasses of Petri
nets. The first subclass we define is the choice net, i.e., a fragment corresponding to
switch or pick in BPEL.

Definition 15. A Petri net PN = (P, T, F) is a choice net if and only if P contains two
places, say p1 and p2, such that F = {(p1, t)|t ∈ T} ∪ {(t, p2)|t ∈ T}.

In a choice net there is a source place and sink place and an arbitrary number of
transitions connecting these places. The second subclass is the while net. As the name
suggests, this will be mapped onto the BPEL while construct. This is the only type of
looping BPEL supports.

Definition 16. A Petri net PN = (P, T, F) is a while net if and only if P contains
one place, say p, and T contains three transitions, say t1, t2, and t3, such that F =
{(t1, p), (p, t2), (t2, p), (p, t3)}.

Both the while net and choice net are shown in Figure 2. The third subclass is the
class of well-structured nets. This class is inspired by the class of SWF-nets defined
in [12]. Components corresponding to this class will be mapped onto the BPEL flow
construct.

Definition 17. A Petri net PN = (P, T, F) is well-structured if and only if the follow-
ing three properties hold:

– For all p ∈ P and t ∈ T with (p, t) ∈ F : |p • | > 1 implies | • t| = 1.
– For all p ∈ P and t ∈ T with (p, t) ∈ F : | • t| > 1 implies | • p| = 1.

– There are no cycles (i.e., for all x ∈ P ∪ T : (x, x) 6∈ F ∗).6

This class is characterized by Figure 3. This figure shows two constructs not allowed
in a well-structured Petri net. The left one corresponds to the requirement that for all
(p, t) ∈ F : |p • | > 1 implies | • t| = 1. This corresponds to a restricted form of
free-choice nets [15] (cf. Definition 6). The right hand construct corresponds to the
requirement that for all (p, t) ∈ F : | • t| > 1 implies | • p| = 1. This requirement
can be seen as complementary to the free-choice requirement. It enforces a fixed set
of predecessors that needs to be synchronized. The third requirement of Definition 17
(i.e., no cycles) is not shown graphically. The three requirements are triggered by the
limitations of the BPEL flow construct, this construct does not allow for loops, non-
free choice behavior or a variable set of predecessors that needs to be synchronized.

Figure 3. Two constructs not allowed in a well-structured Petri net.

Using the three classes just defined and standard notions such as state machines
(Definition 7) and marked graphs (Definition 8), we classify different types of compo-
nents corresponding to the sequence, flow, switch, pick, and while constructs
in BPEL.

Definition 18. Let PN = (P, T, F, τP , τG, τMA, τT) be an annotated WF-net and let
C be a component of PN .

– C is a SEQUENCE-component if PN ||C is both a state machine and marked graph,
– C is a maximal SEQUENCE-component if C is a SEQUENCE-component and

there is no other SEQUENCE-component C ′ such that C ⊂ C ′,
– C is a SWITCH-component if PN ||C is a choice net and τP (iC) = explicit,
– C is a PICK-component if PN ||C is a choice net and τP (iC) = implicit,
– C is a WHILE-component if PN ||C is a while net and τP (p) = explicit (where

p ∈ P ∩ C),
– C is a FLOW-component if PN ||C is well-structured and for all p ∈ C ∩ dom(τP)

is τP (p) = explicit, and
– C is a maximal FLOW-component if C is a FLOW-component and there is no other

FLOW-component C ′ such that C ⊂ C ′.

6 F ∗ is the transitive closure of F , i.e., (x, y) ∈ F ∗ if there is a path from x to y in the net.

Before presenting the algorithm to transform an annotated WF-net into a BPEL
specification, we illustrate the mapping for each of the components mentioned in Defi-
nition 18 using simple examples.

p1

p2

t1

p3

t2

p1

p3

tC

<sequence>
 <invoke name=”t

1
"/>

 <invoke name=”t 2"/>
</sequence>

p1

t1

p2

t3

tC

<sequence>
 <invoke name=”t 1"/>
 <invoke name=”t 2"/>
 <invoke name=”t

3
"/>

</sequence>

t2

Figure 4. Examples of the SEQUENCE-component and its corresponding BPEL expression.

Clearly, the SEQUENCE-component allows for the most straightforward mapping
onto BPEL. Since it is both a state machine and marked graph there are no choices
and there is no parallelism, i.e., things are executed in a fixed order. Figure 4 shows
two examples where a sequence of two transitions is mapped onto a single transition
tc bearing the BPEL. The example on the left is a place-bordered component (a PP-
component) while the example on the left is a transition-bordered component (a TT-
component). The other two possible cases, i.e., a PT-component or a TP-component,
can be mapped in a similar way. Note the we assume that the initial transitions are
mapped onto an invoke activity. However, based on the annotation this could be any
primitive BPEL activity.

Next we focus on the mapping of a FLOW-component to the BPEL flow construct.
Figure 5 and 6 shows two examples. The first example shown in Figure 5 depicts a
transition bordered component with one initial and one final activity and two parallel
activities. The second example in Figure 6 shows a FLOW-component bordered by
places. People familiar with the BPEL construct will be able to see that this mapping is
indeed correct.

In the two FLOW-component examples we use the shorthands Any and All for
the boolean expression specified in the joinCondition of an activity joining mul-

p1 p2

t2 t3

p3 p4

t4

t1

tC

<flow>
 <links>
 <link name=”t 1_t2”/>
 <link name=”t 1_t3”/>
 <link name=”t

2
_t

4
”/>

 <link name=”t
3
_t

4
”/>

 </links>
 <invoke name=”t 1”>
 <source linkName=”t

1
_t

2
”/>

 <source linkName=”t
1
_t

3
”/>

 </invoke>
 <invoke name=”t 2”>
 <target linkName=”t

1
_t

2
”/>

 <source linkName=”t
2
_t

4
”/>

 </invoke>
 <invoke name=”t 3”>
 <target linkName=”t

1
_t

3
”/>

 <source linkName=”t
3
_t

4
”/>

 </invoke>
 <invoke name=”t

4
” joinCondition=”All”>

 <target linkName=”t
2
_t

4
”/>

 <target linkName=”t 3_t4”/>
 </invoke>
</flow>

Figure 5. Examples of the FLOW-component and its corresponding BPEL expression.

t1 t2

t3 t4

p2 expr5e
xp

r4

tC

<flow>
 <links>
 <link name=”t d_t1” condition=”expr1 "/>
 <link name=”t d_t2” condition=”expr2 "/>
 <link name=”t

d
_t

5
” condition=”expr3 "/>

 <link name=”t
1
_t

3
” condition=”expr4 "/>

 <link name=”t 1_t4” condition=”expr5 "/>
 <link name=”t 2_t3” condition=”expr4 "/>
 <link name=”t

