
Process Equivalence: Comparing Two Process
Models Based on Observed Behavior

W.M.P. van der Aalst, A.K. Alves de Medeiros, and A.J.M.M. Weijters

Department of Technology Management, Eindhoven University of Technology
P.O. Box 513, NL-5600 MB, Eindhoven, The Netherlands.

{w.m.p.v.d.aalst,a.k.medeiros,a.j.m.m.weijters}@tm.tue.nl

Abstract. In various application domains there is a desire to compare
process models, e.g., to relate an organization-specific process model to
a reference model, to find a web service matching some desired service
description, or to compare some normative process model with a pro-
cess model discovered using process mining techniques. Although many
researchers have worked on different notions of equivalence (e.g., trace
equivalence, bisimulation, branching bisimulation, etc.), most of the ex-
isting notions are not very useful in this context. First of all, most equiva-
lence notions result in a binary answer (i.e., two processes are equivalent
or not). This is not very helpful, because, in real-life applications, one
needs to differentiate between slightly different models and completely
different models. Second, not all parts of a process model are equally
important. There may be parts of the process model that are rarely acti-
vated while other parts are executed for most process instances. Clearly,
these should be considered differently. To address these problems, this pa-
per proposes a completely new way of comparing process models. Rather
than directly comparing two models, the process models are compared
with respect to some typical behavior. This way we are able to avoid the
two problems. Although the results are presented in the context of Petri
nets, the approach can be applied to any process modeling language with
executable semantics.

Keywords: Process Equivalence, Petri Nets, Process Mining.

1 Introduction

Today one can find a wide variety of process models in any large organization
[10]. Typical examples are:

– reference models (e.g., the EPC models in the SAP R/3 reference model)
– workflow models (e.g., models used for enactment in systems like Staffware,

FLOWer, FileNet, Oracle BPEL, etc.),
– business process models/simulation models (e.g., using tools such as ARIS,

Protos, Arena, etc.),
– interface/service descriptions (e.g., the Partner Interface Processes in Roset-

taNet, the abstract BPEL processes in the context of web services, choreog-
raphy descriptions using WSCDL), or

– process models discovered using process mining techniques.

Given the co-existence of different models and different types of models, it is
interesting to be able to compare process models. This applies to different lev-
els ranging from models at the business level to models at the level of software
components (e.g., when looking for a software component matching some specifi-
cation). To compare process models in a meaningful manner, we need to assume
that these models have semantics. Moreover, we need to assume some equivalence
notion (When are two models the same?) People working on formal methods have
proposed a wide variety of equivalence notions [1, 11, 13], e.g., two models may
be identical under trace equivalence but are different when considering stronger
notions of equivalence (e.g., bisimulation). Unfortunately, most equivalence no-
tions provide a “true/false” answer. In reality there will seldom be a perfect fit.
Hence, we are interested in the degree of similarity, e.g., a number between 0
(completely different) and 1 (identical). In other to do so, we need to quantify
the differences. Here it seems reasonable to put more emphasis on the frequently
used parts of the model.

A

B DC

E

p1

p2 p3

p5p4

p6

F

(a) (b) (d)

legend:
A=register request
B=book train
C=book flight
D=book hotel
E=send invoice
F=change hotel

(e)

frequencies:
40: ABDE
85: ACDE
15: ADBE
20: ADCE

(f)

A

B DC

E

p1

p2

p5p4

p6

A

DC

E

p1

p2 p3

p5p4

p6

A

B DC

E

p1

p2 p3

p5p4

p6

(c)

Fig. 1. Running example.

To clarify the problem, let us consider Figure 1 where four process models
(expressed in terms of Petri nets [16]) are depicted. These models describe the
booking of a trip, see the legend for the interpretation of the various transitions

in the Petri nets, e.g., C refers to the booking of a flight. Clearly, these models
are similar. However, using classical equivalence notions all models are consid-
ered different. For example, in process (a) it is possible to have the execution
sequence ADBE while this sequence is not possible in (b) and (c). Moreover, the
Petri net in Figure 1(d) allows for ACDFDE which is not possible in any of the
other models. Note that we focus on the active parts of the net (i.e., the transi-
tions) rather than passive things such as places. Although classical equivalence
notions consider the four models to be different, it is clear that some are more
similar than other. Therefore, we want to quantify “equality”, i.e., the degree of
similarity. A naive approach could be to simply compare the sets of transition la-
bels, e.g., nets (a) and (b) have the same transition labels: {A, B,C, D,E} while
(c) has a smaller set (without B) and (d) has a bigger set (with F). However,
models with similar labels can have completely different behaviors (cf. (a) and
(b) in Figure 1). Therefore, it is important to consider causal dependencies and
the ordering of activities, e.g., to distinguish between parallelism and choice. An-
other approach could be to consider the state spaces or sets of possible traces of
both models. However, in that case the problems are that there may be infinitely
many traces/states and that certain paths are more probable.

In this paper, we investigate these problems and propose a completely new
approach. The main idea is to compare two models relative to an event log con-
taining “typical behavior”. This solves several problems when comparing dif-
ferent models. Even models having infinitely many execution sequences can be
compared and automatically the relevance of each difference can be taken into
account. Moreover, as we will show, we can capture the moment of choice and
analyze causalities that may not be explicitly represented in the log.

