A Generic Import Framework
For Process Event Logs
Industrial Paper

Christian W. Gunther and Wil M.P. van der Aalst

Department of Technology Management, Eindhoven University of Technology
P.O. Box 513, NL-5600 MB, Eindhoven, The Netherlands
{c.w.gunther, w.m.p.v.d.aalst}@tm.tue.nl

Abstract. The application of process mining techniques to real-life cor-
porate environments has been of an ad-hoc nature so far, focused on
proving the concept. One major reason for this rather slow adoption has
been the complicated task of transforming real-life event log data to the
MXML format used by advanced process mining tools, such as ProM. In
this paper, the ProM Import Framework is presented, which has been
designed to bridge this gap and to build a stable foundation for the
extraction of event log data from any given PAIS implementation. Its
flexible and extensible architecture, adherence to open standards, and
open source availability make it a versatile contribution to the general
BPI community.

1 Introduction

Process-Aware Information Systems (PAISs) are a commonplace part of the
modern enterprise IT infrastructure, as dedicated process management systems
or as workflow management components embedded in larger frameworks, such
as Enterprise Resource Planning (ERP) systems.

At this point in time, most business process monitoring solutions focus on
the performance aspects of process executions, providing statistical data and
identifying problematic cases. The area of Process Mining [3], in contrast, is
based on the a-posteriori analysis of process execution event logs. From this
information, process mining techniques can derive abstract information about
the different perspectives of a process, e.g. control flow, social network, etc.

There exists a great variety of PAIS implementations in field use, of which
each one follows a custom manner of specifying, controlling and interpreting
business processes. As an example, consider the utter difference in paradigm be-
tween a traditional, rigid Workflow Management System (WFMS) like Staffware
on the one side, and a flexible case handling [5] system like FLOWer [7] on the
other. This scale brings with it a corresponding plethora of event log formats,
and concepts for their storage and accessibility.

In order to render the design of process mining techniques and tools inde-
pendent of the target PAIS implementation, the MXML event log format has

Irwmsnnere
PeopleSoft
II ProM Import
Framework
Subversion
Apache

Fig. 1. Positioning the ProM Import Framework in the BPI landscape

been devised. While this format has been designed to meet the requirements of
process mining tools in the best possible way, the conversion from many PAIS’s
custom formats to MXML is a non-trivial task at best.

This combination of recurring and time-consuming tasks calls for a generic
software framework, which allows the implementation of import routines to con-
centrate on the core tasks which differentiate it from others. Providing a common
base for a large number of import routines further enables to leverage the com-
plete product with marginal additional implementation cost, e.g. by providing a
common graphical user interface (GUI) within the host application.

The ProM Import Framework addresses these requirements, featuring a flex-
ible and extensible plug-in architecture. Hosted import plug-ins are provided
with a set of convenience functionality at no additional implementation cost,
thus making the development of these plug-ins efficient and fast.

This paper is organized as follows. Section 2 introduces process mining and
the ProM framework, followed by an introduction to the underlying MXML
format in Section 3. Section 4 describes requirements, design, architecture, and
implementation of the ProM Import Framework. Subsequently, Section 5 gives
an overview about target systems for which import plug-ins have already been
developed, after which Section 6 draws conclusions.

2 Process Mining and ProM

Process-aware information systems, such as WfMS, ERP, CRM and B2B sys-
tems, need to be configured based on process models specifying the order in
which process steps are to be executed [1]. Creating such models is a complex
and time-consuming task for which different approaches exist. The most tradi-
tional approach is to analyze and design the processes explicitly, making use of
a business process modeling tool. However, this approach has often resulted in
discrepancies between the actual business processes and the ones as perceived
by designers [3]; therefore, very often, the initial design of a process model is
incomplete, subjective, and at a too high level. Instead of starting with an ex-
plicit process design, process mining aims at extracting process knowledge from
“process execution logs”.

Process mining techniques such as the alpha algorithm [4] typically assume
that it is possible to sequentially record events such that each event refers to

an activity (i.e., a well-defined step in the process) and to a case (i.e., a process
instance). Moreover, there are other techniques explicitly using additional in-
formation, such as the performer and timestamp of the event, or data elements
recorded with the event (e.g., the size of an order).

This information can be used to automatically construct process models, for
which various approaches have been devised [6,8, 11, 12]. For example, the alpha
algorithm [4] can construct a Petri net model describing the behavior observed
in the log. The Multi-Phase Mining approach [9] can be used to construct an
Event-driven Process Chain (EPC) [14] based on similar information. At this
point in time there are mature tools such as the ProM framework to construct
different types of models based on real process executions [10].