2
_t

4
” condition=”expr5 "/>

 </links>
 <empty name=”t d">
 <source linkName=”t d_t1”/>
 <source linkName=”t

d
_t

2
”/>

 <source linkName=”t
d
_t

5
”/>

 </empty>
 <invoke name=”t 1”>
 <target linkName=”t

d
_t

1
”/>

 <source linkName=”t 1_t3”/>
 <source linkName=”t 1_t4”/>
 </invoke>
 <invoke name=”t

2
”>

 <target linkName=”t d_t2”/>
 <source linkName=”t 2_t3”/>
 <source linkName=”t

2
_t

4
”/>

 </invoke>
 <invoke name=”t 3” joinCondition=”Any”>
 <target linkName=”t 1_t3”/>
 <target linkName=”t

2
_t

3
”/>

 </invoke>
 <invoke name=”t 4” joinCondition=”Any”>
 <target linkName=”t 1_t4”/>
 <target linkName=”t

2
_t

4
”/>

 </invoke>
 <invoke name=”t 5”>
 <target linkName=”t d_t5”/>
 </invoke>
</flow>

P(p2) = explicit

p1

p3

ex
pr

1

expr2

p1

p3

t5

expr3

P(p1) =

t1 t2

t3 t4

p2 expr5ex
p

r4

pd

p3

ex
pr

1 expr2

t5

expr3

p1

td
T(td) = empty

P(pd) = explicit

Figure 6. Example of a FLOW-component and its corresponding BPEL expression.

tiple links. Assume an activity is target for the links link1, . . . , linkN then the ex-
pression Any is shorthand for bpws:getLinkStatus(’link1’) or ... or
bpws:getLinkStatus(’linkN’) and the expression And is shorthand for bpws:
getLinkStatus(’link1’) and ... and bpws:getLinkStatus (’linkN’).
Any correspond to a logical OR and All to a logical AND, both of the incoming links.

The two examples shown in Figure 5 and 6 trigger the question of how to map
any FLOW-component onto a flow? To explain how this works we need to revisit
Definition 17. Let T be the set of transitions (i.e., activities) in the component. These are
all inserted in the flow construct. Then we need to add links, specify the link conditions
(if needed), and specify the join condition in case of multiple target links. Let L ⊆ T×T
be the set of links and join ∈ T 6→ {All, Any} the join condition. To correctly map a
FLOW-component onto a flow activity, L = {(t1, t2) ∈ T × T | t1 • ∩ • t2 6= ∅}.
dom(join) = {t ∈ T | ∃t1,t2∈T (t1, t) ∈ L ∧ (t2, t) ∈ L ∧ t1 6= t2}, i.e., only
activities with multiple incoming links have a join condition. Transitions with multiple
input places correspond to activities with a join condition set to All, i.e., join(t) = All
if | • t| ≥ 2. All other transitions in dom(join) correspond to activities with a join
condition set to Any. The conditions on the transitions involved in an explicit choice
are mapped onto link conditions, i.e., a link (t1, t2) ∈ L has a condition τG(t2) if and
only if t2 ∈ dom(τG) (cf. Definition 14).

In the case of a PP- or PT-component of type FLOW where |iC • | > 1 we need to
perform add an additional place and transition before mapping it onto a BPEL flow.
For a FLOW-component C of type PP or TP with source place iC add a new place p
and a new transition t such that •t = {iC} and t• = {p}. The output transitions of
iC in the original net are now the output transitions of p. This transformation preserves
the WF-net properties of the original C. The reason for this transformation is that iC
in the original C may have had had multiple input arcs, but activities translated from
transitions in iC• could not be guarded in the BPEL specification since guards are
specified from a source to a target. Since there is no preceding activity from any of the
translated transition in iC• such guards can not be specified in BPEL. By injecting a
transition with the empty annotation, a place and arcs as described previously, we can
now guard the activities of the translated transitions of iC•. In Figure 6 we show how
this transformation works. Note that the activities t1, t2 and t5 could not be guarded
against the expressions of the arcs from iC if the empty task td had not been added.

It is easy to verify that the mapping just described is correct (assuming the FLOW-
component is safe and sound, i.e., the conditions of Theorem 3 are satisfied). First all,
the graph structure of a FLOW-component is acyclic. Second, a closer inspection of
Definition 17 shows that if there is a place p connecting t1 to t2 (i.e., (t1, t2) ∈ L),
then p is the only place connecting t1 to t2, and it is the only input place of t2 or
| • p| = |p • | = 1. If t2 has multiple input places, then the join condition is set to All.
This is correct since in the FLOW-component all preceding activities (i.e., •(•t2)) need
to complete because | • p| = |p • | = 1. If t2 has only one input place p, but p has
multiple output transitions (i.e., | • p| ≥ 2), then the join condition is set to Any. This
is correct since in the FLOW-component only one of the preceding activities needs to
complete. Note that it is important that the FLOW-component is safe and sound. As a
result precisely one of the preceding activities will and can complete. It is interesting to

see that the class of well-structured Petri net can be mapped onto the flow construct
in BPEL. However, we will only advocate the mapping of such FLOW-components
onto the flow construct if it is not possible to map it onto one of the other structured
activities (e.g., sequence or switch).

p1

t1

p2

t2 t3

exp
r1

expr2

expr3

 P(p1) = explicit p1

p2

tC

<switch>
 <case condition=” expr1 ” >
 <invoke name=”t

1
"/>

 </case>
 <case condition=” expr2 ” >
 <invoke name=”t

2
"/>

 </case>
 <case condition=” expr3 ” >
 <invoke name=”t 3"/>
 </case>
</switch>

p1

t1

p2

t2 t3

msg
1

msg2

(to1, dl1)

p1

p2

tC

<pick>
 <onMessage operation=” msg1 ”>
 <invoke name=”t

1
"/>

 </onMessage>
 <onMessage operation=” msg2 ”>
 <invoke name=”t

2
"/>

 </onMessage>
 <onAlarm for=”to1 ” until=”dl1 ”>

<empty/>
 </onAlarm>
</pick>

P(p1) = implicit

Figure 7. Examples of the SWITCH-component and PICK-component and their corresponding
BPEL expression.

Figure 7 illustrates the mapping of choice nets, i.e., a SWITCH-component is mapped
onto a switch and a PICK-component is mapped onto a pick. Given the above, the
mapping is fairly straightforward. In a choice net there is one source place and one sink
place. These are connected by transitions each representing an alternative activity. If the
nature of the choice is explicit (i.e., a SWITCH-component), the net fragment is mapped
onto a switch where τG(t) is the condition of the case corresponding to transition t. If
the nature of the choice is implicit (i.e., a PICK-component), the net fragment is mapped

onto a pick construct where τMA specifies the messages, timeouts and deadlines for
the PICK-component (if present). In Figure 7 there are two possible messages that may
arrive (msg1 and msg2) and there is one onAlarm with a deadline (dl1) and and
timeout (to1).

t1

p t2expr1

t3

expr2

tC

<sequence>
 <invoke name=”t 1”/>
 <while condition=” expr1 and !expr2 ”>
 <invoke name=”t

2
”/>

 </while>
 <invoke name=”t 3”/>
</sequence>

P(p) = explicit

Figure 8. Example of the WHILE-component and its corresponding BPEL expression.