To give some initial insights in our approach, consider the set of traces listed
in Figure 1(f). Each trace represents an execution sequence that may or may not
fit in the models at hand. Moreover, frequencies are given, e.g., in the event log
trace ABDE occurred 40 times, i.e., there were 40 process instances having this
behavior. Figure 1(f) represents some “typical behavior”. This may be obtained
using simulation of some model or it could be obtained by observing some real-
life system/process. All 160 traces fit into the first Petri net (cf. Figure 1(a)),
moreover, this Petri net does not allow for any execution sequences not present in
the log. In this paper, we will quantify a notion of fitness. However, our primary
objective is not to compare an event log and a process model, but to compare
models in the presence of some event log as shown in Figure 1(f). Compare for
example models (a) and (b): in a substantial number of cases (35) D precedes
B or C. If we compare (a) and (c) based on the log, we can see that for 55
cases there is a difference regarding the presence of B. We will show that we can
quantify these differences using the event log. It is important to note that we
do not only consider full traces, e.g., if we compare Figure 1(a) with a Petri net
where D is missing in the model, there is still some degree of similarity although
none of the traces still fits (they all contain D).

The remainder is organized as follows. After providing a brief overview of
related work, we introduce some preliminaries required to explain our approach.

Although we use Petri nets to illustrate our approach, any other process model
with some local execution semantics (e.g., EPCs, activity diagrams, BPMN, etc.)
could be used. In Section 4, we present two naive approaches (one based on the
static structure and one based on a direct comparison of all possible behaviors)
and discuss their limitations. Then, in Section 5 we present the core results of
this paper. We will show that we can define precision and recall measures using
event logs containing typical behavior. These notions have been implemented in
ProM [9]. Finally, we conclude the paper.

2 Overview of Various Equivalence Notations and
Related Work

In the literature, many equivalence notions have been defined for process models.
Most equivalence notions focus on the dynamics of the model and not on the
syntactical structure (e.g., trace equivalence and bisimulation [1, 11, 13]).

This paper uses Petri nets as a theoretical foundation [16]. In [15] an overview
is given of equivalence notions in the context of Petri nets. See also [5] for more
discussions on equivalence in the context of nets. Most authors translate a Petri
net to a transition system to give it semantics. However, there are also authors
that emphasize the true-concurrency aspects when giving Petri nets semantics.
For example, in [7] the well-known concept of occurrence nets (also named runs)
are used to reason about the semantics of Petri nets.

Any model with formal/executable semantics (including Petri nets) can be
translated to a (possibly infinite) transition system. If we consider transition
systems, many notions of equivalence have been identified. The weakest notion
considered is trace equivalence: two process models are considered equivalent
if the sets of traces they can execute are identical. Trace equivalence has two
problems: (1) the set of traces may be infinite and (2) trace equivalence does
not capture the moment of choice. The first problem can be addressed in various
ways (e.g., looking at finite sets of prefixes or comparing transition systems
rather than traces). The second problem requires stronger notions of equivalence.
Bisimulation and various kinds of observation equivalence [13] attempt to capture
the moment of choice. For example, there may be different processes having
identical sets of traces {ABC, ABD}, e.g., the process where the choice for C or
D is made after executing A or the process where the same choice is made only
after executing B. Branching bisimilarity [11] is a slightly finer equivalence notion
than the well-known observation equivalence [13]. A comparison of branching
bisimilarity, observation equivalence, and a few other equivalences on processes
with silent behavior can be found in [11]. Based on these equivalence relations
also other relations have been introduced, e.g., the four inheritance relations in
[1] are based on branching bisimilarity.

All references mentioned so far, aim at a “true/false” answer. Moreover, they
do not take into account that some parts of the process may be more important
than others. Few people (e.g., Prakash Panangaden and Jose Desharnais [8])
have been working on probabilistic bisimulation using labeled Markov processes

rather than labeled transition systems. See [8] for an excellent overview of this
work and also links to the probability theory community working on metrics on
spaces of measures. In this paper, we use a different approach. We do not assume
that we know any probabilities. Instead we assume that we have some example
behavior than can serve as a basis for a comparison of two models. Also related is
the work on metric labeled transition systems where the “behavioral difference”
between states is a non-negative real number indicating the similarity between
those states [6]. This way one can define a behavioral pseudometric to compare
transition systems as shown in [6]. Note that this approach very much depends
on an explicit notion of states and it is not clear how this can be applied to a
practical, mainly activity oriented, setting.

As far as we know, this paper is the first to propose the use of “typical
behavior” recorded in event logs as an aid for comparison. This makes the work
quite different from the references mentioned in this section. Moreover, we show
that this can be used in the context of process mining [2, 4].

3 Preliminaries

This section introduces some of the basic mathematical and Petri-net related
concepts used in the remainder.

3.1 Multi-sets, Sequences, and Matrices

Let A be a set. IB(A) = A → IN is the set of multi-sets (bags) over A, i.e.,
X ∈ IB(A) is a multi-set where for each a ∈ A: X(a) denotes the number of
times a is included in the multi-set. The sum of two multi-sets (X + Y), the
difference (X − Y), the presence of an element in a multi-set (x ∈ X), and
the notion of subset (X ≤ Y) are defined in a straightforward way and they
can handle a mixture of sets and multi-sets. The operators are also robust with
respect to the domains of the multi-sets, i.e., even if X and Y are defined on
different domains, X +Y , X−Y , and X ≤ Y are defined properly by extending
the domain where needed. |X| = ∑

a∈A X(a) is the size of some multi-set X over
A.

