Towards a Pattern Language for
Colored Petri Nets

Nataliya Mulyar and Wil M.P. van der Aalst

Department of Technology Management, Eindhoven University of Technology
P.O. Box 513, NL-5600 MB, Eindhoven, The Netherlands.
{n.mulyar, w.m.p.v.d.Aalst}@tm.tue.nl

Abstract. Experienced Petri net modelers model in terms of patterns,
just like object-oriented programmers use the design patterns of Gamma
et al. So far there is no any structured collection of patterns for Colored
Petri Nets. We have empirically collected 34 patterns in Colored Petri
Nets and documented them in the pattern format. The patterns focus
on the interplay between data-flow and control-flow, (i.e. the essence
of Colored Petri Nets), and have been modeled using CPN Tools. The
goal of the patterns is to assist and train inexperienced modelers, and to
serve as a domain language for communicating problems and solutions.
In this paper, we give a summary of the CPN pattern language and
give an overview of the patterns collected. In addition, we examine the
clustering of patterns and the different types of relationships between
the CPN patterns.

1 Introduction

Process-Aware Information (PAI) systems [16], i.e. systems that are used to sup-
port, control, and monitor business processes, are typically driven by models of
different perspectives, i.e. process, organization, data, etc. In order to efficiently
build a feasible model with the help of a PAI system (e.g. WFM software), all
dimensions of requirements put on the system from process, data, resources and
other perspectives, must be well understood. Developers working in the same
domain experience similar difficulties while solving the same kind of problems.
How to solve a problem? What are the advantages and disadvantages of possible
solutions? Which solution to choose and how to realize the selected solution?
These are the questions which every developer needs to answer. Since problems
to be solved are often non-unique, i.e. they recur in many systems, develop-
ers often spend their time solving problems which may already have existing
solutions.

A pattern language is one of the possible means to help developers to build
their models efficiently, while avoiding reinvention of already existing solutions
of problems. Pattern languages are based on experience; they express sound
solutions for problems frequently recurring in a certain domain in a pattern

format. Knowing a problem at hand, a developer can look up a solution for the
problem in the pattern catalog, while spending less effort on the development
and also ensuring the soundness of a solution.

The work reported in this paper is part of the Workflow Patterns Initiative
www.workflowpatterns.com. In the context of this initiative, we have developed
control-flow patterns [6], data patterns [35], and resource patterns [34]. These
patterns focus on the different perspectives [24] of PAI systems. In this paper
we do not necessarily limit ourselves to workflow or PAI systems. Instead we
focus on the interplay between control flow and data flow. To do this, we use
a specific implementation language: Colored Petri Nets (CPNs). In our view,
a good understanding of the interplay between control flow and data flow is
foundational to PAI systems. Moreover, (colored) Petri nets have shown to be a
solid basis for the modeling, analysis, and enactment of workflows [1, 3, 36].1

Based on the expert knowledge and an analysis of existing models and lit-
erature, we identified 34 patterns that focus on the interplay between control
flow and data flow and can be represented in terms of Colored Petri Nets. On
the one hand, the patterns we discovered are implementation patterns, i.e. they
are mainly oriented on model developers who are working with CPN Tools. In
particular, the CPN patterns support developers with sound solutions for prob-
lems frequently recurring during modeling. Therefore, these patterns are CPN
language-specific. On the other hand, since CPN is a modeling language, which
is often used for the design and modeling of dynamic systems with elements
of concurrency, these patterns can be also considered as design patterns, which
grasp certain problems on the level of model design and offer visualized solu-
tions by means of CPN. Similarly to the 23 design patterns of Gamma [19],
the CPN patterns also systematically name, motivate, and explain solutions for
generic design problems. However, due to major differences in concepts of object-
orientation and Petri Nets, and validity in the CPN context, we will refer to the
CPN patterns as implementation patterns.

The remainder of this paper is organized as follows. First, we introduce a set
of concepts, central to the CPN patterns and define the scope of the patterns
in the context of Petri Nets (Section 2.1). Next, in Section 2.2, we give a brief
introduction into the world of patterns, and introduce the pattern format which
we selected for the description of the 34 identified patterns. In Section 3, we give
an example of a CPN pattern using this format. Then, we introduce the CPN
pattern language (Section 4). We not only examine relationships between the
discovered patterns to enable easy navigation through the CPN pattern catalog
(Section 4.2), but we also classify patterns into clusters in order to simplify the
selection of a suitable pattern (Section 4.3). We conclude the paper by discussing
related work and future work (Section 5 and Section 6).

! Although (colored) Petri nets form a good foundation for workflow languages and
PAI systems, one could argue that they are too low level as an end-user language [4].
Therefore, we propose Petri nets as a theoretical basis and use higher-level languages
such as [5] as the end-user language.

2 Preliminaries

In this section we briefly introduce colored Petri nets and discuss existing pat-
terns languages.

2.1 Colored Petri Nets

Colored Petri Nets (CPNs) [25, 26] extend the classical Petri Nets [15] with colors
(to model data), time (to model durations), and hierarchy (to structure large
models). Like in classical Petri Nets, CPNs use three basic concepts: transition,
place, and token. We will use the terms “event”, “task”, “actor” and “transition”
interchangeably, as well as “token” and its mapping on an “object”. We do
not refer to the definition of an object from object-oriented programming, but
generalize it in such a way that by “token” or “object” we can refer to any of
[22]:

— Physical objects, i.e. a chair, a stool, a table, etc;

— Conceptual objects, i.e. policies, insurances, etc;

— Information objects, i.e. anything what can be manipulated by a human or
a system as a discrete entity.

