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Abstract.

Timed Petri nets can be used to model and analyse scheduling problems. To support
the modelling of scheduling problems, we provide a method to map tasks, resources
and constraints onto a timed Petri net. By mapping scheduling problems onto Petri
nets, we are able to use standard Petri net theory. In this paper we will show that
we can use Petri net based tools and techniques to find conflicting and redundant
precedences, upper- and lowerbounds for the makespan, etc. This is illustrated by a
Petri net based analysis of the notorious 10 × 10 problem due to Fisher & Thompson
(1963).
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1 Introduction

During the last two decades, much research has been done simultaneously on Petri nets
and scheduling problems. The results achieved in both research areas have been applied
to production systems, logistic systems and computer systems. Although scheduling tech-
niques and Petri nets focus on the same application domains, there has been little effort
to put these activities in gear with each other. The aim of this paper is to provide a link
between Petri nets and scheduling problems.

The optimal allocation of scarce resources to tasks over time has been the prime subject
of research on scheduling problems. Despite the inherent complexity of many scheduling
problems, effective algorithms have been developed. However, most researchers focussed
on the effectiveness of the algorithms, discarding the issue of flexibility.
Research on Petri nets addresses the issue of flexibility; many extensions have been pro-
posed to facilitate the modelling of complex systems. Typical extensions are the addi-
tion of ‘colour’, ‘time’ and ‘hierarchy’ (Jensen, 1992; Jensen & Rozenberg, 1991; Aalst,
1992a). Petri nets extended with these features are suitable for the representation and
study of the complex industrial systems of the 90’s. These Petri nets inherit all the advan-
tages of the classical Petri net, such as the graphical and precise nature, the firm mathe-
matical foundation and the abundance of analysis methods. Moreover, adequate computer
tools have been put on the market. These tools support both the modelling and analysis
of Petri nets extended with ‘colour’, ‘time’ and ‘hierarchy’. Therefore, it is interesting
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to investigate the application of Petri nets to scheduling. In this paper we concentrate on
timed Petri nets, i.e. Petri nets extended with a timing concept.

As we will show, it is relatively easy to map scheduling problems onto timed Petri nets.
However, the application of Petri net based analysis techniques to a scheduling problem
represented by a timed Petri net is far from trivial! Therefore, we report 7 useful results.
Each of these results shows how a specific aspect of a scheduling problem can be analysed
by applying a standard Petri net based analysis technique. For example, we will show that
we can find conflicting and redundant precedences, and upper- and lowerbounds for the
makespan of a scheduling problem.

Using Petri nets for the modelling of scheduling problems is not a new idea. However,
most of the results in this area focus on cyclic scheduling problems. Ramamoorthy & Ho
(1980) and Hillion & Proth (1989) have used a technique based on a ‘marked graphs’ (a
subclass of Petri nets) to analyse the throughput of cyclic (production) processes. Carlier,
Chretienne & Girault (1984, 1988, 1983), Gao, Wong & Ning (1991) and Watanabe & Ya-
mauchi (1993) also focussed on minimal cycle times for repetitive scheduling problems.
In this paper we focus on the traditional non-cyclic scheduling problems such as machine
scheduling and job-shop scheduling (Pinedo, 1995). We also use a different timed Petri
net model. In our model time is associated with tokens instead of transitions.

The remainder of this paper is organized as follows. Section 2 introduces a timed Petri
net model. This Petri net model has been extended with a timing concept. Section 3
describes the type of scheduling problems we are going to address. Section 4 is devoted
to the mapping of scheduling problems onto timed Petri nets. The usefulness of the Petri
net analysis techniques in the context of scheduling is discussed in Section 5. Section 6
discusses the flexibility of the approach presented in this paper. Finally, this approach is
applied to the notorious 10 × 10 problem due to Fisher & Thompson (1963).

2 Timed Petri nets

Historically speaking, Petri nets originate from the early work of Carl Adam Petri (1962).
Since then the use and study of Petri nets has increased considerably. For a review of the
history of Petri nets and an extensive bibliography the reader is referred to Murata (1989).
The classical Petri net is a directed bipartite graph with two node types called places and
transitions. The nodes are connected via directed arcs. Connections between two nodes
of the same type are not allowed. Places are represented by circles and transitions by bars.
Places may contain zero or more tokens, drawn as black dots. The number of tokens may
change during the execution of the net. A place p is called an input place of a transition
t if there exists a directed arc from p to t, p is called an output place of t if there exists a
directed arc from t to p.
We will use the net shown in Figure 1 to illustrate the classical Petri net model. This Petri
net models a machine which processes jobs and has two states (free and busy). There are
four places (in, free, busy and out) and two transitions (start and finish). In the state shown
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start finish
outin

busy

free

Figure 1: A Petri net which represents a machine.

in Figure 1 there are four tokens; three in place in and one in place free. The tokens in
place in represent jobs to be processed by the machine. The token in place free indicates
that the machine is free and ready to process a job. If the machine is processing a job,
then there are no tokens in free and there is one token in busy. The tokens in place out
represent jobs which have been processed by the machine. Transition start has two input
places (in and free) and one output place (busy). Transition finish has one input place
(busy) and two output places (out and free).
A transition is called enabled if each of its input places contains at least one token. An
enabled transition can fire. Firing a transition t means consuming tokens from the input
places and producing tokens for the output places, i.e. t ‘occurs’.

start finish
outin

busy

free

Figure 2: Transition start has fired.