For a given set A, A∗ is the set of all finite sequences over A. A finite se-
quence over A of length n is a mapping σ ∈ {1, . . . , n} → A. Such a sequence is
represented by a string, i.e., σ = 〈a1, a2, . . . , an〉 where ai = σ(i) for 1 ≤ i ≤ n.
hd(σ, k) = 〈a1, a2, . . . , ak〉, i.e., the sequence of just the first k elements. Note
that hd(σ, 0) is the empty sequence.

Every multi-set can be represented as a vector, i.e., X ∈ IB(A) can be repre-
sented as a row vector (X(a1), X(a2), . . . , X(an)) where a1, a2, . . . ,an enumerate
the domain of X. (X(a1), X(a2), . . . , X(an))T denotes the corresponding column
vector (T transposes the vector). Assume X is an k × ` matrix, i.e., a matrix
with k rows and ` columns. A row vector can be seen as 1 × ` matrix and a
column vector can be seen as a k × 1 vector. X(i, j) is the value of the element
in the ith row and the jth column. Let X be an k × ` matrix and Y an ` ×m

matrix. The product X · Y is the product of X and Y yielding a k ×m matrix,
where X · Y (i, j) =

∑
1≤q≤` X(i, q)Y (q, j). The sum of two matrices having the

same dimensions is denoted by X + Y .
For any sequence σ ∈ {1, . . . , n} → A over A, the Parikh vector −→σ maps

every element a of A onto the number of occurrences of a in σ, i.e., −→σ ∈ IB(A)
where for any a ∈ A: −→σ (a) =

∑
1≤i≤n if σ(i) = a then 1 else 0.

3.2 Petri nets

This subsection briefly introduces some basic Petri net terminology [16] and
notations used in the remainder.

Definition 1 (Petri net). A Petri net is a triple (P, T, F). P is a finite set of
places, T is a finite set of transitions (P ∩ T = ∅), and F ⊆ (P × T) ∪ (T × P)
is a set of arcs (flow relation).

Figure 1 shows four Petri nets. Places are represented by circles and transitions
are represented by squares.

For any relation/directed graph G ⊆ A × A we define the preset •a =
{a1 | (a1, a) ∈ G} and postset a• = {a2 | (a, a2) ∈ G} for any node a ∈ A.
We use G• a or a

G• to explicitly indicate the context G if needed. Based on the
flow relation F we use this notation as follows. •t denotes the set of input places
for a transition t. The notations t•, •p and p• have similar meanings, e.g., p• is
the set of transitions sharing p as an input place. Note that we do not consider
multiple arcs from one node to another. In the Petri net shown Figure 1(d):
p5• = {E, F}, •p5 = {D}, A• = {p2, p3}, •A = {p1}, etc.

At any time a place contains zero or more tokens, drawn as black dots. The
state of the Petri net, often referred to as marking, is the distribution of tokens
over its places, i.e., M ∈ IB(P). In each of the four Petri nets shown in Figure 1
only one place is initially marked (p1). Note that more places could be marked
in the initial state and that places can be marked with multiple tokens.

We use the standard firing rule, i.e., a transition t is said to be enabled if and
only if each input place p of t contains at least one token. An enabled transition
may fire, and if transition t fires, then t consumes one token from each input
place p of t and produces one token for each output place p of t. For example, in
Figure 1(a), A is enabled and firing A will result in the state marking place p2
and p3. In this state both B, C, and D are enabled. If B fires, C is disabled, but
D remains enabled. Similarly, if C fires, B is disabled, but D remains enabled,
etc. After firing 4 transitions in Figure 1(a) the resulting state marks p6 with
one token (independent of the order of B or C). In the following definition, we
formalize these notions.

Definition 2 (Firing rule). Let N = (P, T, F) be a Petri net and M ∈ IB(P)
be a marking.

– enabled(N, M) = {t ∈ T | M ≥ •t} is the set of enabled transitions,
– result(N, M, t) = (M − •t) + t• is the state resulting after firing t ∈ T ,

– (N, M)[t〉(N,M ′) denotes that t is enabled in (N,M) (i.e., t ∈ enabled(N,M))
and that firing t results in marking M ′ (i.e., M ′ = result(N, M, t)).

(N, M)[t〉(N, M ′) defines how a Petri net can move from one marking to another
by firing a transition. We can extend this notion to firing sequences. Suppose
σ = 〈t1, t2, . . . , tn〉 is a sequence of transitions present in some Petri net N with
initial marking M . (N,M)[σ〉(N, M ′) means that there is also a sequence of
markings 〈M0,M1, . . . , Mn〉 where M0 = M , Mn = M ′, and for any 0 ≤ i <
n: (N, Mi)[ti+1〉(N, Mi+1). Using this notation we define the set of reachable
markings R(N, M) as follows: R(N, M) = {M ′ ∈ IB(P) | ∃σ(N, M)[σ〉(N, M ′)}.
Note that M ∈ R(N, M) because M is reachable via the empty sequence.

Note that result(N,M, t) does not need to yield a multi-set if t is not enabled
in marking M because some places may have a negative number of tokens.
Although this is not allowed in a Petri net (only enabled transitions can fire),
for technical reasons it is sometimes convenient to use markings that may have
“negative tokens”. This becomes clear when considering the incidence matrix of
a Petri net.

Definition 3 (Incidence matrix). Let N = (P, T, F) be a Petri net and M ∈
IB(P) be a marking.