Finally, we show the mapping of the WHILE-component onto the BPEL while
construct (cf. Figure 8). Note that the real loop is only formed by place p and transi-
tion t2. However, to model the entry and exit of the loop we need to consider t1 and
t3. This is reflected in the BPEL translation. The while construct is embedded in a
sequence. The guards of t2 and t3 (i.e., τG(t2) ∧ ¬τG(t3)) are in the condition used
in the while construct. (Note that the ¬τG(t3) part is not needed if the guards, i.e.,
τG(t2) and τG(t3), are indeed mutually exclusive.)

After showing the mapping of each of the components mentioned in Definition 18,
we can present the algorithm to translate an annotated WF-net onto BPEL. The basic
idea of the algorithm is to take a components, provide the BPEL translation, and fold
the net. This is repeated until a WF-net with just one transition is obtained. Besides
the standard transitions (sequence etc.), the user can add transactions to a component
library and add them on-the-fly.

Definition 19 (Algorithm). Let PN = (P, T, F, τP , τG, τMA, τT) be a safe and sound
annotated WF-net.

(i) X := PN
(ii) while [X] 6= ∅ (i.e., X contains a non-trivial component)7

(iii-a) If there is a maximal SEQUENCE-component C ∈ [X], select it and goto (vi).

7 Note that this is the case as long as X is not reduced to a WF-net with just a single transition.

(iii-b) If there is a SWITCH-component C ∈ [X], select it and goto (vi).
(iii-c) If there is a PICK-component C ∈ [X], select it and goto (vi).
(iii-d) If there is a WHILE-component C ∈ [X], select it and goto (vi).
(iii-e) If there is a maximal FLOW-component C ∈ [X], select it and goto (vi).

(iv) If there is a component C ∈ [X] that appears in the component library, select
it and goto (vi).

(v) Select a component C ∈ [X] to be manually mapped onto BPEL and add it to
the component library.

(vi) Attach the BPEL translation of C to tC as illustrated in Figure 1.
(vii) X := fold(PN , C) and return to (ii).

(viii) Output the BPEL code attached to the transition in X .

The actual translation of components is done is step (vi) followed by the folding in
step (vii). The component to be translated/folded is selected in steps (iii). If there is still
a sequence remaining in the net, this is selected. A maximal sequence is selected to keep
the translation as compact en simple as possible. Only if there are no sequences left in
the WF-net, other components are considered. The next one in line is the SWITCH-
component followed by the PICK-component and the WHILE-component. Given the
fact that SWITCH-, PICK- and WHILE-components are disjoint, the order of steps (iii-
b), (iii-c), and (iii-d) is irrelevant. Finally, maximal FLOW-components are considered.

Not every net can be reduced into SEQUENCE-, SWITCH-, PICK-, WHILE- and
FLOW-components. (We will show an example to illustrate this later in this section.)
Therefore, steps (iv) and (v) have been added. The basic idea is to allow for ad-hoc
translations. These translations are stored in a component library. If the WF-net cannot
be reduced any further using the standard SEQUENCE-, SWITCH-, PICK-, WHILE-
and FLOW-components, then the algorithm searches the component library (note that it
only has to consider the network structure and not the specific names and annotations).
If the search is successful, the stored BPEL mapping can be applied (modulo renaming
of nodes and annotations). If there is not a matching component, a manual translation
can be provided and stored in the component library for future use.

Note that the algorithm described in Definition 19 uses function fold defined in Sec-
tion 4. We will not give a formal proof of the correctness of the the algorithm. However,
the results in Section 4 (Theorem 3 in particular) provide insights into the correctness
of the approach. Note that we do not give a formal proof because manageable formal
semantics of BPEL are missing (cf. discussion in Section 4).

The appendix describes an elaborate example illustrating the approach. It shows how
in a step-by-step fashion a complex WF-net can be transformed into a BPEL specifica-
tion. Note that this example also illustrates steps (iv) and (v) by presenting a component
which cannot be reduced using the standard rules. See more in [10].

6 Case Study: Generating BPEL template code for a Bank System

In another paper we have reported on a case study where Colored Petri Nets (CPNs) are
used in the development of a new bank system [9]. The new bank system is named the
Adviser Portal (AP) and is being developed by Bankdata (a Danish company providing

software solutions for banks). AP has been bought by 15 Danish banks and will be used
by thousands of bank advisers in hundreds of bank branches. Its main goal is to increase
the efficiency and quality of bank advisers’ work. In the context of the development of
AP we mapped Petri nets onto BPEL using the algorithm presented in this paper.

In [9] it is shown that one can use a two step approach to go from a requirements
model to an implementation of the new system. The initial requirements model is pre-
sented as an executable CPN [29] whose sole purpose is to specify, validate, and elicit
user requirements (independent of the target language). In the first translation step, a
workflow model is derived from the requirements model. This model is represented in
terms of a so-called Colored Workflow Net (CWN), which is a generalization of the clas-
sical workflow nets to CPN. In the second translation step, the CWN is translated into
implementation code.

The focus of [9] is on the case study and the two step approach rather than the
mapping. In fact the mapping of Petri nets to BPEL plays only a minor role in the
paper and only the result is mentioned. Therefore, we do not elaborate on details of the
case study here and focus on the actual mapping onto BPEL. We also do not show the
requirements CPN model and use the CWN as a starting point.

Figure 9 shows the CWN for the blanc loan process. This is the process describing
how bank advisers give advice to customers enquiring about getting a so-called blanc
loan. A blanc loan is a simple type of loan, which can be granted without requiring the
customer to provide any security. This is in contrast to, e.g., mortgage credits and car
loans. As indicated, we do not elaborate any further on the actual meaning of all steps
in the process. Instead we focus on the translation to BPEL. However, before doing so
we describe the notation used in Figure 9. A CWN is a CPN model [29] restricted to
the workflow domain and can be seen as a high-level version of the traditional Work-
flow Nets (WF-nets) [1–3]. A CWN covers the control-flow perspective, the resource
perspective, and the data/case perspective, but abstracts from implementation details
and language/application specific issues. In a CWN there are three types of places:
places of type Case to denote the state of a case (i.e., process instance), places of type
Resource to denote resources (e.g., workers), and places of type CxR denoting the
combination of a resources and cases. Figure 9 shows the type of each place. Like in
a WF-net there is a source place (place Start of type Case) and a sink place (the
three places End, Reject 1 and Reject 2 are fused into one place of type Case).
Transitions denote (primitive) activities and the arc inscriptions show the routing logic
and resource allocation rules. For example, transition Make decision requires a re-
source with role adviser. After executing this activity, the resource is returned and
one of the four output places of type Case is selected, i.e., Make decision is a
so-called XOR-split.