Whenever a pattern operates with a specific type of objects, we will specify
the type (called color set in CPN) explicitly. For gathering CPN patterns, we
concentrate on discrete dynamic systems, which are systems with a certain state
at any moment of time and a sequence of events which bring a system from
one state to another. The examples of discrete dynamic systems are workflow
management systems, distributed databases, decision support systems, e-mail
systems, payment systems, etc. Discrete systems are made out of actors, which
are active components, and objects, which are passive components. Actors con-
sume and produce objects [22]. Actors can be machines, humans, networks of
other dynamic systems, etc.

A place is a location where tokens reside. A place can be considered as a tem-
porary or persistent data storage, e.g. either containing a variable or a constant
number of tokens at any time.

Note that although the basic rules of classical Petri nets are still valid in
the context of CPNs, we do not elaborate on basic control-flow patterns and
focus on the extensions of PN by color and time (in particular the interplay
between control flow and data flow). Hence, we abstract from the extension with
hierarchy (e.g., the substitution transitions). Figure 1 visualizes the scope of the
pattern language presented in this paper.

There are many variants of colored Petri nets, i.e., Petri net models with color
and time. Consider for example the different tools: Design/CPN, CPN Tools,
ExSpect, ALPHA /Sim, Artifex, GreatSPN, PEP, Renew, etc. The patterns are
tool independent. Nevertheless, we need to select a specific language /tool for the
examples used to describe the patterns. For this purpose, we selected CPN Tools
[14]. The language used by CPN Tools is the de facto standard. Moreover, all

Classical PN

{ | Colored PN | | Timed PN | | Hierarchical PN

Fig. 1. Scope of CPN patterns: The focus is on color and time while abstracting from
hierarchy.

the patterns that we have collected can be downloaded from [28] and executed
using CPN Tools. Note that most pattern languages use a specific language to
represent examples, for example in [19] both C++ and Smalltalk are used.

2.2 Patterns

Nowadays, there is a generic understanding of what a pattern is, i.e. it is a
solution to a problem in a certain context. Note that originally the concept of a
pattern was introduced by Christopher Alexander in [9], who wrote:

The pattern is, in short, at the same time a thing, which happens in the world
and the rule which tells us how to create that thing, and when we must create it.
It is both a process and a thing; both a description of a thing which is alive, and
a description of the process that will generate this thing.

The notion of a pattern language, introduced by Alexander in [8], is similar
to the notion of a language as recorded in the Merriam-Webster Dictionary
as a “formal system of signs or symbols including rules for the formation and
transformation of admissible expressions”. If a word is a central entity of a
language, then a pattern is a central entity of the pattern language. Similar to the
rules describing the use of words in sentences, patterns also have rules associated
with them. As such, pattern rules describe relations between the patterns and
indicate how one pattern can be combined with other ones. Furthermore, a
pattern language can serve as a systematic means of communicating problems
and solutions between colleagues working in the same field/domain.

Since the definition of a pattern by Christopher Alexander, different types of
patterns in different application domains have been described. This has resulted
in a set of pattern languages each of which addresses different aspects of organi-
zation, software development, analysis, etc. Due to the differences in the types
of problems and the solution means in different application fields and domains,
there is an ongoing discussion concerning the suitability of the pattern format
introduced by Alexander for documenting the patterns.

Since there are multiple views on how to document the patterns and no
consensus in the discussions related to selection of a single pattern format has
yet been achieved, we took as a basis the pattern format of Gamma [19], and
adjuisted it in order to fit our purposes. Every CPN pattern adheres to the
following pattern format:

Pattern format

— Pattern name. This is an identifier of a pattern which captures the main idea
of what the pattern does.

— Also known as. This section lines out the alternatively used names for the
Pattern name.

— Intent. This section describes in several sentences the main goal of a pattern,
i.e. towards which problem it offers a solution.

— Motivation. This section describes the actual context of the problem ad-
dressed and why the underlined problem needs to be solved.

— Problem description. This section presents the problem addressed by the
pattern. For the sake of clarity, the problem is explained by using a spe-
cific example. The majority of the patterns contain examples which are also
illustrated by means of CPN diagrams.

— Solution. This section describes possible solutions to the problem. Note that
a single problem addressed by the pattern can be solved in several ways,
depending on the requirements and/or context in which the pattern is to
be applied. Since multiple solutions are possible, we consider every solution
separately and for each of the solutions we include an implementation sub-
section.

— Implementation of Solution. This is a part of the Solution section, which
illustrates how to implement the described solution in CPN Tools. The im-
plementation part shows not only the graphical representation of the pattern
with CPN, but also describes how to integrate this solution into the example
considered in the Problem description section. A solution may have several
implementations. The presented implementations may not be the only way
to implement a solution correctly. One should select an implementation de-
pending on the context within which the pattern is to be applied. Note that
correctness of the solution is not guaranteed if a tool different from CPN
Tools is used for implementation purposes.

— Applicability. This section describes the typical situations in which the pat-
tern can be applied.

— Consequences. This section outlines what the possible advantages/disadvantages
of using the pattern are. In case if the pattern supplies several solutions, this
section elaborates on the differences between them.

— Fzamples. This section lists several examples demonstrating the use of the
pattern in practice.