– Ñ is the incidence matrix of N , i.e., Ñ is a |P |×|T | matrix with Ñ(p, t) = 1
if (p, t) 6∈ F and (t, p) ∈ F , Ñ(p, t) = −1 if (p, t) ∈ F and (t, p) 6∈ F , and
Ñ(p, t) = 0 in all other cases,

– result(N, M, σ) = M + Ñ · −→σ is the state resulting after firing σ ∈ T ∗,1

– enabled(N, M, σ) = enabled(N, result(N, M, σ)) is the set of enabled transi-
tions after firing σ ∈ T ∗.

The incidence matrix of a Petri net can be used for different types of analysis,
e.g., based on Ñ it is possible to efficiently calculate place and transition invari-
ants and to provide minimal (but not sufficient) requirements for the reachability
of a marking. It is important to see that result(N, M, σ) does not need to yield a
valid marking, i.e., there may be a place p such that result(N, M, σ)(p) < 0 indi-
cating a negative number of tokens. If (N, M)[σ〉(N, M ′), then result(N, M, σ) =
M ′. However, the reverse does not need to be the case. enabled(N, M, σ) cal-
culates which transitions are enabled after firing each transition −→σ times using
function result and the earlier defined function enabled (cf. Definition 2). It may
be the case that while executing σ starting from (N, M), transitions were forced
to be fired although they were not enabled. As a result, places may get a neg-
ative number of tokens. The reason we need such concepts is because we will
later compare Petri nets with some observed behavior. In such situations, we
need to be able to deal with transitions that were observed even if they were not
enabled.
1 Note that σ does not need to be enabled, i.e., transitions are forced to fire even if

they are not enabled. Also note that we do not explicitly distinguish row and column
vectors.

4 Naive Approaches

In this paper we propose to compare two processes on the basis on some event log
containing typical behavior. However, before presenting this approach in detail,
we first discuss some naive approaches.

4.1 Equivalence of Processes Based on their Structure

When humans compare process models they typically compare the graphical
structure, i.e., do the same activities (transitions in Petri net terms) appear
in both models and do they have similar connections. Clearly, the graphical
structure may be misleading: two models that superficially appear similar may
be very different. Nevertheless, the graphical structure is an indicator that may
be used to quantify similarity. Let us abstract from the precise split and join
behavior (i.e., we do not distinguish between AND/XOR-splits/joins). In other
words, we derive a simple graph where each node represents an activity and each
arc some kind of connection. For example, the Petri net shown in Figure 1(a)
is reduced to a graph with nodes A, B, C, D and E, and arcs (A,B), (A,C),
(A,D), (B,E), (C, E) and (D, E). For the other Petri nets models in Figure 1
a similar graph structure can be derived. It is easy to see that each of the
four process models has a different graph structure. However, there are many
overlapping connections, e.g., all models have arc (A,C). This suggests that
from a structural point of view the models are not equivalent but similar. When
quantifying the overlap relative to the whole model we can take the perspective
of the first model or the second model. This leads to the definition of precision
and recall as specified below.2

Definition 4 (Structural Precision and Recall). Let N1 = (P1, T1, F1) and
N2 = (P2, T2, F2) be two Petri nets. Using C1 = {(t1, t2) ∈ T1 × T1 |t1 N1• ∩ N1•
t2 6= ∅} and C2 = {(t1, t2) ∈ T2 × T2 |t1 N2• ∩ N2• t2 6= ∅}, we define:

precisionS(N1, N2) =
|C1 ∩ C2|
|C2| recallS(N1, N2) =

|C1 ∩ C2|
|C1|

precisionS(N1, N2) is the fraction of connections in N2 that also appear in N1. If
this value is 1, the precision is high because all connections in the second model
exist in the first model. recallS(N2, N1) is the fraction of connections in N1 that
also appear in N2. If this value is 1, the recall is high because all connections
in the first model appear in the second model. Note that here we think of N1

as the “original model” and N2 as some “new model” that we want to compare
with the original one.

Let Na, Nb, Nc, and Nd be the four Petri nets shown in Figure 1. precisionS

(Na, Nb) = 3
5 = 0.6. recallS(Na, Nb) = 3

6 = 0.5. Note that precisionS(N1, N2) =
recallS(N2, N1) by definition for any pair of Petri nets N1 and N2. Therefore,

2 These metrics are an adaptation of the precision and recall metrics in [14].

we only list some precision values: precisionS(Na, Nb) = 0.6, precisionS(Na,
Nc) = 4/4 = 1.0, precisionS(Na, Nd) = 6/8 = 0.75, precisionS(Nb, Na) = 3/6 =
0.5, precisionS(Nb, Nc) = 2/4 = 0.5, precisionS(Nb, Nd) = 3/8 = 0.375, etc. If
we consider Na to be the initial model, then Nc has the best precision of the
other three models because all connections in Nc also appear in Na. Moreover,
if we consider Na to be the initial model, then Nd has the best recall because
all connections in Na also appear in Nd.

p6

(a) (b) (c) (d)

A

CB

D

p1

p2 p3

p5p4

p6

A

CB

D

p1

p2

p3

p4

A

CB

D

p1

p2 p3

p5p4

p7

A

CB

D

p1

p2 p3

p4

p5

A

Fig. 2. Although the connection structures of (a) and (b) are similar they are quite
different in terms of behavior. Moreover, the connection structure of (a) and (c) differs
while the corresponding behaviors are identical.