Transition start is enabled in the state shown in Figure 1, because each of the input places
(in and free) contains a token. Transition finish is not enabled because there are no tokens
in place busy. Therefore, transition start is the only transition that can fire. Firing tran-
sition start means consuming two tokens, one from in and one from free, and producing
one token for busy. The resulting state is shown in Figure 2. In this state only transition
finish is enabled. Hence, transition finish fires and the token in place busy is consumed
and two tokens are produced, one for out and one for free. Now transition start is enabled,
etc. Note that as long as there are jobs waiting to be processed, the two transitions fire
alternately, i.e. the machine modelled by this net can only process one job at a time.

Adding time
For real systems it is often important to describe the temporal behaviour of the system, i.e.
we need to model durations and delays. Since the classical Petri net is not easily capable
of handling quantitative time, we add a timing concept. There are many ways to introduce
time into the classical Petri net (Aalst, 1992b). In this paper a timing mechanism is used
where time is associated with tokens, and transitions determine delays (Aalst, 1993).
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Each token has a timestamp which models the time the token becomes available for con-
sumption. Since these timestamps indicate when tokens become available, a transition
becomes enabled the earliest moment for which each of its input places contains a token
which is available. The timestamp of a produced token is equal to the firing time plus the
firing delay of the corresponding transition. Consider the net shown in Figure 1. If place
in contains one token with timestamp 1 and place free contains a token with timestamp 0,
then transition start becomes enabled at time 1. If the firing delay of start is equal to 3,
then the produced token for place busy has timestamp 1+3=4.
Firing is atomic, i.e. the moment a transition consumes tokens from the input places the
produced tokens appear in the output places. However, because of the firing delay it takes
some time before the produced tokens become available for consumption.
This results in the following definition of a timed Petri net.

Definition 1
A timed Petri net is a six tuple TPN = (P, T, I, O, TS,D) satisfying the following
requirements:

(i) P is a finite set of places.

(ii) T is a finite set of transitions.

(iii) I ∈ T → P(P ) is a function which defines the set of input places of each transi-
tion.

(iv) O ∈ T → P(P ) is a function which defines the set of output places of each
transition.

(v) TS is the time set.

(vi) D ∈ T → TS is a function which defines the firing delay of each transition.

The state of a timed Petri net is given by the distribution of tokens over the places and
the corresponding timestamps. Firing a transition results in a new state. This way we
can generate a sequence of states s0, s1, ...sn such that s0 is the initial state and si+1 is the
state reachable from si by firing a transition. Transitions are eager, i.e. they fire as soon as
possible. If several transitions are enabled at the same time, then any of these transitions
may be the next to fire. Therefore, in general, many firing sequences are possible. Let
s0 be the initial state of a timed Petri net. A state is called a reachable state if and only
if there exists a firing sequence s0, s1, ...sn which ‘visits’ this state. A terminal state is a
state where none of the transitions is enabled, i.e. a state without successors.

We will use an example to illustrate Definition 1. Figure 3 shows a Petri net which models
two identical parallel machines. The tokens in place in represent jobs which need to be
processed by one of the two machines. The timestamps of these tokens are shown in
Figure 3. The first job arrives at time 0, the second at time 1 and the third at time 3. The
token in place free1 has timestamp 0. This means that at time 0 the first machine is free
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Figure 3: Two parallel identical machines.

and ready to process a job. At time 0, the other machine is also free and ready to process a
job. Therefore, one of the two machines will start processing the job that arrives at time 0.
Let us assume that the first machine takes care of this job, i.e. transition start1 fires at time
0 and produces a token with a delay equal to 5 time units (e.g. minutes). As a result free1
is empty and busy1 contains a token with timestamp 5. At time 1 transition start2 fires,
i.e. the second machines starts to process the job arriving at time 1. The resulting state is
shown in Figure 4. (Note that place busy2 contains a token with timestamp 1 + 5 = 6.)

in out

start1

busy1

free1

finish1

start2

busy2

free2

finish2

3 5

5

0

0
0
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6

Figure 4: The state resulting from firing start1 and start2.

In this state none of the transitions start1 and start2 is enabled since both machines are
busy. At time 5 transition finish1 fires, thus enabling transition start1. Transition start1
also fires at time 5. At time 6 finish2 fires, followed by the firing of transition finish1 at
time 8. The resulting state is a terminal state. In this terminal state there are 3 tokens in
place out indicating that the three jobs have been processed successfully. The timestamps
of these tokens are equal to the corresponding completion time, i.e. 5, 6 and 8. Note that
this is not the only possible firing sequence. If start2 fires at time 0, alternative states are
visited. However, both firing sequences result in the same terminal state.
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3 The general scheduling problem

Scheduling is concerned with the optimal allocation of scarce resources to tasks over time
(Lawler, Lenstra, Rinnooy Kan & Shmoys, 1993). Scheduling techniques are used to
answer questions that arise in production planning, project planning, computer control,
manpower planning, etc. Many techniques have been developed for a variety of problem
types. To fix the terminology, we begin by defining the ‘general scheduling problem’.
Many problem types fit into this definition. Moreover, some extensions are discussed in
Section 6.
In essence, scheduling boils down to the allocation of resources to tasks over time. Some
authors refer to resources as ‘machines’ or ‘processors’ and tasks are also called ‘oper-
ations’ or ‘steps of a job’. Resources are used to process tasks. However, it is possible
that the execution of a task requires more that one resource, i.e. a task is processed by
a resource set. Moreover, there may be multiple resource sets that are capable of pro-
cessing a specific task. The processing time of a task is the time required to execute the
task given a specific resource set. By adding precedence constraints it is possible to for-
mulate requirements about the order in which the tasks have to be processed. We will
assume that resources are always available, but we shall not necessarily assume the same
for tasks. Each task has a release time, i.e. the time at which the task becomes available
for processing. This leads to the following definition.