It is not yet possible to automatically transform a CWN like the one shown in Fig-
ure 9 onto BPEL. However, one can follow a well-defined procedure to map a CWN
onto BPEL [9]. The key issue is that CWNs can be used to semi-automatically generate
BPEL code. It is possible to fully automatically generate template code. However, to
come to a full implementation, programmers must manually complete the work, e.g.,
by providing the “glue” to existing applications and data structures.

� � �� � � � � �� � � � � � � � 	
 � 	 � � � � � �
 � 	 � �
 � � � � � � � � � � � � �� � �� � 	
 � 	 � � � � � �
 � 	 � �
 � � � � 	 � � � �� � �� � 	
 � 	 � � � � � �
 � 	 � �
 � � � � � � � � � � � 	 � � � � � �� � � �
� � � � 	
 � 	 � � � � � �
 � 	 � �
 � � � � 	 � � � �� � �� � 	
 � 	 � � � � � �
 � 	 � �
 � � � � � � � � � � � � � � � �� � � �� � � � � � �� � � � � �� �

� �� � � � 	
 � 	 � � � � � �
 � 	 � �
 � � � � � � � 	 � � � � � 	 � � �� � �
� � � � � 	 � �� � � � � � � � � � � �� � � � � � � � � � �	 � � � � �� � � � �� � 	
 � � � � � � � � 	 � � �
 � � � �

� 	 � � � � � �
 � � �� � � � � � � � � � � � � �� � � � � � � � � � �	 � � � � �� � 	 � � ! � � �
 � � � � � � � � � � �� � 	
 � � � � � � � � 	 � � �
 � � � �
" �� � � � � � � � � � �	 � � � � �� � 	 � � ! � � �
 � � � � � � � � � � � �� � 	
 � � � � � � � � � 	 � 	 � � � � �

# � � 	 � � $ �� � 	 �� � � � � � � � � � � �� � � � � � � � � � �	 � � � � �� � � � � � � 	
 � � � � � � � � 	 � � �
 � � � �
% � � � �	 � ��
 � 	 & � �
 �� � � � � � � � � � � �� � � � � � � � � � �	 � � � � ��
 � � � 	 � � � � � �
 � 	 � �
 � � �
 � 	 & � �
 � � � � � � � � 	
 � � � � � � � � 	 � � �
 � � � �

' � (� � � 	 � � � �� � � � � � � � � � � � � � � � � �� � � � � � � � � � �	 � � � � ��
 � � � 	 � � � � � �
 � 	 � �
 � � � � 	 � � � � �

� � 	 � �
 � 	 � �) 	
 �� � � � � 	 �) 	
 �
 � * � " �
 � " �
 � � � � �� � � � � 	 � " �
 � � � � �
 � * �" �
 � � � � �
" � 	 � + (� � (� � � � � �� � � � �

 � � �) , " " � � � � � �) 	
 �- � �
 � 	 � �
. � 	 � � � � � � �) 	
 �

" � � � � � � � � 	 � � � �� � � � �) 	
 �
" � � � � � �) 	
 �- � �
 � 	 � �" �
 � " �
 � � � � �� � � � � 	 � " �
 � � � � �
 � * �" �
 � � � � �

" �
 / " �
 � � � � �� � � � � 	 � " �
 � � � � �
 � * �" �
 � � � � �
0 � 	 �(� � 	 � � $ � �) , "- � �
 � 	 � �) 	
 �- � �
 � 	 � �

1 	 � � � � �(� �� � (� � � 	 � � � �) 	
 �

Figure 9. CWN model of a blanc loan process.

Simulate

Make
decision

Choice 1
To Grant

Given

Choice 1
To Reject

Recommend
Information

received

Choice 2 To
Reject 2

Finalize
loan

Start
state

Ready for
further

processing

Choice 1

Recommendation
given

Waiting for
information

Grant
given

End
state

Choice 2
Loan

finalized

Print and
establish

status = “recommendation” status = “rejection”

Choice 2
To Grant

given
status = “grant”

F1

F2 F3

F4

Choice 1 To
Waiting for
information

Choice 1 To
Recommenda

tion given

status = “prior approval” status = “grant”

status = “rejection”

T
(Simulate) = receive

P
(Choice 1) = explicit

P
(Choice 2) = explicit

……………………….

Figure 10. WF model of a blanc loan process.

To generate the template code, first a translation from CWNs to WF-nets is needed.
This can be done by abstracting from data and resources. However, in order to cap-
ture the control-flow XOR-splits such as Make decision need to be followed by a
choice place. This place is labeled to reflect the explicit nature (i.e., it will be mapped
onto a switch or a link in a flow). An XOR-split is translated into a transition with
one output place which is called Choice i, where i is a number making the name unique
in the WF-net. This place and its output transitions represent the XOR-split. The tran-
sitions following this split are routing transitions indicated in the examples by a dashed
rectangle. These routing transitions are named in such a way that it is clear which real
activities are connected by them. In the annotated WF-net the choice place, say Choice
1, is given the annotation τP (Choice i) = explicit. Each routing transition t has the
boolean expression τG(t) = expr, derived from the XOR-split in the CWN. Moreover,
τT (t) = empty denoting that t does not correspond to a real activity and has been
added for routing purposes only. Figure 10 shows the resulting WF-net.

Using the algorithm presented in Section 5, we can automatically generate the BPEL
code. Again we first look for maximal SEQUENCE-components. Figure 10 shows the
maximal SEQUENCE-components. Each of these components is folded into a single
transition labeled with the appropriate BPEL code (i.e., a sequence activity). The
snippets of BPEL code can be seen in listings 1, 2, 3 and 4.

Listing 1. Fragment F1

1 <sequence>
2 <receive name="Receive"/>
3 <invoke name="Simulate"/>
4 <invoke name="MakeDecision"/>
5 </sequence>

Listing 2. Fragment F2

1 <sequence>
2 <empty name="Choice_1_To_Recommendation_given"/>
3 <invoke name="Recommend"/>
4 </sequence>

Listing 3. Fragment F3

1 <sequence>
2 <empty name="Choice_1_To_Waiting_for_information"/>
3 <invoke name="Get information"/>
4 </sequence>

Listing 4. Fragment F4

1 <sequence>
2 <invoke name="Finalize_loan"/>
3 <invoke name="Print_and_Establish"/>
4 </sequence>

The WF-net after folding the SEQUENCE-components is well-structured, i.e., the
whole net is a maximal FLOW-component and can be represented using the BPEL
flow construct. The resulting BPEL specification is shown in Listing 5.