The precision and recall figures for the four process models in Figure 1 seem
reasonable. Unfortunately, models with nearly identical connections may be quite
different as is shown in Figure 2. Let Na, Nb, Nc, and Nd be the four Petri nets
shown in Figure 2.3 Although precisionS(Na, Nb) = recallS(Na, Nb) = 1, Na and
Nb are clearly different. In Na transitions B and C are executed concurrently
while in Nb a choice is made between these two transitions. However, although
Na and Nc are structurally different (precisionS(Na, Nc) = 4/5 = 0.8), they have
identical behaviors. These examples show that Definition 4 does not provide a
completely satisfactory answer when it comes to process equivalence. Neverthe-
less, precisionS(N1, N2) and recallS(N1, N1) can be used as rough indicators for
selecting a similar model, e.g., in a repository of reference models.
3 Note that strictly speaking Nd does not correspond to a Petri net as defined in

Definition 1, because there are two transitions A. However, it is easy to extend
Definition 1 to so-called labeled Petri nets where different transitions can have the
same label.

4.2 Equivalence of Processes Based on their State Space or Traces

Since process models with a similar structure may have very different behaviors
and models with different structures can have similar behaviors, we now focus
on quantifying the equivalence of processes based on their actual behaviors. We
start with a rather naive approach where we define recall and precision based
on the full firing sequences of two marked Petri nets.

Definition 5 (Naive Behavioral Precision and Recall). Let N1 = (P1, T1, F1)
and N2 = (P2, T2, F2) be two Petri nets having initial markings M1 and M2

respectively. Moreover, let the corresponding two sets of possible full firing se-
quences be finite:
S1 = {σ ∈ T ∗1 | ∃M ′∈IB(P1)

(N1,M1)[σ〉(N1,M
′) ∧ enabled(N1,M

′) = ∅} and
S2 = {σ ∈ T ∗2 | ∃M ′∈IB(P2)

(N2,M2)[σ〉(N2,M
′) ∧ enabled(N2, M

′) = ∅}.

precisionB((N1,M1), (N2, M2)) =
|S1 ∩ S2|
|S2|

recallB((N1, M1), (N2,M2)) =
|S1 ∩ S2|
|S1|

Clearly, the initial markings of N1 and N2 are highly relevant. However, if these
are clear from the context, we do not explicitly mention these, i.e., precisionB

(N1, N2) = precisionB((N1,M1), (N2, M2)) and recallB(N1, N2) = recallB((N1,
M1), (N2,M2)).

Let Na, Nb, Nc, and Nd be the four Petri nets shown in Figure 2 and Sa, Sb,
Sc, and Sd their corresponding full firing sequences. Sa = {〈A,B, C, D〉, 〈A,C,B,
D〉}, Sb = {〈A, B,D〉, 〈A,C, D〉}, Sc = Sa, and Sd = Sb. Hence, precisionB(Na,
Nb) = 0 and recallB(Na, Nb) = 0, i.e., the models are considered to be com-
pletely different because there are no identical full firing sequences possible in
both models. However, precisionB(Na, Nc) = 1 and recallB(Na, Nc) = 1 and
precisionB(Nb, Nd) = 1 and recallB(Nb, Nd) = 1.

We can also consider the four process models in Figure 1. The fourth model
(Nd) has an infinite set of full firing sequences. Therefore, we focus on the first
three models: Na, Nb, and Nc. Let us first compare Na and Nb: precisionB(Na, Nb)
= 2/2 = 1 and recallB(Na, Nb) = 2/4 = 0.5, i.e., all full firing sequences in Nb

are possible in Na but not the other way around. Although Nc differs from
Nb, the precision and recall values are identical when comparing with Na, i.e.,
precisionB(Na, Nc) = 1 and recallB(Na, Nc) = 0.5.

These examples show that Definition 5 provides another useful quantification
of equivalence quite different from Definition 4. However, also this quantification
has a number of problems:

1. The set of full firing sequences needs to be finite. This does not need to be
the case as is illustrated by the Petri net shown in Figure 1(d).

2. The models need to be terminating, i.e., it should be possible to end in a
dead marking representing the completion of the process. Note that models
may have unintentional livelocks or are designed to be non-terminating. For
such models, we cannot apply Definition 5 in a meaningful way.

3. Definition 5 does not take into account differences in importance (i.e., fre-
quently visited parts of the model are probably more important). For ex-
ample, certain full firing sequences may have a very low probability in com-
parison to other sequences that occur more frequent. Clearly this should be
taken into account.

4. Fourth, Definition 5 appears to be too rigid, i.e., one difference in a full firing
sequence invalidates the entire sequence. In Figure 2 precisionB(Na, Nb) = 0
and recallB(Na, Nb) = 0 although both models always start with A and end
with D.

5. The moment of choice is not taken into account in Definition 5, i.e., essen-
tially trace equivalence is used as a criterion. Many authors [1, 11, 13] have
emphasized the importance of preserving the moment of choice by defining
notions such as observation equivalence, bisimilarity, branching/weak bisim-
ilarity, etc. To illustrate the importance of preserving the moment of choice,
consider Nb and Nd depicted in Figure 2. Although precisionB(Nb, Nd) = 1
and recallB(Nb, Nd) = 1, most environments will be able to distinguish both
processes. In Nb in Figure 2(b) there is no state where only B or just C is
enabled. However, such states exist in Nd in Figure 2(d), e.g., there can be
a token in p2 enabling only B. Suppose that B and C correspond to the
receipt of different messages sendt by some environment. In this case, Nd

potentially deadlocks, e.g., a message for B cannot be handled because the
system is waiting for C (i.e., p3 is marked). Such a deadlock is not possible
in Nb.