Definition 2
A scheduling problem is a 6-tuple SP = (T,R, PRE, TS,RT, PT ) satisfying the fol-
lowing requirements.

(i) T is a finite set of tasks.

(ii) R is a finite set of resources.

(iii) PRE ⊆ T × T is a partial order, the precedence relation.

(iv) TS is the time set.

(v) RT ∈ T → TS is a function which defines the release time of each task.

(vi) PT ∈ (T × P(R)) �→ TS defines for each task t:1

(a) the resource sets capable of processing task t and

(b) the processing time required to process t by a specific resource set.

This definition specifies the data required to formulate a scheduling problem. The tasks
are denoted by T and the resources are denoted by R. The precedence relation PRE is
used to specify precedence constraints. If task t has to be processed before task t′, then
〈t, t′〉 ∈ PRE, i.e. the execution of task t has to be completed before the execution of
task t′ may start. TS is the time set. IN and IR+ ∪ {0} are typical choices for TS. The

1A �→ B denotes the set of all partial functions from A to B. P(A) is the powerset of A.
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release time RT (t) of a task t specifies the time at which the task becomes available for
processing, i.e. the execution of t may not start before time RT (t). Function PT specifies
two things; (1) the resource sets capable of processing task t:

{rs ∈ P(R) | 〈t, rs〉 ∈ dom(PT )}

and (2) the processing time required to process t by a specific resource set rs:

PT (〈t, rs〉)

To clarify this definition we present a small example.

Example: a job-shop
Consider a job-shop where two jobs {J1, J2} have to be processed by two machines
{M1, M2}. Job J1 requires two operations A and B. Operation A is processed by ma-
chine M1 followed by operation B processed by machine M2. The processing time of
both operations is equal to 3 minutes. Job J2 requires only one operation C. This oper-
ation can be processed by one machine M1 or both machines at the same time (i.e. M1
and M2). Processing operation C by machine M1 takes 5 minutes, processing operation
C by machine M1 and machine M2 takes only 2 minutes. Both jobs J1 and J2 enter the
jobshop at time zero.
The corresponding scheduling problem SP = (T,R, PRE, TS,RT, PT ) is specified as
follows:

T = {J1A, J1B, J2C}
R = {M1,M2}

PRE = {〈J1A, J1B〉}
TS = IR+ ∪ {0}

RT (J1A) = RT (J1B) = RT (J2C) = 0

dom(PT ) = {〈J1A, {M1}〉, 〈J1B, {M2}〉, 〈J2C , {M1}〉,
〈J2C , {M1,M2}〉}

PT (〈J1A, {M1}〉) = 3

PT (〈J1B, {M2}〉) = 3

PT (〈J2C , {M1}〉) = 5

PT (〈J2C , {M1,M2}〉) = 2

Each operation corresponds to a task. The precedence relation specifies the constraint that
the operations in job J1 have to be processed in a specific order. The domain of function
PT signifies the resource sets able to process a specific operation. The processing times
are also specified by PT .

Assumptions
Although Definition 2 is quite general we have made a number of assumptions about the
structure of a scheduling problem:
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1. No resource may process more than one task at a time.

2. Each resource is continuously available for processing.

3. No pre-emption, i.e. each operation, once started, must be completed without inter-
ruptions.

4. The processing times are independent of the schedule. Moreover, the processing
times are fixed and known in advance.

A schedule is an allocation of resources to tasks over time. Such a schedule can be
represented by a function s ∈ T → (P(R)× TS), i.e. for each task it is specified when it
is processed by which resources. If t is a task and 〈rs, st〉 ∈ s(t), then t is processed by
resource set rs starting at time st. Note that given a schedule and a task t, we can define
(1) st(t): the start time of t, (2) ct(t): the completion time of t and (3) ra(t): the resource
set that is used to process t.
A schedule s ∈ T → (P(R) × TS) is feasible if the following constraints are satisfied:

1. precedences are obeyed: ∀〈t,t′〉∈PRE ct(t) ≤ st(t′)

2. release times are obeyed: ∀t∈T st(t) ≥ RT (t)

3. valid resource sets are used: ∀t∈T 〈t, ra(t)〉 ∈ dom(PT )

4. a resource cannot be used to process multiple tasks at the same time:
∀t,t′∈T (ra(t) ∩ ra(t′) �= ∅) ⇒ (ct(t) ≤ st(t′) ∨ ct(t′) ≤ st(t))

Consider the job-shop example: schedule sj = {〈J1A, 〈{M1}, 0〉〉, 〈J1B, 〈{M2}, 3〉〉,
〈J2C , 〈{M1}, 3〉〉} is a feasible schedule. In the remainder we will only consider feasible
schedules.