— Related Patterns. This section specifies relations of the pattern to other pat-
terns.

3 Example: AGGREGATE OBJECTS Pattern

Before defining our pattern language that also relates patterns to one another,
we present one of the 34 patterns. Like all the other patterns, it is described
using the pattern format described in the previous section.

Pattern: AGGREGATE OBJECTS
Also Known As:

Intent: to allow the manipulation of a set of information objects as a single
entity.

Motivation: In many cases, it is natural to represent an information object
(e.g., an order, a car, a message) as a single entity, i.e. there is a one-to-one
correspondence between objects in a “real system” and tokens in the model.
However, sometimes it is necessary to aggregate objects into one token, thus
referring to the collection of objects as a single entity.

Problem Description: Figure 2 illustrates the problem addressed by this pat-
tern. In the original model, place object is of type T and transitions put and
get add and remove tokens from this place. Note that each token corresponds
to an object.

2g s 43"

X X X
put get
X
T

T T

o] @rT=Tv] @FF=T]

Fig. 2. Example used to explain the various problems.

Suppose that it is necessary to perform an operation from the following list:

— Count the number of objects in place object;

— Select an object from place object with some property relative to the other
objects (e.g., the first, the last, the smallest, the largest, the cheapest, etc.);

— Modify all objects in a single action (e.g., increase the price by 10 percent);

— (Re-) move all objects in one batch (e.g., remove a set of outdated files,
items, etc. at once, rather than one by one).

None of these operations is possible in the diagram shown above. Note that
it is only possible to inspect one token at a time and this is a non-deterministic
choice. Moreover, this choice can be limited by transition guards and arc inscrip-
tions, but it is memoryless and not relative to the other tokens in the place. This
makes it very difficult or even impossible to realize the mentioned aspects.

Solution: In order to allow the manipulation of a set of information objects as
a single entity, aggregate the objects into a single token of “collection type”. 2

2 Note that we assume an interleaving semantics.

Implementation of Solution: The list of instructions below describes how to
implement the AGGREGATE OBJECTS pattern (see Figure 3).

— Modify the type T of place objects, where multiple objects may reside, to
the collection type LT (e.g., list, set, bag). In this example the collection type
list is chosen: color LT = list T;.

— Replace arcs between transitions put and get and place objects by bi-
directional arcs with the following inscriptions. An arc which supplies an
object to the collection has an inscription x::1, which adds an object x of
type T to the list 1. Return the current list 1 back to transition put. Similar,
in order to get an object from the collection use x: : 1 and return the changed
list. The described behavior represents LIFO (last-in-first-out) ordering.

2man++3mbn

@—Xb put | objects I get
X
T LT T
®)[2ra"++3"'] @[

Fig. 3. Model after applying the pattern.

By introducing a collection type, it becomes possible to refer to the collection
of objects as a single entity and perform operations on multiple objects contained
in the collection at once. Several examples in Figures 4 and 5 show how to
implement some operations from the ones mentioned in the Problem description
section by extending the net presented in Figure 3.

@[ra b

Dengn, 3 x:l x::l
(]
X
@—P put | objects I get
X
T LT T
@ 1man++2mbn
|
size(l) umber 1%
count of objects, @

INT

Fig. 4. Example illustrating how place objects can now be used.

Figure 4 shows how to calculate the size of the collection, i.e. the number of
objects the collection contains. Note that there is always precisely one token in
place objects representing all objects. Transition count takes the current list
of objects and sends the size of the list to place Number of objects. Note that
a function size (1) for determining the size of the collection is predefined and
available in the CPN Tools.

It is also possible to select an object from place objects with some property
relative to the other objects. For example, the object represented with the first
name can be obtained by the transition select as shown in Figure 5.

@[]

Dungn, L3y x:l x:l
[
X
@—} put | objects I get
X
T LT T

@ remove(first(l),!)

first(l
select o0 @ @

T

Fig. 5. Another example illustrating how place objects can now be used.

Function first selects the right object while function remove is used to
remove the object, i.e.,

fun f(x:T,1:LT) = if 1 = [] then x else if x< hd(1l) then
f(x,t1(1)) else £(hd(1),t1(1));

fun first(x::1 : LT) = f(x,1) |
first([]) = "null";

fun remove(x,[1)=[] |
remove(x,y::1) = if x=y then 1 else y::remove(x,l);

In a similar way, it is possible to modify all objects in a single action (for
instance, increase the price by 10 percent) and to remove all tokens (simply by
returning a token with a value [1).

Applicability: Apply this pattern to

— Organize multiple objects into a collection.
— Perform an operation on a group of objects or the whole collection at once.

Consequences: In principle, this pattern is not concerned with the order in

which tokens are taken from the collection. The example used in the implemen-
tation section uses last-in-first-out ordering (see LIFO QUEUE pattern).?

Nevertheless, if the problem of ordering is relevant, one should apply an
extension of this pattern by adding the QUEUE pattern, or one of its special-
izations.

Note that although some of the functions to manipulate the collection of
objects are already predefined in CPN Tools, applying special kinds of operations
requires the writing of corresponding function(s) from scratch.

Examples:

e The salary administration of a university divided employees into different
groups: students, PhD students, and professors. All PhD students got a
salary increase of 10%. The salary administration does not need to adjust
the salary slips for every PhD student individually, but does it in one-step
by increasing the salary of the whole group.

e The documents are collected and organized in one file. This allows the whole
file to be taken and sent for processing elsewhere, keeping the documents
structured and grouped.