So far, research on process mining has mainly focused on issues related to con-
trol flow mining. Different algorithms and advanced mining techniques have been
developed and implemented in this context (e.g., making use of inductive learn-
ing techniques or genetic algorithms). Tackled problems include concurrency
and loop backs in process executions, but also issues related to the handling of
noise (e.g., exceptions). Furthermore, some initial work regarding the mining of
other model perspectives (e.g., organizational aspects) and data-driven process
support systems (e.g., case handling systems) has been conducted [2].

3 The MXML Format

The MXML format (as in Mining XML) is a generic XML-based format suitable
for representing and storing event log data. While focusing on the core informa-
tion necessary to perform process mining, the format reserves generic fields for
extra information that is potentially provided by a PAIS.

WorkflowLog

1

|o..1 | 1.

Source Process

! .

0.0

AuditTrailEntry

0.1 1

0.1
] 0.1
Data
0.1
1 1 0.1 0.1

WorkflowModel
0.1
Attribute

Fig. 2. Schema of the MXML format (UML diagram)

EventType Timestamp I Originator

The structure of an MXML document is depicted in Figure 2, in the format
of a UML 2.0 class diagram. The root node of each MXML document is a Work-
flowLog, representing a log file. Every workflow log can potentially contain one
Source element, which is used to describe the system the log has been imported
from.

A workflow log can contain an arbitrary number of Processes as child ele-
ments. Each element of type “Process” groups events having occurred during the
execution of a specific process definition. The single executions of that process
definition are represented by child elements of type ProcessInstance. Thus, each
process instance represents one specific case in the system.

Finally, process instances each group an arbitrary number of Audit TrailEntry
child nodes, each describing one specific event in the log. Every audit trail entry
must contain at least two child elements: The WorkflowModelElement describes
the process definition element to which the event refers, e.g. the name of the task
that was executed. The second mandatory element is the EventType, describing
the nature of the event, e.g. whether a task was scheduled, completed, etc. Two
further child elements of an audit trail entry are optional, namely the Timestamp
and the Originator. The timestamp holds the exact date and time of when the
event has occurred, while the originator identifies the resource, e.g. person, which
has triggered the event in the system.

The elements described above provide the basic set of information used by
current process mining techniques. To enable the flexible extension of this for-
mat with additional information extracted from a PAIS, all mentioned elements
(except the child elements of AuditTrailEntry) can also have a generic Data child
element. The data element groups an arbitrary number of Attributes, which are
key-value pairs of strings.

4 The ProM Import Framework

While the ProM tool suite, which is based on interpreting event log data in the
MXML format, has matured over the last couple of years, there is still a gap in
actually getting these logs in the MXML format. Creating event logs in MXML
has, in the past, been mostly achieved by artificial means, i.e. simulation, or by
ad-hoc solutions which are not applicable to production use.

The ProM Import Framework steps in to bridge this gap. Its incentive is, on
the one hand, to provide an adequate and convenient means for process mining
researchers to actually acquire event logs from real production systems. On the
other hand, it gives the owners of processes, i.e. management in organizations
relying on PAIS operations, a means for productively applying process mining
analysis techniques to their installations.

The following subsection introduces the incentives and high-level goals which
have triggered the development of the ProM Import Framework. Section 4.2
derives from these goals a set of prominent design decisions, which form the
basis of the system architecture, introduced in Section 4.3.

4.1 Goals and Requirements

In order to further progress the field of process mining it is essential to adapt and
tailor both present and future techniques towards real-life usage scenarios, such
that process mining can evolve into production use. This evolution fundamentally
depends on the availability of real-life event log data, as only these can provide
the necessary feedback for the development of process mining techniques.

Conversely, the process of actually applying process mining techniques in
real world scenarios has to be eased and streamlined significantly. While several
successful projects have proved the concept, it is a necessity to improve tool
support for the entire process mining procedure from beginning to end.

A practical process mining endeavor is characterized by three, mainly inde-
pendent, phases: At first, the event log data has to be imported from the source
system. Secondly, the log data needs to be analyzed using an appropriate set
of process mining techniques. Third and last, the results gained from process
mining need thorough and domain-dependent interpretation, to figure out what
the results mean in the given context, and what conclusions can be drawn.