The problems listed above show that similarity metrics based on criteria directly
comparing all possible behaviors in terms of traces are of little use from a practi-
cal point of view. An alternative approach is to compare the state spaces rather
than the sets of traces. For example, trying to establish a bisimulation relation
where states are related in such a way that any move of one process model can
be followed by the other one and vice versa [1, 11, 13]. However, this would only
solve some of the problems listed above. Moreover, the notion of state often only
exists implicitly and it is very difficult to extend more refined equivalence no-
tions to include probabilities (cf. [6, 8]). Therefore, we propose another approach
as presented in the next section.

5 Equivalence of Processes in the Context of Observed
Behavior

To overcome the problems highlighted so far, we propose an approach that uses
exemplary behavior to compare two models. This exemplary behavior can be
obtained on the basis of real process executions (in case the process already

exists), user-defined scenarios, or by simply simulating one of the two models
(or both). We assume this exemplary behavior to be recorded in an event log.

Definition 6 (Event log). An event log L is a multi-set of sequences on some
set of T , i.e., L ∈ IB(T ∗).

An event log can be considered as a multi-set of full firing sequences (cf. Defi-
nition 5). However, now these sequences may exist independent of some model
and the same sequence may occur multiple times.

Before comparing two process models using an event log, we first define the
notion of fitness. This notion is inspired by earlier work on genetic mining and
conformance checking [12, 17].

Definition 7 (Fitness). Let (N, M) be a marked Petri net and let L ∈ IB(T ∗)
be a multi-set over T .4

fitness((N, M), L) =

(
∑

σ∈L

L(σ)
|σ| |{i ∈ {0, |σ| − 1} | σ(i + 1) ∈ enabled(N, M, hd(σ, i))}|)/|L|

fitness((N,M), L) yields a number between 0 and 1. Note that per sequence
σ ∈ L we calculate the number of times that a transition that was supposed
to fire according to σ was actually enabled. This is divided by |σ| to yield a
number between 0 and 1 per sequence. This number shows the “fit” of σ. This
is repeated for all σ ∈ L. Since the same sequence may appear multiple times
in L (i.e., L(σ) > 1), we multiply the result for σ with L(σ) and divide by
|L|. Definition 7 assumes that |L| > 0 and |σ| > 0. This is not a fundamental
restriction, if such strange cases occur (empty event log or an empty sequence),
then we can simply assume that 0/0 = 0.

As an example, consider the event log L shown in Figure 1(f) containing 160
traces. Clearly, fitness(Na, L) = 1 because all sequences in L can be reproduced
by Na.5 Moreover, fitness(Nb, L) = (40 + 85 + (15 ∗ 3/4) + (20 ∗ 3/4))/160 =
0.945, fitness(Nc, L) = ((40 ∗ 1/2) + 85 + (15 ∗ 1/2) + 20)/160 = 0.828, and
fitness(Nd, L) = 1. These examples show that Definition 7 matches our intuitive
understanding of fitness. It is important to note that transitions are “forced”
to fire even if they are not enabled, cf. Definition 3. Moreover, a particular se-
quence can be “partly fitting”, e.g., if we parse sequence 〈A,B, D,E〉 using
Nc in Figure 1(c), half of the sequence fits. When forcing the execution of
〈A,B, D,E〉 using Nc, A is initially enabled. However, B is not enabled and
does not even exist in the model. Nevertheless, in the resulting state D is still
enabled. However, after firing D, the last event in the sequence (E) is not en-
abled. Hence, only two of the four events in 〈A, B,D, E〉 are actually enabled,
4 Note that not all events in the log need to correspond to actual transitions. These

events are simply ignored, i.e., we assume enabled(N, M, σ) to be defined properly
even if not all transitions in σ actually appear in N .

5 Note that again we omit the initial marking if it is clear from the context, i.e.,
fitness(Na, L) = fitness((Na, [p1]), L).

resulting in a fitness of 0.5. Note that it is better to look at individual events
rather than considering whole sequences like in Definition 5. Using Definition 7,
fitness(Nc, L) = 0.828. However, if we would focus on completely fitting se-
quences, fitness(Nc, L) = (0 + 85 + 0 + 20)/160 = 0.656, i.e., considerably lower
because partly fitting are ignored.

Inspired by the definition of fitness, we would like to compare two models
on the basis of a log. A straightforward extension of Definition 7 to two models
is to compare the overlap in fitting or partially fitting sequences. However, in
this case one only considers the actual behavior contained in the log. Therefore,
we go one step further and look at the enabled transitions in both models and
compare these, i.e., we do not just check whether an event in some sequence is
possible, but also take into account all enabled transitions at any point in the
sequence. This idea results in the following definition of precision and recall.

Definition 8 (Behavioral Precision and Recall). Let (N1,M1) and (N2,M2)
be marked Petri nets and let L ∈ IB(T ∗) be a multi-set over T .6

precision((N1,M1), (N2, M2), L) =

(
∑

σ∈L

L(σ)
|σ| (

|σ|−1∑

i=0

|enabled(N1,M1, hd(σ, i)) ∩ enabled(N2,M2, hd(σ, i))|
|enabled(N2,M2, hd(σ, i))|))/|L|

recall((N1,M1), (N2,M2), L) =

(
∑

σ∈L

L(σ)
|σ| (

|σ|−1∑

i=0

|enabled(N1,M1, hd(σ, i)) ∩ enabled(N2,M2, hd(σ, i))|
|enabled(N1,M1, hd(σ, i))|))/|L|

To explain the concept consider a log L = {(〈A,B, C, D〉, 2), (〈A,C, B, D〉, 1)}
and the first three Petri nets shown in Figure 2. precision(Na, Nb, L) = ((2/4 ∗
(1/1 + 2/2 + 0/1 + 1/1)) + (1/4 ∗ (1/1 + 2/2 + 0/1 + 1/1)))/3 = 0.75 and
recall(Na, Nb, L) = ((2/4 ∗ (1/1 + 2/2 + 0/1 + 1/1)) + (1/4 ∗ (1/1 + 2/2 + 0/1 +
1/1)))/3 = 0.75. precision(Na, Nc, L) = recall(Na, Nc, L) = 1.