Related Patterns: This pattern is extended by the QUEUE pattern.

4 CPN Pattern Language

In this section, we introduce the CPN pattern language by listing the names
and intents of the discovered patterns. Next, we analyze relationships between
the CPN patterns, and organize them into a relationship diagram, which allows
navigation through the pattern catalog for identifying related patterns. Further-
more, we classify the patterns into categories in order to simplify the process of
selecting a pattern from the CPN pattern catalog.

4.1 Overview of CPN Pattern Language

In this section we give an overview of the CPN patterns. In Tables 1 and 2 we
present only the names and intents of the patterns; for further details the reader
is referred to [27]. Patterns listed may belong to the same classes, and have
similarities in their intents, problems and solutions. These relationships between
patterns are not covered explicitly in the tables, but are discussed in Section 4.2.

3 Note that this pattern refers to other patterns like the LIFO QUEUE pattern. These
have not yet been discussed. An overview of all 34 patterns in given in Section 4.

Pattern name

Intent

ID Matching

to make identical information objects distinguishable

ID Manager

to ensure uniqueness of identifiers used for distinguishing iden-
tical objects

Aggregate Objects

to allow manipulation of a set of information objects as a single
entity

Queue to allow manipulation of the queued objects in a strictly specified
order

FIFO Queue to allow manipulation of objects from the collection in a strictly
specified order such that an object which arrived first is con-
sumed first

LIFO Queue to allow manipulation of objects from the collection in a strictly

specified order, such that the mostly recently added object is
retrieved first

Random Queue

to allow manipulation of objects from the collection such that
objects are added to the queue in any order, and an arbitrary
object is consumed from it

Priority Queue

to allow manipulation of objects from the collection in the order
of the objects’ priority

Capacity-bounding

to prevent over-accumulation of objects in a certain place

Inhibitor Arc

to support “zero”-testing of places

Colored Inhibitor Arc

to support “non-containment” property of places

Shared Database

to enable centralized storage of data shared between multiple
transitions, supporting different levels of data visibility (i.e. lo-
cal, group, or global)

Database Management

to specify the interface of accessing data, stored in a shared
database for read-only and modification purposes

Copy Manager

to make data stored in the shared database available at other
locations for local use, maintaining the consistency of data in all
places

Lock Manager

to synchronize access to shared data by means of exclusive locks

Bi-lock manager

to synchronize access to shared data for reading and writing
purposes by means of shared and exclusive locks

Log Manager

to record the information about actual process execution by
means of a data log

BSI Filter to prevent data non-conforming to a certain property from pass-
ing through
BSD Filter to prevent data non-conforming to a property involving the state

of an external data-structure, from passing through

NBSI Filter

to filter out data fulfilling a certain property while avoiding ac-
cumulation of non-conforming data in the filter input place

NBSD Filter

to filter-out data non-conforming to a property, involving the
state of an external data-structure, while avoiding accumulation
of non-conforming data in the filter input

Translator

to enable coordinated communication between two actors with
originally different data formats

Asynchronous Transfer

to allow transportation of data from one location to another,
while avoiding the sender to block

Synchronous Transfer

to allow transportation of data from one location to another,
ensuring that an actor, which posted a request, is blocked until
it receives the requested information

Rendezvous

allow multiple actors to broadcast and discover data objects
concurrently

Asynchronous Router

to enable asynchronous transfer of data from a single source to
a dedicated target, providing loose coupling between the source
and targets connected to it

Table 1. Summary of CPN patterns

Pattern name

Intent

Asynchronous Aggregator

to provide a holistic view of data, produced by multiple unre-
lated sources through asynchronous data aggregation

Broadcasting

to allow broadcasting of data from a single source to multiple
targets, while avoiding direct dependency between them

Redundancy Manager

to prevent transfer of duplicated data between loosely-coupled
actors who communicate asynchronously

Data Distributor

to support parallel data processing by distributing data between
several independent actors

Data Merger

to compose a single information object out of several smaller
ones when all parts required for composition become available

Deterministic XOR-split

to allow at most one transition out of several possible to execute,
based on fulfillment of mutually excluding data conditions

Non-deterministic XOR-split

to allow any transition out of several possible, but satisfying the
same data condition, to execute

OR

to allow any number of tasks to be selected for execution based

on the fulfillment of a certain data condition

Table 2. Summary of CPN patterns (Cont.)

4.2 CPN Pattern Relationships

The 34 CPN patterns that we have identified, together with the relationships
between them, form a pattern language. In order to classify the CPN patterns
we examined the nature of relationships between the patterns. We used three
types of primary relations: specialization of a problem, use in a solution, and
extension of an implementation; and two types of secondary relations: problem
similarity, and combination of solutions to describe the pattern relationships.
Some of the relationship types are based on Zimmer’s classification [39].

The main purpose of this classification is to provide a holistic view on the
catalog of patterns, providing a means for a user to select a number of patterns
and to determine how the patterns can help in solving a given problem. The
selected types of relationships can help to trace other patterns related to a
chosen pattern, thus allowing the estimation of an overall problem complexity,
the tradeoffs made, and compare the chosen pattern with other similar patterns,
in order to select an optimal solution for a problem in the given context.

Figure 6 shows some of the relationships between the various patterns. The
graphical representation and the text depict the type of a relationship. To un-
derstand the diagram, we first need to define the different types of relationships.