The process mining specialist is required in the second and third phase, while
the user, or process owner, is involved mainly in the third phase. What makes
the first phase stick out is that it is at the moment the one task which can
be performed with the least domain and process mining knowledge involved.
Therefore, it is the logical next step for the progression of process mining to
provide adequate and convenient tool support for the event log extraction phase.

A tool for supporting the event log extraction phase should thus address the
following, high-level goals:

— The tool must be relatively easy to operate, such that also less qualified
personnel can perform the task of event log extraction. This requirement
implies, that:

— By separating a configuration and adjustment phase from the extraction
phase, which can potentially run unattended, the whole process can be lever-
aged and rendered more efficient.

— While ease of use is among the top goals, it must not supersede flexibility
and configurability of the application. It must be applicable in as great an
array of PAIS installations as possible.

— The tool must provide an extensible and stable platform for future develop-
ment.

— It is advisable to provide the tool on a free basis, in order to encourage its
widespread use and lower potential barriers for user acceptance. Further,
providing the code under an open source license is expected to attract also
external developers to participate. This enables the application to benefit
from community feedback and contribution, thereby greatly leveraging the
tool and, ultimately, process mining as a whole.

The subsequent subsection introduces the design decisions which were derived
from these high-level goals.

4.2 Design Decisions

The ProM Import Framework has been developed from scratch, with the fun-
damental goal to provide a most friendly environment for developing import
filters!. Consequently, a strong focus has been on extensibility and stability of
the design, while including as much functionality as possible in the framework
itself.

This emphasis has led to six crucial design choices, which have served as the
cornerstone for developing the architecture of the system:

1. Extensibility: The design must incorporate a strict separation between gen-
eral framework code and extension components. An additional requirement
is to shift as much application logic as possible into the core framework, to
prevent code duplication and to ease the development of extensions.

2. Anonymization of log information: The framework shall enable users to
anonymize sensitive information contained in event logs in a transparent and
convenient manner, thereby providing a means to protect the log owner’s
intellectual property.

3. Flexible log-writing pipeline: A logical log-writing pipeline shall be im-
plemented, allowing to transparently chain a random number of log data-
altering algorithms between event extraction and final storage.

4. Decoupled configuration management: It shall be sufficient for an im-
port routine to specify its configuration options, and their corresponding
types. Based on this information, the framework should transparently han-
dle presenting these options to the user and allowing him to change them in
a convenient manner.

5. Decoupled dependencies management: One further requirement towards
the framework is to transparently satisfy all import routines’ external re-
quirements, e.g. database connectivity libraries.

6. Convenient and decoupled user interface: The application shall be rel-
atively easy to use, i.e. it shall not require the user to have knowledge about
process mining internals or the process of importing the event log data.

These design principles, together with the high-level goals presented in Sec-
tion 4.1, have been used as an imperative in shaping the application’s concrete
architecture, which is presented in the following subsection.

4.3 Architecture

The architecture reflects the design principles stated in Section 4.2, and thus
directly supports the high-level goals of Section 4.1. Figure 3 describes the ab-
stract architecture of the framework, identifying the major classes involved and
their mutual relationships in form of a UML 2.0 class diagram.

A flexible plug-in architecture satisfies the requirement for extensibility. For
every target PAIS implementation, one dedicated import filter is supposed to

! The distribution is available at http://promimport.sourceforge.net.

ImportFilterFrame
LogWriterDir ‘
[|

LogAnonymizer T

LogWriterZip

: \
\ " ImportController

LogFilterProxy

\
\
[
\

{ LogWriter

<<interface>>
\ '] ImportFilter
T | ThreadParent

LogFilter I ‘ Y

‘ ImportFilter - ImportFilterThread

| MessageSink FilterEnvironment L

Subversion

Flower WebSphere Staffware Cvs

CpnTools | ==+ | MxmlPipe

Fig. 3. Architecture of the ProM Import Framework, core components (UML diagram)

be implemented as a plug-in. Each import filter plug-in is contained within one
dedicated class, derived from the abstract superclass ImportFilter. From this
base class, every import filter plug-in inherits a set of methods which it can call
in its constructor, to notify the system of its configuration options and external
dependencies. For the actual import routine, the plug-in is passed an object
implementing the interface FilterEnvironment, connecting the import filter to
fundamental framework capabilities during the import procedure.