Performance measures
There are numerous objectives in scheduling. Therefore, there are dozens of sensible
performance measures. In this paper only a few of them are discussed. For summary of
these measures, the reader is referred to French (1982) and Baker (1974).
First we define an additional concept: the due-date of a task. The due-date dt of a task t,
is the desired completion time of t.
The flow-time of a task t (Ft) is the time between the release of t and the completion
of t, i.e. Ft = ct(t) − RT (t). The lateness Lt of a task t is defined as follows: Lt =
ct(t) − dt. The tardiness Tt of t only considers ‘tardy’ tasks, i.e. Tt = max(Lt, 0).
Typical performance measures are the average flow-time of tasks, the average lateness of
tasks and the average tardiness of tasks. A related performance measure is the makespan
of a set of tasks M = maxt∈T ct(t). In a job-shop the makespan is equal to the total
production time. A straightforward objective is to minimize the makespan. Note that for
the job-shop example, schedule sj has a makespan of 8. Since all other feasible schedules
have a makespan of at least 8, schedule sj is optimal.
There are many other reasonable objectives, e.g. minimize the number of tardy tasks,
minimize the number of waiting tasks, etc.
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4 Mapping scheduling problems onto Petri nets

To show that timed Petri nets can be used to model and analyse scheduling problems, we
provide a translation from an arbitrary scheduling problem to a ‘suitable’ timed Petri net.
This means that we have to map concepts such as tasks, resources and precedences onto
places and transitions.

spt
t t

t
st

bpt cp
ct

Figure 5: Task t.

Given a task t we identify three stages: (1) t is waiting to be processed, (2) t is being pro-
cessed and (3) t has been processed. Therefore, we identify two important ‘milestones’:
the start time and completion time of t. Basically, Figure 5 shows how we model a task t
in terms of a timed Petri net. Transitions stt and ctt represent the beginning and termina-
tion of t respectively. The places spt, bpt and cpt correspond to the stages just mentioned.
Initially, there is one token in spt with timestamp RT (t), the release time of t. Since the
token in spt becomes available at time RT (t), transition stt cannot fire before the release
time of task t. The firing delay of stt is equal to the processing time of task t given a
specific resource set.

spt
t t

t
st

bpt cp
ct

frr

Figure 6: Resource r.

Each resource r is modelled by a place frr. Initially, frr contains one token. Figure 6
shows a resource r which can be used to process a task t. Transition stt ‘claims’ the
resource when the execution of t starts, transition ctt ‘releases’ the resource when t ter-
minates.

Precedence constraints are modelled by adding extra places. Figure 7 shows the situation
where task t precedes task t′, i.e. the execution of task t has to be completed before the
execution of task t′ may start. Place pre〈t,t′〉 prevents stt′ from firing until ctt fires. Note
that places are used to model the stages of a task, resources and precedences.
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t t

t
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bpt cp
ct

st
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ct
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Figure 7: Precedence constraint 〈t, t′〉.

spt

ct<t,{r1}>

bp<t,{r2}>

bp<t,{r1}>

ct<t,{r2}>

bp<t,{r1,r2}>

ct<t,{r1,r2}>st<t,{r1,r2}>

st<t,{r1}>

st<t,{r2}>
r

cpt

frr1

frr2

Figure 8: A task with three possible resource sets.

Thus far, we ignored the fact that a task may be processed by one of multiple resource
sets. Figure 8 shows how to model this situation. For each resource set rs capable of
processing task t, we introduce a place bp〈t,rs〉 and two transitions st〈t,rs〉 and ct〈t,rs〉.
Figure 8 shows that task t can be processed by one of the following resource sets: {r1},
{r2} and{r1, r2}. Note that there is only one ‘start place’ spt and one ‘completion place’
cpt.

Consider the job-shop example given in Section 3. Recall that there are three tasks: J1A,
J1B and J2C and two resources: M1 and M2. Task J1A and task J1B have to be pro-
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cessed by M1 and M2 respectively. Task J2C may be processed by M1 or M1 and M2.
The corresponding Petri net is shown in Figure 9. (The names of places and transitions
have been omitted.)

The following definition formalizes the ‘recipe’ just given.

Definition 3
Given scheduling problem SP = (T,R, PRE, TS,RT, PT ) we define the correspond-
ing timed Petri net TPN = (P , T , I, O, TS,D) as follows:

P = {bp〈t,rs〉 | 〈t, rs〉 ∈ dom(PT )} ∪
{spt | t ∈ T} ∪
{cpt | t ∈ T} ∪
{frr | r ∈ R} ∪
{pre〈t,t′〉 | 〈t, t′〉 ∈ PRE}

T = {st〈t,rs〉 | 〈t, rs〉 ∈ dom(PT )} ∪
{ct〈t,rs〉 | 〈t, rs〉 ∈ dom(PT )}

and for any task t ∈ T and resource set rs ∈ P(R) such that 〈t, rs〉 ∈ dom(PT ):

I(st〈t,rs〉) = {spt} ∪
{frr | r ∈ R ∧ r ∈ rs} ∪
{pre〈t′,t〉 | t′ ∈ T ∧ 〈t′, t〉 ∈ PRE}

I(ct〈t,rs〉) = {bp〈t,rs〉}
O(st〈t,rs〉) = {bp〈t,rs〉}
O(ct〈t,rs〉) = {cpt} ∪

{frr | r ∈ R ∧ r ∈ rs} ∪
{pre〈t,t′〉 | t′ ∈ T ∧ 〈t, t′〉 ∈ PRE}

TS = TS

D(st〈t,rs〉) = PT (〈t, rs〉)
D(ct〈t,rs〉) = 0

This definition shows how to model a scheduling problem in terms of a timed Petri net.
The initial state of the net is as follows. For each task t, place spt contains one token with
timestamp RT (t). For each resource r, place frr contains one token with timestamp 0.
All other places are empty.
We can give an upper bound for the size of the constructed timed Petri net TPN : �T2�R +
2�T + �R+(�T )2 places and 2�T2�R transitions. However, a typical Petri net representing
a scheduling problem with �T tasks and �R resources contains 4�T + �R places and 2�T
transitions.
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Figure 9: The job-shop scheduling problem.