Primary relations

Problem-oriented relation

Pattern A is a specialization of the more generic pattern B. Specific pattern A,
which deals with a specialization of the problem that generic pattern B addresses,
has a similar but more specialized solution than pattern B. Pattern A includes

all the properties of pattern B, but adds further restrictions by adding some
specialized characteristics. Note that a specialization often adds more context to
the problem thus making it less generic.

Solution-oriented relation

Pattern A uses pattern B in its solution. When building a solution for a problem
addressed by pattern A, one sub-problem is similar to the problem addressed by
pattern B. Thus, the solution of pattern B is a composite part of the solution
of pattern A. Whenever pattern A is used, pattern B should also be considered,
since it makes a part of A.* All instantiations of pattern A use pattern B. Some
example relationships: Lock Manager uses ID Matching, Asynchronous Router
uses Asynchronous Transfer.

Solution implementation-oriented relation

Pattern A syntactically extends pattern B. Pattern A addresses a set of re-
quirements to have more or slightly different functionality than the pattern
B addresses. However, this is the implementation of B, which is syntactically
extended by A, rather than a problem or a solution. For example, the imple-
mentation of Non-Blocking State-Independent Filter extends implementation of
Blocking State-Independent Filter.

Secondary relations

Problem similarity

Pattern A is similar to pattern B. Pattern A addresses a problem similar to the
one addressed in pattern B. Patterns A and B can be considered as alternatives
of each other; therefore, one can compare them and select the one which fits the
problem best.

Combinable solutions
Pattern A can be combined with pattern B. Neither of the patterns is a part of
the other. Combining the solution of pattern B with the solution of pattern A
can help to solve a more complex problem than a single pattern solves in isola-
tion. Use this relation to find out other patterns, which can be used in addition
to pattern A. For example, the Shared Database can be combined with Copy
Manager; Asynchronous Aggregator can be combined with Aggregate Objects.
Figure 6 shows the five types of relationships. The listing of the primary rela-
tionships is intended to be complete while the secondary relationships depicted
only represent typical examples. The solid arrows represent primary relationships
while the dashed lines represent secondary relationships. A problem-oriented re-
lation is labelled “is specialization of”. A solution-oriented relation is labelled

4 Since a pattern may have multiple solutions, the relationship may need to refer to a
specific solution. For the sake of clarity we use the mnemonics “s1”, “s2” and “s3” as
identifiers for referring to the first, second, and third solution and to make relations
between pattern solutions explicit.

£ S spualxe zs

asngs ‘gs ‘Is

8nanp 0411

8nanp O4Id

ananp wopuey

ananp Awioud

Joinquisigereq | e - obiay BIRQ
7, jo — | Y L
uonezyEnads € S| uopez|[efoeds e s]
Y |
(gt | sasn
(es'zs'ts) {es'zstys) |
Buipunog Aiioeden e |
Y
A 7]
€S sesn gs spuejxe |s
. SNOAZapuay
gssosnes ¢ _ —_—— Bunseopeoig
(gs'gs'ts) sesn gg—————————————— | ! =1 T
oS . 10000 B1BBRIBBY |+t r s fom bri—e—=— -~ - | | |
ouy Joyqiyul sasn . | - a |
| T X | _ _ JojeBo1BBy |
| SSpualxe |s . W _ SNoUOIYIUASY _
! T I I
SeSNES goen _ _ | _ |
[. —.J
— sesn__| (es'ts) (es'ts)
mm%_\l > Buyoren i e zssosn M ol snouoiouAsy osn Jojsuel | snouoiyouAsy
| T T
J1abeuepy 6o - _
- Jabeuepy q| _
_ sosn |
J1eBeuepy %0071 J1eBeuep %00 |
[=enRE o = _ sosn osn Jaysuel] ST
— ! «
Il | cpuonome I
N N —— 1814 a | 13114 Juspuadag
| Lo :— oseqeeq poreus Comgbuppog | ¥ PUeme - o1@IS BupooA-UON
1 I I f f
N sosn spuaixe Z s sesn Zssasngs
1ebeuep Adog [== v == = — J ‘Lssesn |s
o SspuaIxe N Y \
| | J8)14 Juapuadapu| spuapxe__|
juswabeuep eleq ~ ojeig Bupoolg |-t s pualxe’ HO
A T
mjm,xm |
4ol spuadag wos-HOX b |
- ojelg bunjoojg- uoN ¢S sesm IWia)ep- UON

Fig. 6. CPN pattern relationship diagram.

“uses”. A solution implementation-oriented relation is labelled “extends”. Prob-
lem similarity is denoted by dashed lines (without dots) while combinable solu-
tions are denoted by dashed lines with dots. Note that the details regarding the
combination of one pattern with another one, or similarities between patterns are
not indicated in the relationship diagram, but can be found in the Consequences
and Related patterns sections of a chosen pattern.

In Section 3, we defined the Aggregate Objects pattern. As shown in Fig-
ure 6, the Queue pattern extends the first solution of the Aggregate Objects
pattern. Moreover, many patterns use the Aggregate Objects pattern (e.g., the
Log Manager, Inhibitor Arc, Lock Manager, and Capacity Bounding patterns).

4.3 Classification of CPN Patterns

Although the CPN pattern relationship diagram presented in Figure 6 allows
the navigation through the catalog of the CPN patterns, it is not sufficient to
classify the patterns precisely and unambiguously.