All elements of the log-writing pipeline implement the LogFilter interface,
which allows for their flexible arrangement within the pipeline at will. This in-
terface is used in a sequential manner, i.e. it incorporates methods to start and
finish log files, processes and process instances, and a method for passing au-
dit trail entries. The final endpoint of the log-writing pipeline is marked by an
object derived from the abstract class Log Writer providing basic MXML format-
ting, while actual writing to permanent storage is implemented in LogWriter’s
subclasses.

Intermediate elements of the log-writing pipeline, such as the LogAnonymizer,
are derived from the abstract class LogFilterProxy, implementing their transpar-
ent integration into the pipeline. At this point in time the anonymizer component
is the only intermediate pipeline transformer available.

The FilterManager groups the set of import filters, provides named access to
them, and provides their configuration within the framework for abstract access
and modification. The ImportController, which incorporates the filter manager,
manages the persistency of configuration data for the whole application and
transparently manages and satisfies import filters’ external requirements.

The class ImportFilterFrame implements the main graphical user interface
of the application, including basic user interaction logic.

4.4 Disk-buffered Event Sorting

The log writing pipeline in the framework expects process instances to be trans-
mitted one after another, while audit trail entries are supposed to be transmitted

in their natural order (i.e., order of occurrence). As not all import routines can
expect their events in an ordered fashion, the framework provides the plug-in
developer with a simple interface for transmitting unsorted event data, while
ensuring that the sorting takes place in a transparent, resource-efficient manner.

Partitioned
o "\ Fixed-size swap file
heap buffer

\ Ordered
output

Fig. 4. Disk-buffered sorting in the framework

As this concept implies that all audit trail entries of an import session have to
be buffered, before the first of them can be written, the process instance buffers
are implemented to swap their content partially to disk storage.

This disk-buffered sorting mechanism is described in Figure 4.

1. Every buffer is equipped with a fixed-size buffer residing in heap space. This
heap buffer is filled, as new audit trail entries are added to the process
instance buffer.

2. When the heap buffer is completely filled with audit trail entries, it needs to
be flushed. First, the events contained within the heap buffer are sorted using
a Quicksort [13] algorithm. Then, all events in the heap buffer are appended
to a swap file. Thus, the swap file contains subsequent segments, of which
each contains a fixed number of sorted audit trail entries corresponding to
one flush operation.

3. After all events have been received, the buffer needs to be emptied into the
log writing pipeline in a sorted manner. An array called the merge table,
with one cell per flush segment in the swap file, is initially filled with the
first audit trail entry from each segment. Then, a modified merge sort [15]
algorithm picks the first (in terms of logical order) event from the merge
table, writes it to the log writing pipeline, and replaces it with the next
entry from the respective flush segment in the swap file. This procedure is
repeated, until all audit trail entries from the swap file have been loaded and
the merge table is empty.

The presented disk-buffered sorting mechanism manages to effectively limit
memory usage of the application. At the same time, a performance lag due to
disk I/O is minimized by pre-buffering and sorting events in the heap buffer.
Note that the algorithm scales well with the degree, in which incoming audit
trail entries are already ordered. The less audit trail entries are in wrong order,
the faster the initial sorting can be performed.

4.5 User Interface

ProM Import Framework (V 2.0) - FLOWer

Filter name: FLOWer

Import filter for the Case Handling system FLOWer. Extracts both task
Description: and data audit trails and saves collection of individual ProM XML files
within a ZIP collection.

Ana Karla Alves de Medeiros (a.k.medeiros@tm.tue.nl)

Author(s): Christian W. Guenther (c.w.gunther@tm.tue.nl)
oo) (A I s sromme e s T
Console Filter properties
Property Value

VerboseFeedback s
LevelsCombined FALSE

LevelsSingle
MineTasks
MineData
SanitizeData
DbDriver oracle.jdbc.driver.OracleDriver
DbUser username

DbPassword
DbHosturl jdbc oracle:thin:@machine.domain.com:port:database
LevelReport

© MS Access database

© MorTraces PropertiesReport
© Test Driver PriorityList

[E3)
SR
s <

9

ExclusionList
@ st LimitDatefter

© ASML Tests LimitDateBefore
mgmt_case_raw gmt_case_raw

mgmt_case_data mgmt_case_data L
mgmi_node mgmt_node v

35/43M8

Fig. 5. User interface of the ProM Import Framework

The graphical user interface, which is depicted in Figure 5, is kept rather
simple. On the left, an overview list allows the user to pick the import filter
plug-in to be used. The upper right part shows general import filter properties,
such as name, description, and author. Further, this part includes controls for
the import procedure and the log anonymizer component.