The mapping of scheduling problems onto Petri nets presented in this section differs from
the mappings presented in Carlier, Chretienne & Girault (1984), Gao, Wong & Ning
(1991), Hillion & Proth (1989) and Watanabe & Yamauchi (1993). First of all we consider
non-cyclic scheduling problems instead of cyclic ones. Secondly, we use a timed Petri net
model where time is associated with tokens instead of transitions. Thirdly, we explicitly
model the beginning and termination of the processing of a task.

We can use the constructed timed Petri net to calculate feasible schedules. Each firing
sequence resulting in a terminal state, represents a possible schedule. Note that these
firing sequences have length 2�T +1. Given such a firing sequence, the resulting terminal
state is as follows. For each task t, place cpt contains one token with timestamp ct(t). For
each resource r, place frr contains one token with a timestamp equal to the completion
time of the last task processed by r. All other places are empty.
It is easy to verify that the schedule represented by such a firing sequence is feasible, i.e.

• precedences are obeyed: the places pre〈t,t′〉 take care of this,

• release times are obeyed: transition st〈t,rs〉 cannot fire before RT (t),

• valid resources sets are used: transition st〈t,rs〉 ‘claims’ all resources in the resource
set rs,

• resources cannot be used to process two tasks at the same time: transition st〈t,rs〉
removes all tokens from the places frr with r ∈ rs, these tokens are returned the
moment task t is completed.

Although each firing sequence of length 2�T + 1 corresponds to a feasible schedule, the
opposite is not true, i.e. there are feasible schedules which do not correspond to any firing
sequence. This is a consequence of the fact that transitions are eager to fire, i.e. they
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fire as soon as possible. The schedules which correspond to these firing sequences are
often referred to as list schedules, i.e. schedules where a machine is assigned to a task
as soon as possible. Unfortunately, it is not sufficient to consider only list schedules to
find an optimal schedule (i.e. a schedule with a minimal makespan). (See for example
the introductory example in (French, 1982).) This is the reason most papers about the
application of Petri nets to scheduling focus on a subclass of Petri nets: the so-called
marked graphs (Carlier, Chretienne & Girault, 1984; Chretienne, 1983; Gao, Wong &
Ning, 1991; Hillion & Proth, 1989; Ramamoorthy & Ho, 1980). For this subclass an
optimal schedule corresponds to a list schedule.
It is also possible to define an alternative firing-rule for timed Petri nets. This alternative
firing-rule relaxes the eagerness-property as follows: a transition that is enabled is allowed
to postpone its firing until another transition fires. Note that a postponed transition may
become disabled by the firing of another transition. Therefore, we obtain firing sequences
which don’t correspond to a list schedule. If we adopt this alternative firing-rule, we
have a one-to-one correspondence between the set of feasible schedules and the set of
possible firing sequences (of length 2�T + 1). Unfortunately, the number of possible
firing sequences increases considerably. In the next section we will return to this subject.

5 Analysis

After modelling a scheduling problem in terms of a timed Petri net, an obvious question
is “What can we do with the Petri net model?”. A major strength of Petri nets is the
collection of supporting analysis methods. In this section we discuss the usefulness of
these analysis methods in the context of scheduling. First, we will discuss the application
of analysis techniques to derive structural properties of the net. Secondly, we will focus
on methods to analyse the dynamic behaviour of the constructed timed Petri net.

5.1 Structural properties

Several analysis methods have been developed to find and verify structural properties
of classical Petri nets (Martinez & Silva, 1982; Murata, 1989; Reisig, 1985). Here we
discuss place and transition invariants. Place and transition invariants are powerful tools
for studying structural properties of Petri nets.
A place invariant (P-invariant) is a weighted token sum, i.e. a weight is associated with
every token in the net. This weight is based on the location (place) of the token. A
place invariant holds if the weighted token sum of all tokens remains constant during the
execution of the net. Consider for example the net shown in Figure 1. The following two
place invariants hold for this net; (1) free + busy = 1 and (2) in + busy + out = 3. The
first invariant says that the total number of tokens in the places free and busy is equal to
1. This means that the machine is either free of busy. The second invariant states that the
total number of tokens in the places in, busy and out is equal to 3, the initial number of
tokens in in. This implies that no jobs ‘get lost’, i.e. a conservation of jobs. The support
of an invariant is the set of places with a non-zero weight, e.g. the support of free + busy
= 1 is {free,busy}.
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Given a Petri net which corresponds to a scheduling problem, we find place invariants
telling that there is a conservation of tasks and resources. These place invariants are
rather trivial. However, we can also focus on place invariants having a support which is
a subset of {bp〈t,rs〉 | 〈t, rs〉 ∈ dom(PT )} ∪ {pre〈t,t′〉 | 〈t, t′〉 ∈ PRE}. If we find an
invariant with such a support, then the weighted-token-sum in these places is constant.
Since these places are empty in the initial state, the weighted-token-sum remains zero.
Each place in the support of such an invariant will never contain tokens. Therefore, there
are no feasible schedules because there are conflicting precedences. Moreover, there is a
one-on-one correspondence between conflicting precedences and place invariants with a
support which is a subset of {bp〈t,rs〉 | 〈t, rs〉 ∈ dom(PT )} ∪ {pre〈t,t′〉 | 〈t, t′〉 ∈ PRE}.

Result 1: Place invariants can be used to find conflicting precedences.