As was mentioned in the introduction, the CPN patterns aim at solving
problems in the domain where data and control-flow perspectives interplay. In
this domain, three pattern groups can be distinguished:

— patterns where the data perspective dominates, but which must be consid-
ered in the context of the control-flow;

— patterns where the control-flow perspective dominates, but which are data-
based;

— patterns where both data perspectives and control-flow perspectives are im-
portant and involved.

However, this classification turns out to be not very meaningful and is rather
subjective.

In order to provide a more useful means for selecting an appropriate pattern,
we adopt the classification presented in [21] to categorize the CPN patterns. This
classification is based on the intent of each pattern. The intent of every pattern
has been analyzed according to a structure where common components con-
tain diagnostic elements, and in turn diagnostic elements contain supplementary
components. This structure will be represented using the following format.

Common component
o Diagnostic component
e Supplementary component

Common components define the set of related meanings, by which different
patterns can be placed into one group. For instance, patterns addressing the
problems of creating new elements or entities, belong to the same group with
the common component create. Thus, this is the intent of a pattern from the
process (functionality) point of view. For example, patterns, whose main intent is
to manage or control something, will be combined into the group with a common
component control.

Diagnostic elements define the contrastive features which distinguish the pat-
terns belonging to the same common component. For instance, patterns belong-
ing to the same common component control, i.e. control patterns, can involve
different participants or differ by control parameters. For example, patterns,
whose main purpose is to control such features as the order, the throughput,
the quantity, belong to the same group with a common component control and
can be distinguished by the diagnostic elements Order, Throughput, Quantity
respectively.

Supplementary components address additional features for extended defini-
tions of meanings. This components address special circumstances of applying
a pattern. This feature could be applied to distinguish the pattern from other
patterns belonging to the same common component with the same diagnostic
elements; however, multiple patterns may have the same supplementary compo-
nent.

Using the nested format described above (i.e., common components, diag-
nostic elements, supplementary components), we are able to classify the 34 CPN
patterns:

Control
o Order of information objects (Queue)
e by predefined scheduling policy (FIFO Queue, LIFO Queue, Random
Queue)
e by objects’ priority (Priority Queue)
Availability /Consistency of information objects
e by regular replication (Copy Manager)
o Concurrent access to information objects
e by means of exclusive locks (Lock Manager)
e by means of shared and exclusive locks (Bi-Lock Manager)
Throughput of information objects

o

e}

e by inspecting content (Blocking State-Independent Filter, Non-blocking

State-Independent Filter)
e by inspecting state (Blocking State-Dependent Filter, Non-Blocking
State-dependent Filter, Redundancy Manager)
Number of objects in place
e by bounding the place capacity (Capacity-Bounding)

e}

Discern
o Information objects
e Dby identities (ID Matching)
e by visibility (Shared Database)

Choose
o 1 branch deterministically (Deterministic XOR-split)
o 1 branch non-deterministically (Non-deterministic XOR-split)
o 1 or more branches deterministically (OR)

Create

o Information objects
e by unique generation (ID Manager)
e by decomposing into parts (Data Distributor)

Assemble
o Information objects
e by aggregating into a collection (Aggregate Objects)
e by synchronizing composite parts (Data Merge)
e by asynchronous merging (Asynchronous Aggregator)

Access
o Information objects
e by read/write operations (Data Management)

Inspect
o “Non-containment” property of place (Colored Inhibitor Arc)
o “Zero”-property of place (Inhibitor Arc)

Monitor
o Process execution-relevant information
e by data logs (Log Manager)

Transform
o Information objects
e by adjusting the data format (Translator)

Transfer
o Information objects
e Asynchronously
directly from a source to a target: 1-to-1 (Asynchronous Transfer)
indirectly from a source to one of several targets: 1-to-1 (Asyn-
chronous Router)
indirectly from a source to multiple targets: 1-to-N (Broadcasting)
e Synchronously
- between two actors: 1-to-1 (Synchronous Transfer)
e Concurrently
- from N sources to M targets: N-to-M (Rendezvous)

The Aggregate Objects pattern defined in Section 3 is classified under com-
mon component “Assemble”, diagnostic component “Information objects”, and
supplementary component “by aggregating into a collection”. It is interesting to
see how the Queue pattern, although it extends Aggregate Objects pattern, is
classified completely different. This can be explained by the clear difference in
intent.

In this section we briefly introduced the set of 34 patterns. Clearly, we cannot
list the patterns in full and instead refer to [28,27]. Then we showed two ways
to compare and relate patterns. We identified three primary and two secondary
pattern relationships and classified the patterns using the classification of Hasso
and Carlson [21].

5 Related Work

It is impossible to give a complete overview of the different types of patterns
described in literature. The 23 design patterns by Gamma et al. [19] triggered the
development of many more patterns in the object-oriented software community.
Some of it successors include: the patterns for knowledge and software reuse by
Sutcliffe [37], the design patterns in communication software by Linda Rising
[33], and the framework patterns by Wolfgang Pree [32].

Aside from the generic patterns, a set of language-specific pattern languages
(UML, Smalltalk, XML, Python, etc.), links to which can be found in the pattern
digest library [29], has been discovered and documented.