Listing 5. Complete BPEL specification of case study example

1 <flow>
2 <links>
3 <link name="F1_F2"/>
4 <link name="F1_F3"/>
5 <link name="F3_F4"/>
6 <link name="F1_Choice_1_To_Refusal"/>
7 <link name="F1_Choice_1_To_Grant_given"/>
8 <link name="Choice_1_To_Grant_given_F4"/>
9 <link name="F2_Choice_2_To_Refusal_2"/>

10 <link name="F2_Choice_2_To_Grant_given"/>
11 <link name="Choice_2_To_Grant_given_F4"/>
12 </links>
13 <sequence name="F1">
14 <source linkName="F1_Choice_1_To_Grant_given"/>
15 <source linkName="F1_F2"/>
16 <source linkName="F1_F3"/>
17 <source linkName="F1_Choice_1_To_Refusal"/>
18 <<F1>>
19 </sequence>
20 <sequence name="F2">
21 <target linkName="F1_F2"/>
22 <source linkName="F2_Choice_2_To_Grant_given"/>
23 <source linkName="F2_Choice_2_To_Refusal 2"/>
24 <<F2>>
25 </sequence>
26 <sequence name="F3">
27 <target linkName="F1_F3"/>
28 <source linkName="F3_F4"/>
29 <<F3>>
30 </sequence>
31 <sequence name="F4" joinCondition="Any">
32 <target linkName="Choice_2_To_Grant_given_F4"/>

33 <target linkName="Choice_1_To_Grant_given_F1"/>
34 <target linkName="F3_F4"/>
35 <<F4>>
36 </sequence>
37 <empty name="Choice_1_To_Refusal">
38 <target linkName="F1_Choice_1_To_Refusal"/>
39 </empty>
40 <empty name="Choice_1_To_Grant_given">
41 <target linkName="F1_Choice 1 To Grant given"/>
42 <source linkName="Choice_1_To_Grant_given_F4"/>
43 </empty>
44 <empty name="Choice_2_To_Refusal_2">
45 <target linkName="F2_Choice_2_To_Refusal_2"/>
46 </empty>
47 <empty name="Choice_2_To_Grant_given">
48 <target linkName="F2_Choice_2_To_Grant_given"/>
49 <source linkName="Choice_2_To_Grant_given_F4"/>
50 </empty>
51 </flow>

In this section, we have used a real-life example (the new AP system of Bankdata)
to illustrate the algorithm presented in Section 5. The resulting BPEL code has been
used to implement the process in IBM WebSphere. The use of CPN models (both the
requirements CPN and the CWN) was supported by CPN Tools, i.e., the models have
been simulated and end-users could interact with the model through the animation fa-
cilities of CPN Tools. Using a CWN rather than an arbitrary CPN enables the automatic
generation of template BPEL code. Therefore, we described in [9] an approach to mi-
grate a requirements CPN to a CWN. However, [9] does not describe the translation to
BPEL code, this is the contribution of this paper.

7 Conclusion

In this paper we presented an algorithm to generate BPEL specifications from WF-
nets. While most researchers have been working on translations from BPEL to formal
models like Petri nets, we argued that a translation from Petri nets to BPEL is probably
more relevant. Designers prefer a graphical language without all kinds of syntactical re-
strictions. However, the graphical editors of systems supporting BPEL tend to directly
visualize the structure of the BPEL code. Therefore, it is not possible to have arbitrary
splits and joins, loops, etc. WF-nets, a subclass of Petri nets, do not have these restric-
tions and therefore the mapping is relevant and challenging. The goal of our translation
is to generate compact and readable BPEL template code, i.e., we carefully try to dis-
cover patterns in the WF-nets that fit well with specific BPEL constructs. This way the
BPEL specification remains readable and maintainable.

Using a small case study (the blanc loan process to be supported by the AP system
of Bankdata) we showed the applicability of our approach. Here we used a “colored”

variant of WF-nets (adding the data and resource perspectives to the control perspective)
named Colored Workflow Nets (CWN). CPN Tools allows for the definition, execution,
and analysis of such models. Using the algorithm presented in this paper, we translated
the CWN into BPEL code and the result has been implemented using IBM WebSphere.

Future work will focus on dedicated tool support for the translation of CWN to
BPEL. (At this point in time, we provide only a manual procedure to accomplish this.)
We also plan to modify our mapping to map other languages onto BPEL. Good can-
didates are UML activity diagrams [26], Event-driven Process Chains (EPCs) [30, 44],
the Business Process Modeling Notation (BPMN) [51]. Note that the “patterns” repre-
sented by SEQUENCE-, SWITCH-, PICK-, WHILE- and FLOW-components also ex-
ist in many other graphical languages. Hence it is relatively easy to provide a mapping
from these languages to BPEL using a variant of the algorithm presented in this paper.
Similarly, elements of our approach can be used for other target languages. Like BPEL,
most workflow management systems use languages imposing all kind of restrictions on
the structure of the process model.

References

1. W.M.P. van der Aalst. Verification of Workflow Nets. In P. Azéma and G. Balbo, editors,
Application and Theory of Petri Nets 1997, volume 1248 of Lecture Notes in Computer
Science, pages 407–426. Springer-Verlag, Berlin, 1997.

2. W.M.P. van der Aalst. The Application of Petri Nets to Workflow Management. The Journal
of Circuits, Systems and Computers, 8(1):21–66, 1998.

3. W.M.P. van der Aalst. Workflow Verification: Finding Control-Flow Errors using Petri-net-
based Techniques. In W.M.P. van der Aalst, J. Desel, and A. Oberweis, editors, Business
Process Management: Models, Techniques, and Empirical Studies, volume 1806 of Lecture
Notes in Computer Science, pages 161–183. Springer-Verlag, Berlin, 2000.

4. W.M.P. van der Aalst. Business Process Management Demystified: A Tutorial on Models,
Systems and Standards for Workflow Management. In J. Desel, W. Reisig, and G. Rozenberg,
editors, Lectures on Concurrency and Petri Nets, volume 3098 of Lecture Notes in Computer
Science, pages 1–65. Springer-Verlag, Berlin, 2004.

5. W.M.P. van der Aalst and T. Basten. Inheritance of Workflows: An Approach to Tackling
Problems Related to Change. Theoretical Computer Science, 270(1-2):125–203, 2002.

6. W.M.P. van der Aalst, M. Dumas, and A.H.M. ter Hofstede. Web Service Composition
Languages: Old Wine in New Bottles? In G. Chroust and C. Hofer, editors, Proceeding
of the 29th EUROMICRO Conference: New Waves in System Architecture, pages 298–305.
IEEE Computer Society, Los Alamitos, CA, 2003.

7. W.M.P. van der Aalst and K.M. van Hee. Workflow Management: Models, Methods, and
Systems. MIT press, Cambridge, MA, 2002.

8. W.M.P. van der Aalst, A.H.M. ter Hofstede, B. Kiepuszewski, and A.P. Barros. Workflow
Patterns. Distributed and Parallel Databases, 14(1):5–51, 2003.

9. W.M.P. van der Aalst, J.B. Jørgensen, and K.B. Lassen. Let’s Go All the Way: From Require-
ments via Colored Workflow Nets to a BPEL Implementation of a New Bank System Paper.
In R. Meersman and Z. Tari et al., editors, On the Move to Meaningful Internet Systems 2005:
CoopIS, DOA, and ODBASE: OTM Confederated International Conferences, CoopIS, DOA,
and ODBASE 2005, Lecture Notes in Computer Science, 2005.