We can also consider the four process models in Figure 1 with respect to
the logs shown in Figure 1(f). precision(Na, Nb, L) = ((40/4 ∗ (1/1 + 2/2 +
1/1 + 1/1)) + (85/4 ∗ (1/1 + 2/2 + 1/1 + 1/1)) + (15/4 ∗ (1/1 + 2/2 + 2/3 +
1/1)) + (20/4 ∗ (1/1 + 2/2 + 2/3 + 1/1)))/160 = 0.98 and recall(Na, Nb, L) =
((40/4 ∗ (1/1 + 2/3 + 1/1 + 1/1)) + (85/4 ∗ (1/1 + 2/3 + 1/1 + 1/1)) + (15/4 ∗
(1/1 + 2/3 + 2/2 + 1/1)) + (20/4 ∗ (1/1 + 2/3 + 2/2 + 1/1)))/160 = 0.92. Note
that both numbers would be lower if the sequences starting with 〈A,D, . . .〉
would be more frequent. Let us now compare Na and Nd in Figure 1 using L.
precision(Na, Nd, L) = ((40/4∗(1/1+3/3+1/1+1/2))+(85/4∗(1/1+3/3+1/1+
1/2))+(15/4∗(1/1+3/3+2/3+1/2))+(20/4∗(1/1+3/3+2/3+1/2)))/160 = 0.75

6 Note that the two denominators |enabled(N2, M2, hd(σ, i))| and
|enabled(N1, M1, hd(σ, i))| may evaluate to zero. In these case, the numerator
is also zero. Again, we assume in such cases that 0/0 = 0.

and recall(Na, Nd, L) = ((40/4∗(1/1+3/3+1/1+1/1))+(85/4∗(1/1+3/3+1/1+
1/1))+(15/4∗ (1/1+3/3+2/2+1/1))+(20/4∗ (1/1+3/3+2/2+1/1)))/160 =
1. Note that Nd allows for behavior not present in log L (i.e., executing F).
Nevertheless, as we can see from precision(Na, Nd, L) = 0.75, the enabling of F
is taken into account. It is also easy to see that Definition 8 takes into account the
moment of choice, i.e., the enabling of set of transitions is the basis of comparison
rather than the resulting sequences. Hence, we can distinguish Nb and Nd in
Figure 2.7

In Section 4.2 we listed five problems related to the use of Definition 5. It is
easy to see that Definition 8 addresses each of these problems:

1. Even models with an infinite set of firing sequences can be compared using
a finite, but representative, set of traces.

2. Models do not need to be terminating.
3. Differences between frequent and infrequent sequences can be taken into

account by selecting a representative log.
4. Partial fits are taken into account, i.e., small local differences do not result

in a complete “misfit”.
5. The moment of choice is taken into account because the focus is on enabling.

Given the attractive properties of the precision and recall metrics defined in
Definition 8, we have implemented these metrics in the ProM framework [9].8

Here it has been applied to a variety of process models. In particular the context
of genetic mining [3].

One the of critical success factors is the availability of some log L that can
serve as a basis for comparison. We propose to use existing event logs or to
generate artificial logs using simulation.

Existing logs can be extracted from information systems but can also be
obtained by manually describing some typical scenarios. It is important to re-
alize that today’s information systems are logging a wide variety of events. For
example, any user action is logged in ERP systems like SAP R/3, workflow
management systems like Staffware, and case handling systems like FLOWer.
Classical information systems have some centralized database for logging such
events (called transaction log or audit trail). Modern service-oriented architec-
tures record the interactions between web services (e.g., in the form of SOAP
messages). Moreover, today’s organizations are forced to log events by national
or international regulations (cf. the Sarbanes-Oxley (SOX) Act that is forcing
organizations to audit their processes).

An example application scenario where existing event logs are used is the
comparison of an existing process and a set of possible redesigns. For each of
the redesigns, we can measure the precision and recall taking an event log of the
existing information system as a starting point. First of all, the existing process

7 Note that Nd contains duplicate labels, i.e., two transitions with label A. However,
it is possible to extend Definition 8 and the resulting approach for such models.

8 ProM and the analysis plug-in implementing the precision and recall metrics can be
downloaded from www.processmining.org.

can be compared with this event log using the fitness notion presented in this
section. This gives an indication of the quality of the initial model. Then, if the
quality is acceptable, each of the redesigns can be compared with the existing
process using this log.

Another approach would be to use simulation. This simulation could be based
on both models or just the initial model. Note that the generated logs do not need
to be complete, because Definition 8 also takes the enabling into account. It is
more important that the probabilities are taken into account, because differences
in the frequently visited parts of the model are of less importance than differences
in rarely visited parts of the model.