To illustrate this result consider the scheduling problem shown in Figure 10. There is one
place invariant with a support which is a subset of:
{bp1, bp2, bp3, bp4, pre〈1,2〉, pre〈2,3〉, pre〈3,4〉, pre〈4,1〉}
It is the place invariant:
bp1 + pre〈1,2〉 + bp2 + pre〈2,3〉 + bp3 + pre〈3,4〉 + bp4 + pre〈4,1〉 = 0
This invariant shows that the four precedences are in conflict. We have tot remove one of
them to obtain a scheduling problem that can be solved.

fr1

fr2

sp

sp cp

cp

pre

bp

1

2

bp1

1

<1,2>

2 2

bp3

pre<3,4>

sp

sp cp

cpbp

3 3

4 4 4

pre pre<2,3><4,1>

Figure 10: A scheduling problem with conflicting precedences.

We can also use place invariants to find redundant precedence constraints. If we change
the direction of the precedence constraint pre〈4,1〉 (i.e. pre〈4,1〉 is replaced by pre〈1,4〉),
then we obtain a scheduling problem without conflicting precedences.. However, we find
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the invariant bp1 + pre〈1,2〉 + bp2 + pre〈2,3〉 + bp3 + pre〈3,4〉 + bp4 − pre〈1,4〉 = 0. (Note
the minus sign; this is not a minimal support invariant.) This invariant shows that pre〈1,4〉
is redundant. For details we refer to Peters (1994).

Result 2: Place invariants can be used to remove redundant precedences.

Place invariants can be calculated efficiently using linear algebraic techniques (Martinez
& Silva, 1982; Murata, 1989). Therefore, standard Petri net tools can be used to find
conflicting and/or redundant precedences.

Transition invariants (T-invariants) are the duals of place invariants and the basic idea
behind them is to find firing sequences with no effects, i.e. firing sequences which repro-
duce the initial state. There are no transition invariants that hold for a net constructed by
following the ‘recipe’ discussed in Section 4. Therefore, they are not interesting in the
context of scheduling.

There are also techniques to verify whether a Petri net is connected. A net is said to
be connected if and only if each place or transition is connected to any other place or
transition, ignoring the direction of the arcs. If a net is not connected it can be decomposed
into a number of separate subnets.
If a Petri net which corresponds to a scheduling problem is not connected, then we are
able to split the scheduling problem into a number of ‘independent’ scheduling problems.

Result 3: If possible, we can use the Petri net representation to split a scheduling problem
into a number of ‘independent’ scheduling problems.

Many other analysis methods have been developed for the analysis of specific structural
properties. However, at this point they seem to be irrelevant in the context of scheduling.
For more details, we refer to Peters (1994).

5.2 Behavioural properties

There are several methods to analyse the dynamic behaviour of a timed Petri net (Aalst,
1992b; Aalst, 1993; Berthomieu & Diaz, 1991; Carlier, Chretienne & Girault, 1984).

By computing the reachability graph, it is possible to analyse all possible firing se-
quences. Recall that for a net representing a scheduling problem, each of these firing
sequences corresponds to a feasible schedule. Therefore, we can use the reachability
graph to generate many feasible schedules. Unfortunately, the reachability graph cannot
be used to generate all feasible schedules. In fact, we can only generate eager schedules
(often referred to as list schedules). An eager schedule assigns resources to tasks as soon
as possible, i.e. if a task can be executed by a specific resource set and each resource in
this resource set is free, then the resource set is allocated to this task and the processing
starts immediately.
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Result 4: We can use the reachability graph to find all eager schedules.

If we consider all schedules generated by the reachability graph with respect to some per-
formance measure, then we are able to determine an optimal eager schedule. However,
there may be non-eager schedules surpassing such an optimal eager schedule (see Sec-
tion 7). If we omit the requirement that transitions fire as soon as possible, then we can
use the reachability graph to determine a truly optimal schedule. However, if we omit the
eagerness requirement, the reachability graph ‘explodes’. In Carlier et al. (1984, 1988)
this problem is dealt with for a specific class of scheduling problems.

In the remainder of this section we restrict ourselves to timed Petri nets with eager tran-
sitions, i.e. we do not consider non-eager schedules. Nevertheless, for large scheduling
problems the reachability graph may still be too large. There are several approaches to
(partially) solve this problem. Before discussing some of these approaches, we focus on
the construction process of the reachability graph.

Figure 11: A reachability graph.

The reachability graph of a timed Petri net is constructed as follows. We start with an
initial state s. Then we calculate all states reachable from s by firing a transition. For
each of these states we calculate the states reachable by firing a transition, etc. Each node
in the reachability graph corresponds to a reachable state and each arc corresponds to the
firing of a transition (see Figure 11).
One way to reduce the size of the reachability graph is to allow only a limited number of
outgoing arcs for each node, i.e. if there are too many successor nodes, we only select a
subset of them (randomly).
Another approach is to omit the nodes which are not very ‘promising’, e.g. if a node
corresponds to a partial schedule with a relatively large makespan, we do not consider its
successors. We can also omit nodes that correspond to a partial schedule which violates
one of the due-dates.
Finally, we can use heuristics to reduce the number of outgoing arcs, e.g. if we can allocate
a resource to a large task or a small task, then we select the small task. Note that we
can use the priority rules for rule based scheduling (Haupt, 1989). Typical priority rules
are: SPT (shortest processing time), MWKR (most work remaining), LWKR (least work
remaining), DD (earliest due-date), etc. It is quite easy to extend the timed Petri net model
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defined in Section 2 with priorities, i.e. a priority is assigned to each transition. If several
transitions are enabled at the same time, then the transition with the highest priority will
fire first. If several transitions having equal priorities are enabled at the same time, then
any of these transitions may be the next to fire. Extending the timed Petri net model with
priorities, facilitates the modelling of priority rules such as SPT, MWKR, LWKR, DD.
Moreover, we can still use some of the standard Petri net tools.
If we omit the nodes which are not very ‘promising’ or use heuristics like the SPT-rule,
then we are able to construct a reachability graph of limited size. We can use this reach-
ability graph to find feasible schedules. Note that the makespan of these schedules repre-
sents an upperbound for the makespan of the scheduling problem.