Furthermore, some work has been done on formalizing the organization, pro-
cess, analysis, and business-related patterns. Among them are the analysis pat-
terns by Martin Fowler [18], the enterprise architecture patterns by Michael Bee-
dle [12], the framework process patterns by James Carey [13], the patterns for
e-business [7] (which focus on Business patterns, Integration patterns, and Ap-
plication patterns), the business patterns at work [17] (which use UML to model
a business system), and the process patterns [10]. Other interesting patterns
collections focusing on the process-side of things are the enterprise integration
patterns by Hophe and Woolf [23] and the service interaction patterns by Barros
et al. [11].

However, the real starting point for this work has been the Workflow Pat-
terns Initiative (cf. www.workflowpatterns.com). To capture the functionality
of PAIS in term of patterns, control-flow patterns [6], data patterns [35], and
resource patterns [34] have been uncovered. We consider the CPN patterns foun-
dational for the further development of this initiative.

In the context of Petri nets some initial attempts to capture patterns have
been made. Earlier work by Kurt Jensen [25], Wil van der Aalst [2], and Kees
van Hee [22], provides some patterns in an implicit and/or fragmented manner.
In [31], Petri nets are used to represent workflow and communication patterns
in the context of webservices. One of the few papers, linking CPN to patterns
is [30]. However, here CPNs are merely used as an underlying representation
of the dynamic object-oriented architecture and the real focus is on patterns
found in concurrent software designs. The paper that is probably most related
to our work is [20] by Matthias Griess et al. They define 3 patterns in terms of
classical Petri nets using pattern language similar to ours. For a given example
they analyze the use of these patterns.

Our work differs from these papers in at least two ways. First of all, we use
CPNs (rather than classical nets) and focus on the interplay between control
flow and data flow. Second, our set of patterns is more mature as is illustrated
by the number of patterns, classification, and relationships.

6 Conclusion and Future Work

In this paper, we described a pattern language for CPNs. We collected a set of 34
patterns focusing on the interplay between control flow and data flow. Although

expressed in a specific language, the patterns can be applied to model and design
of any kind of dynamic systems with elements of data and concurrency.

The language and the patterns have been developed in an explorative manner.
This means that we applied empirical methods to gather information, such as
observation, content analysis, and simulation. In order to discover patterns we
used application models, publications, tutorials, workshop materials, opinion of
experts, and feedback from model developers. We applied the content analysis
technique for extracting the patterns from the literature sources, and verified
the correctness of models, which represent solutions for certain problems, by
simulating them in CPN Tools.

We do not claim that the CPN patterns we gathered are complete, since
they are the result of explorative work and were not derived in a systematic
manner. We have made the implementations of CPN patterns available to the
CPN community in the form of a pattern library [28]. We want to encourage
members of the CPN community to extend the catalog of patterns by including
the ones not covered here. Moreover, these patterns can serve as a language en-
hancing communication between developers, allowing to communicate problems
and solutions unambiguously.

Further research will include the development of a patterns repository and
empirical research into the actual use of patterns. We have developed a proto-
type patterns repository allowing people to navigate patterns based on various
relationships. This needs to be improved to be really useful. The empirical re-
search into the actual use could involve the analysis of student projects and/or
the analysis of papers describing CPN models. In [20] this approach was used
for a single example and a small set of basic Petri net patterns. In [38] a similar
approach was applied to workflow projects of Atos Origin using the workflow
patterns [6].

Acknowledgments

We would like to thank Kurt Jensen for contributing to the work reported in this
paper. His experience in modeling using Colored Petri Nets has been vital for
collecting and describing the patterns presented. We also thank Maurice Hendrix
and Alex Norta for working on the initial prototype of the patterns repository.

References

1. W.M.P. van der Aalst. The Application of Petri Nets to Workflow Management.
The Journal of Circuits, Systems and Computers, 8(1):21-66, 1998.

2. W.M.P. van der Aalst. Process Modeling, Lecture Notes. Eindhoven University of
Technology, Eindhoven, The Netherlands, 2003.

3. W.M.P. van der Aalst and K.M. van Hee. Workflow Management: Models, Methods,
and Systems. MIT press, Cambridge, MA, 2002.

4. W.M.P. van der Aalst and A.H.M. ter Hofstede. Workflow Patterns: On the Ex-
pressive Power of (Petri-net-based) Workflow Languages. In K. Jensen, editor,

10.
11.

12.
13.

14.

15.

16.

17.

18.

19.

20.

21.

22.

23.

24.

25.

Proceedings of the Fourth Workshop on the Practical Use of Coloured Petri Nets
and CPN Tools (CPN 2002), volume 560 of DAIMI, pages 1-20, Aarhus, Denmark,
August 2002. University of Aarhus.

W.M.P. van der Aalst and A.H.M. ter Hofstede. YAWL: Yet Another Workflow
Language. Information Systems, 30(4):245-275, 2005.

. W.M.P. van der Aalst, A.H.M. ter Hofstede, B. Kiepuszewski, and A.P. Barros.

Workflow Patterns. Distributed and Parallel Databases, 14(1):5-51, 2003.

J. Adams, S. Koushik, G. Vasudeva, and G. Galambos. Patterns for e-Business.
A Strategy for Use. IBM Press, 2001.

C. Alexander. A Pattern Language: Towns, Building and Construction. Oxford
University Press, 1977.

C. Alexander. Timeless Way of Building. Oxford University Press, 1979.

S.W. Ambler. Process Patterns. Cambridge University Press, 1998.