6 Conclusion

This paper presented a novel approach to compare process models. Existing
approaches typically do not quantify equivalence, i.e., models are equivalent or
not. However, for many practical applications such an approach is not very useful,
because in most real-life settings we want to distinguish between marginally
different processes and completely different processes. We have proposed and
implemented notions of fitness, precision, and recall in the context of the ProM
framework. The key differentiator is that these notions take an event log with
typical execution sequences as a starting point. This allows us to overcome many
of the problems associated with approaches directly comparing processes at the
model level. Although our approach is based on Petri nets, it can be applied to
other models with executable semantics, e.g., formalizations of EPCs, BPMN,
or UML activity diagrams.

Future work will focus on the application of the concepts and tools presented
in this paper. We have already applied the approach in the context of process
mining. Genetic algorithms have been evaluated using notions of precision and
recall [3]. However, these notions can be applied in a wide variety of situations,
e.g., to measure the difference between an organization specific process model
and a reference model, to select a web service that fits best based on some
description (e.g., PIPs or abstract BPEL), to compare medical guidelines, or to
compare an existing process model with some redesign.

References

1. W.M.P. van der Aalst and T. Basten. Inheritance of Workflows: An Approach
to Tackling Problems Related to Change. Theoretical Computer Science, 270(1-
2):125–203, 2002.

2. W.M.P. van der Aalst, A.K. Alves de Medeiros, and A.J.M.M. Weijters. Genetic
Process Mining. In G. Ciardo and P. Darondeau, editors, Applications and Theory
of Petri Nets 2005, volume 3536 of Lecture Notes in Computer Science, pages
48–69. Springer-Verlag, Berlin, 2005.

3. W.M.P. van der Aalst, A.K. Alves de Medeiros, and A.J.M.M. Weijters. Process
Equivalence in the Context of Genetic Mining. BPM Center Report BPM-06-15,
BPMcenter.org, 2006.

4. W.M.P. van der Aalst, A.J.M.M. Weijters, and L. Maruster. Workflow Mining:
Discovering Process Models from Event Logs. IEEE Transactions on Knowledge
and Data Engineering, 16(9):1128–1142, 2004.

5. E. Best and M.W. Shields. Some equivalence results for free choice nets and simple
nets, and on the periodicity of live free choice nets. In W. Brauer, W. Reisig, and
G. Rozenberg, editors, Proceedings of CAAP ’83, volume 159 of Lecture Notes in
Computer Science, pages 141–154. Springer-Verlag, Berlin, 1987.

6. F. van Breugel. A Behavioural Pseudometric for Metric Labelled Transition Sys-
tems. In 16th International Conference on Concurrency Theory (CONCUR 2005),
volume 3653 of Lecture Notes in Computer Science, pages 141–155. Springer-
Verlag, Berlin, 2005.

7. J. Desel. Validation of Process Models by Construction of Process Nets. In W.M.P.
van der Aalst, J. Desel, and A. Oberweis, editors, Business Process Management:
Models, Techniques, and Empirical Studies, volume 1806 of Lecture Notes in Com-
puter Science, pages 110–128. Springer-Verlag, Berlin, 2000.

8. J. Desharnais, V. Gupta, R. Jagadeesan, and P. Panangaden. Metrics for labelled
Markov processes. Theoretical Computer Science, 318(3):323–354, 2004.

9. B. van Dongen, A.K. Alves de Medeiros, H.M.W. Verbeek, A.J.M.M. Weijters, and
W.M.P. van der Aalst. The ProM framework: A New Era in Process Mining Tool
Support. In G. Ciardo and P. Darondeau, editors, Application and Theory of Petri
Nets 2005, volume 3536 of Lecture Notes in Computer Science, pages 444–454.
Springer-Verlag, Berlin, 2005.

10. M. Dumas, W.M.P. van der Aalst, and A.H.M. ter Hofstede. Process-Aware Infor-
mation Systems: Bridging People and Software through Process Technology. Wiley
& Sons, 2005.

11. R.J. van Glabbeek and W.P. Weijland. Branching Time and Abstraction in Bisim-
ulation Semantics. Journal of the ACM, 43(3):555–600, 1996.

12. A.K.A. de Medeiros, A.J.M.M. Weijters, and W.M.P. van der Aalst. Genetic Pro-
cess Mining: A Basic Approach and its Challenges. In C. Bussler et al., editor,
BPM 2005 Workshops (Workshop on Business Process Intelligence), volume 3812
of Lecture Notes in Computer Science, pages 203–215. Springer-Verlag, Berlin,
2006.

13. R. Milner. A Calculus of Communicating Systems, volume 92 of Lecture Notes in
Computer Science. Springer-Verlag, Berlin, 1980.

14. S.S. Pinter and M. Golani. Discovering Workflow Models from Activities Lifespans.
Computers in Industry, 53(3):283–296, 2004.

15. L. Pomello, G. Rozenberg, and C. Simone. A Survey of Equivalence Notions of
Net Based Systems. In G. Rozenberg, editor, Advances in Petri Nets 1992, volume
609 of Lecture Notes in Computer Science, pages 420–472. Springer-Verlag, Berlin,
1992.

16. W. Reisig and G. Rozenberg, editors. Lectures on Petri Nets I: Basic Models,
volume 1491 of Lecture Notes in Computer Science. Springer-Verlag, Berlin, 1998.

17. A. Rozinat and W.M.P. van der Aalst. Conformance Testing: Measuring the Fit
and Appropriateness of Event Logs and Process Models. In C. Bussler et al., editor,
BPM 2005 Workshops (Workshop on Business Process Intelligence), volume 3812
of Lecture Notes in Computer Science, pages 163–176. Springer-Verlag, Berlin,
2006.