10. W.M.P. van der Aalst and K.B. Lassen. Translating Workflow Nets to BPEL4WS. BETA
Working Paper Series, WP ??, Eindhoven University of Technology, Eindhoven, 2005.

11. W.M.P. van der Aalst, K.M. van Hee, and R.A. van der Toorn. Component-Based Soft-
ware Architectures: A Framework Based on Inheritance of Behavior. Science of Computer
Programming, 42(2-3):129–171, 2002.

12. W.M.P. van der Aalst, A.J.M.M. Weijters, and L. Maruster. Workflow Mining: Discovering
Process Models from Event Logs. IEEE Transactions on Knowledge and Data Engineering,
16(9):1128–1142, 2004.

13. T. Andrews, F. Curbera, H. Dholakia, Y. Goland, J. Klein, F. Leymann, K. Liu, D. Roller,
D. Smith, S. Thatte, I. Trickovic, and S. Weerawarana. Business Process Execution Language
for Web Services, Version 1.1. Standards proposal by BEA Systems, International Business
Machines Corporation, and Microsoft Corporation, 2003.

14. J. Dehnert. A Methodology for Workflow Modeling: From Business Process Modeling To-
wards Sound Workflow Specification. PhD thesis, TU Berlin, Berlin, Germany, 2003.

15. J. Desel and J. Esparza. Free Choice Petri Nets, volume 40 of Cambridge Tracts in Theoret-
ical Computer Science. Cambridge University Press, Cambridge, UK, 1995.

16. M. Dumas, W.M.P. van der Aalst, and A.H.M. ter Hofstede. Process-Aware Information
Systems. Wiley & Sons, 2005.

17. R. Eshuis and J. Dehnert. Reactive Petri nets for Workflow Modeling. In W.M.P. van der
Aalst and E. Best, editors, Application and Theory of Petri Nets 2003, volume 2679 of Lec-
ture Notes in Computer Science, pages 295–314. Springer-Verlag, Berlin, 2003.

18. D. Fahland and W. Reisig. ASM-based semantics for BPEL: The negative control flow. In
D. Beauquier and E. Börger and A. Slissenko, editor, Proc. 12th International Workshop on
Abstract State Machines, pages 131–151, Paris, France, March 2005.

19. R. Farahbod, U. Glässer, and M. Vajihollahi. Specification and validation of the business
process execution language for web services. In W. Zimmermann and B. Thalheim, editors,
Abstract State Machines 2004, volume 3052 of Lecture Notes in Computer Science, pages
79–94, Lutherstadt Wittenberg, Germany, May 2004. Springer-Verlag, Berlin.

20. A. Ferrara. Web services: A process algebra approach. In Proceedings of the 2nd inter-
national conference on Service oriented computing, pages 242–251, New York, NY, USA,
2004. ACM Press.

21. L. Fischer, editor. Workflow Handbook 2003, Workflow Management Coalition. Future
Strategies, Lighthouse Point, Florida, 2003.

22. J.A. Fisteus, L.S. Fernández, and C.D. Kloos. Formal verification of BPEL4WS business
collaborations. In K. Bauknecht, M. Bichler, and B. Proll, editors, Proceedings of the 5th
International Conference on Electronic Commerce and Web Technologies (EC-Web ’04),
volume 3182 of Lecture Notes in Computer Science, pages 79–94, Zaragoza, Spain, August
2004. Springer-Verlag, Berlin.

23. X. Fu, T. Bultan, and J. Su. Analysis of Interacting BPEL Web Services. In International
World Wide Web Conference: Proceedings of the 13th international conference on World
Wide Web, pages 621–630, New York, NY, USA, 2004. ACM Press.

24. D. Georgakopoulos, M. Hornick, and A. Sheth. An Overview of Workflow Management:
From Process Modeling to Workflow Automation Infrastructure. Distributed and Parallel
Databases, 3:119–153, 1995.

25. R.J. van Glabbeek and D.G. Stork. Query Nets: Interacting Workflow Modules that Ensure
Global Termination. In W.M.P. van der Aalst, A.H.M. ter Hofstede, and M. Weske, editors,
International Conference on Business Process Management (BPM 2003), volume 2678 of
Lecture Notes in Computer Science, pages 184–199. Springer-Verlag, Berlin, 2003.

26. Object Management Group. OMG Unified Modeling Language 2.0 Proposal, Re-
vised submission to OMG RFPs ad/00-09-01 and ad/00-09-02, Version 0.671. OMG,
http://www.omg.com/uml/, 2002.

27. K. van Hee, N. Sidorova, and M. Voorhoeve. Soundness and Separability of Workflow Nets
in the Stepwise Refinement Approach. In W.M.P. van der Aalst and E. Best, editors, Appli-
cation and Theory of Petri Nets 2003, volume 2679 of Lecture Notes in Computer Science,
pages 335–354. Springer-Verlag, Berlin, 2003.

28. S. Jablonski and C. Bussler. Workflow Management: Modeling Concepts, Architecture, and
Implementation. International Thomson Computer Press, London, UK, 1996.

29. K. Jensen. Coloured Petri Nets. Basic Concepts, Analysis Methods and Practical Use. Vol-
ume 1. EATCS monographs on Theoretical Computer Science. Springer-Verlag, Berlin,
1997.

30. G. Keller, M. Nüttgens, and A.W. Scheer. Semantische Processmodellierung auf der
Grundlage Ereignisgesteuerter Processketten (EPK). Veröffentlichungen des Instituts für
Wirtschaftsinformatik, Heft 89 (in German), University of Saarland, Saarbrücken, 1992.

31. B. Kiepuszewski. Expressiveness and Suitability of Languages for Control Flow Modelling
in Workflows. PhD thesis, Queensland University of Technology, Brisbane, Australia, 2003.
Available via http://www.workflowpatterns.com.

32. B. Kiepuszewski, A.H.M. ter Hofstede, and W.M.P. van der Aalst. Fundamentals of Control
Flow in Workflows. Acta Informatica, 39(3):143–209, 2003.

33. E. Kindler and W.M.P. van der Aalst. Liveness, Fairness, and Recurrence. Information
Processing Letters, 70(6):269–274, June 1999.

34. E. Kindler, A. Martens, and W. Reisig. Inter-Operability of Workflow Applications: Local
Criteria for Global Soundness. In W.M.P. van der Aalst, J. Desel, and A. Oberweis, editors,
Business Process Management: Models, Techniques, and Empirical Studies, volume 1806 of
Lecture Notes in Computer Science, pages 235–253. Springer-Verlag, Berlin, 2000.