The lower right part of the interface can either display a console view, or a
configuration pane allowing to modify configuration settings for import filters.
When the import procedure is started, the view switches to show the console,
which is used to display feedback and error messages to the user.

5 Target Systems

The number of target systems, for which import plug-ins have been developed,
has been steadily growing and diversifying since the development of the ProM
Import Framework began?. On the one hand, this development is driven by
advances in industry and practice, making ever more real-life PAIS implemen-
tations available for process mining research. On the other hand, this research
triggers new applications from within, thus extending the field of “interesting”
target systems.

In both directions, the flexible and extensible architecture of the ProM Im-
port Framework has allowed developers to quickly implement solid and versatile
solutions, taking advantage of the broad set of support functionality and clean

2 The current distribution of the framework, including all plug-ins, can be downloaded
from http://promimport.sourceforge.net.

10

user interface which the framework provides. At the time of this writing, there
exist import plug-ins for the following target systems:

FLOWer: This product is an implementation of the case handling paradigm,
which represents a very flexible, data-driven approach within the greater
family of workflow management systems.

‘WebSphere Process Choreographer: As a part of IBM’s WebSphere suite,
the Process Choreographer is used to implement high-level business pro-
cesses, based on the BPEL language.

Staffware: A workflow management system in the traditional sense, which has
an impressive market coverage.

PeopleSoft Financials: Part of the PeopleSoft suite for Enterprise Resource
Planning (ERP), this module is concerned with financial administration
within an organization.

CPN Tools: CPN Tools provides excellent tool support for modelling Colored
Petri Nets (CPN), a family of high-level Petri Nets, including a simulation
engine for executing models. An extension to CPN tools has been developed,
allowing to create synthetic event logs during a model simulation.

CVS: The process of distributed software development, as reflected in the com-
mits to a source code repository like CVS, can also be analyzed with tech-
niques from the process mining family.

Subversion: The Subversion system addresses fundamental flaws present in
CVS, providing change logs that can also be interpreted by means of process
mining.

Apache 2: Asthe access logs of web servers, like Apache 2, reveal the identity of
users from their IP, the exact time and items requested, it is straightforward
to distill process event logs from them.

As diverse as this list may read, it shows the impressive capabilities of the
framework in enabling rapid development of import capabilities. The complexity
of demanding import filters is significantly reduced by standard functionality
offered by the framework. On top of that, the existence of a powerful framework
allows for rapid prototyping of event log import capabilities.

Thereby it stimulates and supports experiments with less obvious systems,
which may otherwise have been deemed not worth the effort. These can serve
as effective and efficient means to evaluate the feasibility and usefulness of an
import effort. An excerpt of ad-hoc solutions to import custom data sets, which
were rapidly and successfully implemented using the ProM Import Framework,
includes:

— Import of event logs describing the process of patient treatments from raw
database tables provided by a Dutch hospital.

— Production unit test logs from an international manufacturer of IC chip
production equipment.

— Conversion of spreadsheets containing patient treatment processes, from an
ambulant care unit in Israel and a large Dutch hospital.

— Versatile and highly configurable import from the WFMS Adept [16], which
is known for its rich set of features addressing flexibility.

11
6 Conclusions

The MXML format is the most widely adopted standard for the storage of pro-
cess event logs in process mining research. This is most notably due to the fact
that the ProM framework, providing a wide selection of process mining analysis
techniques, relies on MXML for reading event logs.

However, due to a lack of convenient conversion tools, the availability of real-
life event logs in MXML format has not been satisfactory so far. On the one
hand, this lack of actual logs had a serious impact on the credibility of process
mining techniques with respect to real-life applications. On the other hand, these
techniques could not be used to analyze and improve industrial processes, and
could thus not be put to use in real-life organizations.

In this paper, we have presented the ProM Import Framework, which is effec-
tively bridging this gap. It represents a typical enabling technology, connecting
formerly separate areas to their mutual benefit. In its current release, this appli-
cation already features import plug-ins supporting seven process-aware informa-
tion systems. Most notably, the support for commercial systems like FLOWer,
WebSphere, and Staffware covers an immense installed base of users. Additional
functionality that has been shifted into the framework makes the development
of additional import plug-ins a convenient, time-effective task.