Result 5: By constructing only a part of the reachability graph, we can find upperbounds
for the makespan of a scheduling problem.

It is also possible to find a lowerbound for the makespan of a scheduling problem. Simply
remove all frr-places and construct the reachability graph. By inspecting the terminal
states of the reachability graph, we can deduce a lowerbound for the makespan of the
scheduling problem. Although the size of the reachability graph is limited, it may be
worthwhile to use the ATCFN analysis method (Aalst, 1992b) to find the same lower-
bound.

Result 6: We can also find a lowerbound for the makespan of a scheduling problem.

It is also possible to use simulation to analyse the dynamic behaviour of a timed Petri net
which models a scheduling problem. Such a timed Petri net can be simulated by randomly
selecting an enabled transition to be fired. Each subrun results in a terminal state which
corresponds to a feasible schedule. In case of deterministic processing times it is not
worthwhile to use simulation. However, if we want to test the robustness of a schedule,
simulation may be useful.

Result 7: We can use simulation to test the robustness of a schedule.

This concludes our presentation of the seven results.

The results presented in this section show that we can use standard Petri-net techniques
to analyse a scheduling problem. Nevertheless, these results can also be achieved without
using the Petri net formalism. If we model the precedence relation as a directed graph,
then result 1 corresponds to the existence of a directed cycle and result 2 corresponds
to the existence of a transitive arc. The other results also have their counterparts in the
scheduling domain. Results 5 corresponds for example with truncated branch and bound
methods and heuristics.
Although most of the results presented in this section can also be achieved with the tech-
niques commonly used in the ‘scheduling community’, it is important to see that schedul-
ing problems can also be analysed with standard Petri-net tools! Each of the results re-

17



ported in this section can be applied without any programming. We have developed a
tool which automatically translates a scheduling problem into a timed Petri net. We have
experimented with two Petri-net based analysis tools: IAT and INA. IAT is part of the
ExSpect workbench and allows for the calculation of invariants and (condensed) reacha-
bility graphs (Aalst, 1992b; Aalst, 1994). (IAT and some other parts of ExSpect have been
developed under the supervision of the author of this paper.) INA is an analysis tool which
allows for many analysis methods. INA can be used to determine more than 40 different
properties (Starke, 1992). Note that we use standard Petri net tools without developing
new analysis-software!

6 Extensions

In Section 3 we defined what we mean by a scheduling problem. Although Definition 2
is quite general, we made a number of assumptions. However, only few scheduling prob-
lems encountered in practise obey each of these assumptions. Therefore, we are interested
in the relaxation of some of these assumptions. In this section we show the impact of these
relaxations on the corresponding Petri net.

spt
t t

t
st

bpt cp
ct

st
bp cp

ct
spt’

t’
t’ t’

t’

frr

Figure 12: Resource r can process multiple tasks at a time.

First of all, we assumed that each resource can process only one task at a time. If this
assumption is dropped, then we have to deal with resources having a specific capacity and
tasks requiring only a part of this capacity. It is easy to model this in terms of a Petri
net. Consider two tasks t and t′ and a resource r. Both tasks have to be processed by
r. Resource r has a capacity of 6, task t requires a capacity of 2 and task t′ requires a
capacity of 3. Figure 12 shows how this can be modelled in terms of a timed Petri net.
Initially, place frr contains 6 tokens. There are two input arcs from frr to stt indicating
that task t requires 2/6 of the capacity of r, i.e. transition stt can only fire if there are
at least two tokens in place frr. Processing t starts with the consumption of two tokens
from frr (by stt) and finishes with the production of two tokens for frr (by ctt).

We also assumed that each resource is continuously available for processing. It is easy to
introduce ‘release times’ for resources; initially the token in a place frr has a timestamp
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equal to the release time of the resource r. Dealing with time-windows for the availability
of resources is more complicated but not impossible.

If we allow pre-emption, then a task t is no longer represented by the subnet shown in
Figure 5. To handle this relaxation we have to split tasks into smaller tasks. Each subtask
corresponds to a phase in the processing of task t. A task is allowed to pre-empt the
moment it switches from one phase to another.

In Section 3 we assumed that processing times are known and fixed, i.e. the scheduling
problem is deterministic. The approach described in this paper can easily be extended to
non-deterministic scheduling problems by using another timed Petri net model. There are
timed Petri net models with stochastic delays (cf. Marsan, Balbo & Conte (1984, 1986))
or delays described by intervals (Aalst, 1992b; Aalst, 1993; Berthomieu & Diaz, 1991).
By mapping the scheduling problem onto such a Petri net model, we can handle problems
for which uncertainty is a dominant factor.

The approach presented in this paper allows for many other extensions, e.g. more sophis-
ticated precedence constraints, set-up times, coupling, etc. Moreover, most of the results
presented in Section 5 also hold for the relaxations discussed in this section.