35. J. Koehler and R. Hauser. Untangling Unstructured Cyclic Flows A Solution Based on
Continuations. In R. Meersman, Z. Tari, W.M.P. van der Aalst, C. Bussler, and A. Gal et al.,
editors, On the Move to Meaningful Internet Systems 2004: CoopIS, DOA, and ODBASE:
OTM Confederated International Conferences, CoopIS, DOA, and ODBASE 2004, volume
3290 of Lecture Notes in Computer Science, pages 121–138, 2004.

36. M. Koshkina and F. van Breugel. Verification of Business Processes for Web Ser-
vices. Technical report CS-2003-11, York University, October 2003. Available from:
http://www.cs.yorku.ca/techreports/2003/.

37. F. Leymann. Web Services Flow Language, Version 1.0, 2001.
38. F. Leymann and D. Roller. Production Workflow: Concepts and Techniques. Prentice-Hall

PTR, Upper Saddle River, New Jersey, USA, 1999.
39. A. Martens. On Compatibility of Web Services. Petri Net Newsletter, 65:12–20, 2003.
40. A. Martens. Analyzing Web Service Based Business Processes. In M. Cerioli, editor, Pro-

ceedings of the 8th International Conference on Fundamental Approaches to Software En-
gineering (FASE 2005), volume 3442 of Lecture Notes in Computer Science, pages 19–33.
Springer-Verlag, Berlin, 2005.

41. M. zur Muehlen. Workflow-based Process Controlling: Foundation, Design and Application
of workflow-driven Process Information Systems. Logos, Berlin, 2004.

42. C. Ouyang, W.M.P. van der Aalst, S. Breutel, M. Dumas, A.H.M. ter Hofstede, and H.M.W.
Verbeek. Formal Semantics and Analysis of Control Flow in WS-BPEL. BPM Center Report
BPM-05-13, BPMcenter.org, 2005.

43. W. Reisig and G. Rozenberg, editors. Lectures on Petri Nets I: Basic Models, volume 1491
of Lecture Notes in Computer Science. Springer-Verlag, Berlin, 1998.

44. A.W. Scheer. ARIS: Business Process Modelling. Springer-Verlag, Berlin, 2000.
45. C. Stahl. Transformation von BPEL4WS in Petrinetze (In German). Master’s thesis, Hum-

boldt University, Berlin, Germany, 2004.
46. S. Thatte. XLANG Web Services for Business Process Design, 2001.

47. R. van der Toorn. Component-Based Software Design with Petri nets: An Approach Based
on Inheritance of Behavior. PhD thesis, Eindhoven University of Technology, Eindhoven,
The Netherlands, 2004.

48. H.M.W. Verbeek and W.M.P. van der Aalst. Analyzing BPEL Processes using Petri Nets.
In D. Marinescu, editor, Proceedings of the Second International Workshop on Applications
of Petri Nets to Coordination, Workflow and Business Process Management, pages 59–78.
Florida International University, Miami, Florida, USA, 2005.

49. WFMC. Workflow Management Coalition Workflow Standard: Workflow Process Defini-
tion Interface – XML Process Definition Language (XPDL) (WFMC-TC-1025). Technical
report, Workflow Management Coalition, Lighthouse Point, Florida, USA, 2002.

50. S. White. Using BPMN to Model a BPEL Process. BPTrends, 3(3):1–18, March 2005.
51. S.A. White et al. Business Process Modeling Notation (BPML), Version 1.0, 2004.
52. P. Wohed, W.M.P. van der Aalst, M. Dumas, and A.H.M. ter Hofstede. Analysis of Web

Services Composition Languages: The Case of BPEL4WS. In I.Y. Song, S.W. Liddle, T.W.
Ling, and P. Scheuermann, editors, 22nd International Conference on Conceptual Modeling
(ER 2003), volume 2813 of Lecture Notes in Computer Science, pages 200–215. Springer-
Verlag, Berlin, 2003.

Appendix: Example to Illustrate the Algorithm

To illustrate the mapping we consider an example. Figure 11 shows the original WF-
net. We do not show all of its annotations. The only thing indicated are the implicit and
explicit choices, boolean expressions, messages, timeouts and deadlines. Although not
known when starting the reduction, Figure 11 already shows the hierarchical decompo-
sition of the final BPEL specification.

We will follow the algorithm to show how Figure 11 can be reduced to a trivial
component. We show code fragments in a step-by-step fashion. These already translated
code fragments are labeled (e.g., F1) and referred to by the label name enclosed by
brackets (e.g., <<F1>>).

First transformation
The algorithm first tries to locate SEQUENCE-components. There are two SEQUENCE-

components in Figure 11, i.e., the sequence involving l and s and the sequence involv-
ing m and t. First we consider, the SEQUENCE-component consisting of l and s. This
is folded into transition F1. The BPEL code is in Listing 6.

Listing 6. Fragment F1

1 <sequence>
2 <invoke name="l"/>
3 <invoke name="s"/>
4 </sequence>

Similarly, the SEQUENCE-component consisting of m and t which is folded into
transition F2 (similar to F1 and therefore not shown). The resulting net is shown in
Figure 12.

b

p11

g h
expr4 expr5

p10

p5

p12 p13

expr6

(to1,
dl1)

k l mji

msg1

m
sg

2

p14 p15 p16 p17

r

n o p

e x p r1

expr2

expr3

s t u

p20 p21

v

e

p2

p8

w

expr7

a

p1

p4

d

p3

c

p6 p7

f

p22

p19

x

p23

p9

q

p18

P
(p

13
) = explicit

P
(p

8
) = explicit

P
(p

5
) = explicit

T
(a) = receive

P(p10) = implicit

Figure 11. The original WF-net before reduction.

b

p11

g h
expr4 expr5

p10

p5

p12 p13

expr6

(to1,
dl1)

kji

msg1

m
sg

2

p14 p17

r

n o p

e x p r1

expr2

expr3

F1 F2 u

p20 p21

v

e

p2

p8

w

expr7

a

p1

p4

d

p3

c

p6 p7

f

p22

p19

x

p23

p9

q

p18

P
(p

13
) = explicit

P
(p

8
) = explicit

P
(p

5
) = explicit

T
(a) = receive

P(p10) = implicit

Figure 12. The WF-net after folding the two sequences.

Second transformation
After folding the two sequences, we fold the explicit choice with the transitions i,

j and k and the implicit choice with n, o and p. These are mapped to a switch and
a pick construct in BPEL respectively. The explicit choice is translated onto the piece
of code in Listing 7.

Listing 7. Fragment F3

1 <switch>
2 <case condition="expr1">
3 <invoke name="n"/>
4 </case>
5 <case condition="expr2">
6 <invoke name="o"/>
7 </case>
8 <case condition="expr3">
9 <invoke name="p"/>

10 </case>
11 </switch>

The implicit choice is mapped onto the piece of code in Listing 8.