We hold this extension to the process mining tool landscape to be crucial with
respect to the quality and credibility of process mining research. Real-life event
log data often exhibits awkward and strange properties, which are unforeseen on
a theoretical level, and which have to be taken into account in order to obtain
meaningful results. It is only after process mining techniques have been proven
to successfully analyze real-life logs, and thus to benefit businesses in their daily
operations, that these techniques can grow into productive tools for business
process optimization.

7 Acknowledgements

This research is supported by the Technology Foundation STW, applied sci-
ence division of NWO and the technology programme of the Dutch Ministry of
Economic Affairs.

References

1. W.M.P. van der Aalst and K.M. van Hee. Workflow Management: Models, Methods,
and Systems. MIT press, Cambridge, MA, 2002.

2. W.M.P. van der Aalst and M. Song. Mining Social Networks: Uncovering Interac-
tion Patterns in Business Processes. In J. Desel, B. Pernici, and M. Weske, editors,
International Conference on Business Process Management (BPM 2004), volume
3080 of Lecture Notes in Computer Science, pages 244—260. Springer-Verlag, Berlin,
2004.

12

10.

11.

12.

13.
14.

15.

16.

W.M.P. van der Aalst, B.F. van Dongen, J. Herbst, L. Maruster, G. Schimm, and
A.J.M.M. Weijters. Workflow Mining: A Survey of Issues and Approaches. Data
and Knowledge Engineering, 47(2):237-267, 2003.

W.M.P. van der Aalst, A.J.M.M. Weijters, and L. Maruster. Workflow Mining:
Discovering Process Models from Event Logs. IEEE Transactions on Knowledge
and Data Engineering, 16(9):1128-1142, 2004.

W.M.P. van der Aalst, M. Weske, and D. Griinbauer. Case Handling: A New
Paradigm for Business Process Support. Data and Knowledge FEngineering,
53(2):129-162, 2005.

R. Agrawal, D. Gunopulos, and F. Leymann. Mining Process Models from Work-
flow Logs. In Sizth International Conference on Extending Database Technology,
pages 469-483, 1998.

Pallas Athena. Case Handling with FLOWer: Beyond workflow. Pallas Athena
BV, Apeldoorn, The Netherlands, 2002.

J.E. Cook and A.L. Wolf. Discovering Models of Software Processes from Event-
Based Data. ACM Transactions on Software Engineering and Methodology,
7(3):215-249, 1998.

B.F. van Dongen and W.M.P. van der Aalst. Multi-Phase Process Mining: Building
Instance Graphs. In P. Atzeni, W. Chu, H. Lu, S. Zhou, and T.W. Ling, editors, In-
ternational Conference on Conceptual Modeling (ER 2004), volume 3288 of Lecture
Notes in Computer Science, pages 362—376. Springer-Verlag, Berlin, 2004.

B.F. van Dongen, A.K. de Medeiros, H.M.W. Verbeek, A.J.M.M. Weijters, and
W.M.P. van der Aalst. The prom framework: A new era in process mining tool
support. In G. Ciardo and P. Darondeau, editors, Proceedings of the 26th Interna-
tional Conference on Applications and Theory of Petri Nets (ICATPN 2005), vol-
ume 3536 of Lecture Notes in Computer Science, pages 444-454. Springer-Verlag,
Berlin, 2005.

D. Grigori, F. Casati, M. Castellanos, U. Dayal, M. Sayal, and M.C. Shan. Business
process intelligence. Computers in Industry, 53(3):321-343, 2004.

J. Herbst and D. Karagiannis. An Inductive Approach to the Acquisition and
Adaptation of Workflow Models. In M. Ibrahim and B. Drabble, editors, Proceed-
ings of the IJCAI’99 Workshop on Intelligent Workflow and Process Management:
The New Frontier for Al in Business, pages 52-57, Stockholm, Sweden, August
1999.

C.A.R. Hoare. Algorithm 64: Quicksort. Commun. ACM, 4(7):321, 1961.

G. Keller, M. Niittgens, and A.W. Scheer. Semantische Processmodellierung auf
der Grundlage Ereignisgesteuerter Processketten (EPK). Veroffentlichungen des
Instituts fir Wirtschaftsinformatik, Heft 89 (in German), University of Saarland,
Saarbriicken, 1992.

D.E. Knuth. The Art of Computer Programming, volume 3: Sorting and Searching.
Addison Wesley, Reading, MA, USA, 2 edition, 1998.

M. Reichert and P. Dadam. ADEPTflex: Supporting Dynamic Changes of
Workflow without Loosing Control. Journal of Intelligent Information Systems,
10(2):93-129, 1998.