7 Case: 10 × 10

We will use the notorious scheduling problem described by Fisher and Thompson in
(1963) to illustrate our approach. This job-shop scheduling problem is concerned with
the allocation of 10 machines over 10 jobs each requiring 10 operations, i.e. 10 × 10
operations have to be processed by 10 machines. Each row in Table 1 corresponds to a

Job id. M PT M PT M PT M PT M PT M PT M PT M PT M PT M PT
0 0 29 1 78 2 9 3 36 4 49 5 11 6 62 7 56 8 44 9 21
1 0 43 2 90 4 75 9 11 3 69 1 28 6 46 5 46 7 72 8 30
2 1 91 0 85 3 39 2 74 8 90 5 10 7 12 6 89 9 45 4 33
3 1 81 2 95 0 71 4 99 6 9 8 52 7 85 3 98 9 22 5 43
4 2 14 0 6 1 22 5 61 3 26 4 69 8 21 7 49 9 72 6 53
5 2 84 1 2 5 52 3 95 8 48 9 72 0 47 6 65 4 6 7 25
6 1 46 0 37 3 61 2 13 6 32 5 21 9 32 8 89 7 30 4 55
7 2 31 0 86 1 46 5 74 4 32 6 88 8 19 9 48 7 36 3 79
8 0 76 1 69 3 76 5 51 2 85 9 11 6 40 7 89 4 26 8 74
9 1 85 0 13 2 61 6 7 8 64 9 76 5 47 3 52 4 90 7 45

Table 1: The 10 × 10 scheduling problem: 10 × 10 operations have to be processed by
10 machines.

job and lists a sequence of machines (M) and processing times (PT). The first operation
required by job 0 has to be processed by machine 0 and the processing time is 29 time
units. The second operation is processed by machine 1 and the processing time is 78 time
units, etc. The problem is to find a schedule such that the makespan, i.e. the maximal
flow-time, is minimal. Although this problem was formulated in 1963, it has defied solu-
tion for more than twenty years. In 1989, Carlier & Pinson (1989) proved 930 to be the
minimal makespan.

First, we formulate the 10 × 10 problem in terms of the terminology given in Section 3.
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There are 100 tasks, 10 for each job. There are 10 resources, one for each machine. There
are 90 precedences, 9 for each job. Each task has a release time equal to 0. Each task
requires a specific machine to be processed and the processing times are as indicated in
Fisher & Thompson (1963).
Then, we map the scheduling problem onto a timed Petri net (see Definition 3). We have
used the Petri net based tool ExSpect (Aalst, 1994) to construct this net automatically.
The corresponding timed Petri net contains 400 places and 200 transitions.

We will use IAT, one of the analysis tools of ExSpect (Aalst, 1992b; Aalst, 1994), to
analyse the constructed timed Petri net. IAT is based on a number of Petri net based
analysis techniques (e.g. place and transition invariants, reachability graphs, reduction
techniques, etc.).
The constructed net is connected, i.e. the 10 × 10 problem cannot be split into a number of
smaller problems (see Section 5). Moreover, there are no place invariants with a support
which is a subset of {bp〈t,rs〉 | 〈t, rs〉 ∈ dom(PT )} ∪ {pre〈t,t′〉 | 〈t, t′〉 ∈ PRE}, i.e.
there are no conflicting precedences. These results are not very surprising for this well-
structured scheduling problem. Moreover, in this case we are much more interested in
schedules with a small makespan.
It is very easy to calculate an upper bound for the minimal makespan of the 10 × 10
problem; simply generate a reachability graph where each node is allowed to have only
one successor. In this case we find one terminal state. This state corresponds to a feasible
schedule. The first upper bound we found was 1190, IAT calculates this upper bound in
15 seconds. If we had been able to calculate the entire reachability graph we could have
calculated an optimal non-eager schedule. Unfortunately, in this case the reachability
graph is too large to construct. We also used priority rules to obtain a smaller reachability
graph. This resulted in smaller upper bounds. However, even the best priority rules we
have tested result in schedules with a makespan of more than 1100.
We used the ATCFN analysis method (Aalst, 1992b) to calculate a lower bound of 691
for the makespan of any feasible schedule. This takes about 14 seconds.

We also tested an approach which adds extra precedence constraints. This approach re-
sulted in a schedule with a makespan equal to 1023. For any two tasks t and t′ we added
the precedence constraint that t has to complete before t′ starts if and only if (1) there is
more work remaining for the job where t belongs to than the work remaining for the job
where t′ belongs to and (2) the processing time of t is rather small. Without going into
details, we postulate that this approach outachieves the priority rules used in rule based
scheduling. However, it does not lead to schedules having a makespan close to 930. It
takes about 22 seconds to calculate the schedule with a makespan of 1023.
Note that we obtained these results by using standard Petri net tools, i.e. without develop-
ing special purpose algorithms or software.
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8 Conclusion

The approach presented in this paper shows that it is possible to model many scheduling
problems in terms of a timed Petri net. In fact, we have formulated a recipe for mapping
scheduling problems onto timed Petri nets. This recipe shows that the Petri net formalism
can be used to model tasks, resources and precedence constraints.

By mapping a scheduling problem onto a timed Petri net, we are able to use Petri net
theory to analyse the scheduling problem. We can use Petri net based analysis techniques
to detect conflicting precedences, determine lower and upper bounds for the minimal
makespan, etc. By inspecting (parts of) the reachability graph, we can generate many
feasible schedules. Although it is likely that these analysis techniques will never beat the
scheduling algorithms described in literature, we can use standard Petri net tools without
developing new software.

Last but not least, we hope that the link between scheduling and Petri nets will stimulate
further research in scheduling and Petri net analysis. On the one hand, Petri net based
analysis techniques have to be improved to deal with the computational complexity of
scheduling problems. On the other hand, modelling scheduling problems in terms of
timed Petri nets will bring new scheduling problems not considered by existing solution
approaches.
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