Listing 8. Fragment F4

1 <pick>
2 <onMessage operation="msg1">
3 <invoke name="i"/>
4 </onMessage>
5 <onMessage operation="msg2">
6 <invoke name="j"/>
7 </onMessage>
8 <onAlarm for="to1" until="dl1">
9 <invoke name="k"/>

10 </onAlarm>
11 </pick>

The WF-net resulting from these two reduction steps is shown in Figure 13.

Third transformation
The reduction of the two choice nets (i.e., the SWITCH- and PICK-component)

introduces two new sequences. Therefore, we fold these two sequences. First, we merge
F4 and r into transition F5. This is done as shown in the piece of code in Listing 9.

Listing 9. Fragment F5

b

p11

g h
expr4 expr5

p10

p5

p12 p13

expr6

F4

p14 p17

r

F3

F1 F2 u

p20 p21

v

e

p2

p8

w

expr7

a

p1

p4

d

p3

c

p6 p7

f

p22

p19

x

p23

p9

q

p18

P
(p

8
) = explicit

P
(p

5
) = explicit

T
(a) = receive

Figure 13. The WF-net after folding the switch and pick.

1 <sequence>
2 <<F3>>
3 <invoke name="r"/>
4 </sequence>

Similarly, the SEQUENCE-component consisting of F3 and u can be folded into a
transition labeled F6. The resulting WF-net is shown in Figure 14.

Fourth transformation
Unlike most WF-nets the net shown in Figure 14 cannot be reduced to the trivial

component by just applying the standard rules. As shown in step steps (iv) and (v) of
the algorithm, we fist look for a known component and if this is not present, we need to
do a manual translation. The reason the WF-net shown in Figure 14 cannot be reduced
is that the component starting with e and ending with v has a rather tricky control-
flow structure. The choice after e corresponds to two joins (the two input places of
v). However, the two AND-splits after g and h correspond to a single join (transition
v). Therefore, one cannot expect this to be further reduced using the basic rules and it
is obvious that it does to correspond to one of the standard SEQUENCE-, SWITCH-,
PICK-, WHILE- and FLOW-components in a straightforward manner. Hence a manual
translation can be provided and stored in the component library for future use. The
resulting code fragment is referred to as F7 and can be seen in Listing 10.

Listing 10. Fragment F7

1 <sequence>
2 <invoke name="e"/>
3 <switch>
4 <case condition="expr4">
5 <flow>
6 <links>
7 <link name="g_F1"/>
8 <link name="g_F5"/>
9 </links>

10 <invoke name="g">
11 <source linkName="g_F1"/>
12 <source linkName="g_F5"/>
13 </invoke>
14 <sequence>
15 <target linkName="g_F1"/>
16 <<F1>>
17 </sequence>
18 <sequence>
19 <target linkName="g_F5"/>
20 <<F5>>

b

p11

g h
expr4 expr5

p10

p5

p12 p13

expr6

F5 F1 F2 F6

p20 p21

v

e

p2

p8

w

expr7

a

p1

p4

d

p3

c

p6 p7

f

p22

p19

x

p23

p9

q

p18

P
(p

8
) = explicit

P
(p

5
) = explicit

T
(a) = receive

Figure 14. The WF-net after folding the two new sequences.

21 </sequence>
22 </flow>
23 </case>
24 <case condition="expr5">
25 <flow>
26 <links>
27 <link name="h_F2"/>
28 <link name="h_F6"/>
29 </links>
30 <invoke name="h">
31 <source linkName="h_F2"/>
32 <source linkName="h_F6"/>
33 </invoke>
34 <sequence>
35 <target linkName="g_F2"/>
36 <<F2>>
37 </sequence>
38 <sequence>
39 <target linkName="g_F6"/>
40 <<F6>>
41 </sequence>
42 </flow>
43 </case>
44 </switch>
45 <invoke name="v"/>
46 </sequence>

The WF-net resulting from folding the ad-hoc component is shown in Figure 15.

Fifth transformation
In the WF-net Figure 15 there is a WHILE-component starting with b and ending

with w. This component can be folded into a single transition with code fragment F8
attached to it; see Listing 11.

Listing 11. Fragment F8

1 <sequence>
2 <invoke name="b"/>
3 <while condition="expr6 and !expr7">
4 <<F7>>
5 </while>
6 <invoke name="w"/>
7 </sequence>

The resulting WF-net is shown in Figure 16.

b
p5

expr6

F7

p2

w

expr7

a

p1

p4

d

p3

c

p6 p7

f

p22

p19

x

p23

p9

q

p18

P
(p

5
) = explicit

T
(a) = receive

Figure 15. The WF-net after folding the ad-hoc component.

p2

F8

a

p1

p4

d

p3

c

p6 p7

f

p22

p19

x

p23

p9

q

p18

T
(a) = receive

Figure 16. The WF-net after folding the while construct. The resulting WF-net is a marked graph
and can be mapped onto a BPEL flow.

Sixth transformation
The WF-net shown in Figure 16 is a marked graph. This is a subclass of the class of

well-structured nets, so the whole net is a FLOW-component and the translation onto
BPEL is fairly straightforward. Since this is the top-level component the first activity
is a receive and the last is a reply. This is not a part of the algorithm but follows
from the annotations chosen for the initial and final activities.

Listing 12. Complete BPEL specification of Example

1 <flow>
2 <links>
3 <link name="a_d"/>
4 <link name="c_f"/>
5 <link name="d_f"/>
6 <link name="c_q"/>
7 <link name="f_x"/>
8 <link name="q_x"/>
9 <link name="a_c"/>

10 <link name="F8_x"/>
11 <link name="a_F8"/>
12 </links>
13 <receive name="a">
14 <source linkName="a_d"/>
15 <source linkName="a_c"/>
16 <source linkName="a_F8"/>
17 </receive>
18 <invoke name="c">
19 <target linkName="a_c"/>
20 <source linkName="c_f"/>
21 <source linkName="c_q"/>
22 </invoke>
23 <invoke name="d">
24 <target linkName="a_d"/>
25 <source linkName="d_f"/>
26 </invoke>
27 <invoke name="f" joinCondition="All">
28 <target linkName="c_f"/>
29 <target linkName="d_f"/>
30 <source linkName="f_x"/>
31 </invoke>
32 <invoke name="q">
33 <target linkName="c_q"/>
34 <source linkName="q_x"/>
35 </invoke>

36 <sequence>
37 <source linkName="F8_x"/>
38 <target linkName="a_F8"/>
39 <<F8>>
40 </sequence>
41 <reply name="x" joinCondition="All">
42 <target linkName="f_x"/>
43 <target linkName="q_x"/>
44 <target linkName="F8_x"/>
45 </reply>
46 </flow>
47 <flow>

The WF-net resulting from the last transformation is now shown in a diagram: it
is simply a WF-net with only one transition. We have implemented and tested each
of the models we generated based on our algorithm using IBM WebSphere. Figure
17 shows a screenshot the example in IBM WebSphere Studio. The figure shows a
graphical description of the top-level flow construct.

Figure 17. BPEL in IBM WebSphere Studio.