A. Barros, M. Dumas, and A.H.M. ter Hofstede. Service Interaction Patterns: To-
wards a Reference Framework for Service-based Business Process Interconnection.
QUT Technical report, FIT-TR-2005-012, Queensland University of Technology,
Brisbane, 2005.

M.A. Beedle. Enterprise Architecture Patterns. Cambridge University Press, 1998.
J. Carey and B. Carlson. Framework Process Patterns. Addison Wesley Longman,
2001.

CPN Group, University of Aarhus, Denmark. CPN Tools Home Page.
http://wiki.daimi.au.dk/cpntools/.

J. Desel, W. Reisig, and G. Rozenberg, editors. Lectures on Concurrency and Petri
Nets, volume 3098 of Lecture Notes in Computer Science. Springer-Verlag, Berlin,
2004.

M. Dumas, W.M.P. van der Aalst, and A.H.M. ter Hofstede. Process-Aware Infor-
mation Systems. Wiley & Sons, 2005.

H. Eriksson and M. Penker. Business Modeling with UML. Business Patterns at
Work. Wiley, John and Sons, 1998.

M. Fowler. Analysis Patterns: Reusable Object Models. Addison-Wesley, Reading,
Massachusetts, 1997.

E. Gamma, R. Helm, R. Johnson, and J. Vlissides. Design Patterns: Elements
of Reusable Object-Oriented Software. Professional Computing Series. Addison
Wesley, Reading, MA, USA, 1995.

M. Gries, J.W. Janneck, and M. Naedele. Reusing Design Experience for Petri
Nets Through Patterns. In Proceedings of High Performance Computing HPC’99,
pages 453—458, San Diego, CA, USA, 1999.

S. Hasso and C.R. Carlson. Linguistics-based Software Design Patterns Classifica-
tion. In Proceedings of the Thirty-Seventh Annual Hawaii International Conference
on System Science (HICSS-87). IEEE Computer Society Press, 2004.

K.M. van Hee. Information System Engineering: a Formal Approach. Cambridge
University Press, 1994.

G. Hohpe and B. Woolf. Enterprise Integration Patterns. Addison-Wesley Profes-
sional, Reading, MA, 2003.

S. Jablonski and C. Bussler. Workflow Management: Modeling Concepts, Architec-
ture, and Implementation. International Thomson Computer Press, London, UK,
1996.

K. Jensen. Coloured Petri Nets. Basic Concepts, Analysis Methods and Practical
Use. Volume 1. EATCS monographs on Theoretical Computer Science. Springer-
Verlag, Berlin, 1997.

26.

27.

28.
29.
30.

31.

32.
33.

34.

35.

36.

37.

38.

39.

L.M. Kristensen, S. Christensen, and K. Jensen. The Practitioner’s Guide to
Coloured Petri Nets. International Journal on Software Tools for Technology
Transfer, 2(2):98-132, 1998.

N. Mulyar and W.M.P. van der Aalst. Patterns in Colored Petri Nets. BETA
Working Paper Series, WP 139, Eindhoven University of Technology, Eindhoven,
2005.

N. Mulyar. CPN Patterns Home Page. http://is.tm.tue.nl/staff/nmulyar.
Pattern digest library. http://patterndigest.com/books/otherlang.jsp.

R.G. Pettit and H. Gomaa. Modeling Behavioral Patterns of Concurrent Soft-
ware Architectures Using Petri Nets. In WICSA ’04: Proceedings of the Fourth
Working IEEE/IFIP Conference on Software Architecture (WICSA’04), page 57,
Washington, DC, USA, 2004. IEEE Computer Society.

S.K. Prasad and J. Balasooriya. Fundamental Capabilities of Web Coordination
Bonds: Modeling Petri Nets and Expressing Workflow and Communication Pat-
terns over Web Services. In HICSS ’05: Proceedings of the Proceedings of the 38th
Annual Hawaii International Conference on System Sciences (HICSS’05) - Track
7, page 165.2, Washington, DC, USA, 2005. IEEE Computer Society.

W. Pree. Framework patterns. SIGS Books, 1996.

L. Rising. Design Patterns in Communication Software. Cambridge University
Press, 2000.

N. Russell, W.M.P.van der Aalst, A.H.M. ter Hofstede, and D. Edmond. Workflow
Resource Patterns: Identification, Representation and Tool Support. In O. Pastor
and J. Falcao e Cunha, editors, Proceedings of the 17th Conference on Advanced
Information Systems Engineering (CAiSE’05), volume 3520 of Lecture Notes in
Computer Science, pages 216-232. Springer-Verlag, Berlin, 2005.

N. Russell, A.H.M. ter Hofstede, D. Edmond, and W.M.P. van der Aalst. Workflow
Data Patterns. QUT Technical report, FIT-TR-2004-01, Queensland University of
Technology, Brisbane, 2004.

Software-Ley. COSA 3.0 User Manual. Software-Ley GmbH, Pullheim, Germany,
1999.

A. Sutcliffe. Patterns for Knowledge and Software Reuse. Lawrence Erlbaum
Associates Inc., 2002.

K. de Vries and O. Ommert. Advanced Workflow Patterns in Practice (1): Ex-
periences Based on Pension Processing (in Dutch). Business Process Magazine,
7(6):15-18, 2001.

W. Zimmer. Relationships between Design Patterns. In Pattern languages of
program design, pages 345-364, New York, NY, USA, 1995. ACM Press/Addison-
Wesley Publishing Co.

