
Model-Based Software Configuration:
Patterns and Languages

Alexander Dreiling1,5†, Michael Rosemann2, Wil van der Aalst2,3,
Lutz Heuser4, Karsten Schulz5

1European Research Center for Information Systems, University of Münster
Leonardo-Campus 3, 48149 Münster, Germany

alexander.dreiling@ercis.de
+49 251 8338070

2Faculty of Information Technology, Queensland University of Technology
126 Margaret St, Brisbane QLD 4000, Australia

m.rosemann@qut.edu.au

3Department of Technology Management, Eindhoven University of Technology
GPO Box 513, NL-5600 MB Eindhoven, The Netherlands

w.m.p.v.d.aalst@tm.tue.nl

4SAP Research, SAP AG
Neurottstr. 16, 69190 Walldorf, Germany

lutz.heuser@sap.com
5SAP Research, SAP Australia Pty Ltd

Level 12 / 133 Mary Street, Brisbane QLD 4000, Australia
ka.schulz@sap.com

† Corresponding Author

Page 1

Model-Based Software Configuration:
Patterns and Languages

Abstract

The common presupposition of enterprise systems (ES) is that they lead to significant

efficiency gains. However, this is only the case for well-implemented ES that are well-aligned

with the organisation. The list of ES implementation failures is significant which is partly

attributable to the insufficiently addressed fundamental problem of adapting an ES

efficiently. As long as it is not intuitively possible to configure an ES, this problem will

prevail because organisations have a non-generic character. A solution to this problem

consists in re-thinking current practices of ES provision. This paper proposes a new

approach based on configurable process models which reflect ES functionalities. We provide

in this paper a taxonomy of situations that can occur from a business perspective during

process model configuration. This taxonomy is represented via so-called semantic

configuration patterns. In the next step we discuss so-called syntactic configuration patterns.

This second type of configuration patterns implements the semantic configuration patterns

for specific modelling techniques. We chose two popular process modelling languages in

order to illustrate our approach.

Keywords

Adaptability, Configuration, Customising, Alignment, Process Model, Requirements

Engineering

1 Introduction

Enterprise systems (ES) offer holistic support for intra-organisational business processes and

inter-organisational supply chains (Klaus et al., 2000). ES vendors such as SAP or Oracle

frequently refer to so-called success stories (SAP AG, 2004; Oracle Corp., 2006) in order to

Page 1

highlight significant efficiency gains, cost reductions, quality improvements, and the like.

Such success stories, however, are contrasted by other examples where ES implementations

escalated or were abandoned, consumed tremendous resources and yet sometimes failed to

achieve measurable success (Stein, 1998; Davenport, 1998; Key, 1998). Despite

comprehensive research on the critical success factors of enterprise systems (Sumner, 1999;

Hong & Kim, 2002; Holland & Light, 1999; Umble et al., 2003) and factor models targeting

escalation and failure (e.g., Keil, 1995; Keil et al., 2000; Smith et al., 2001; Keil & Robey,

2001; Schmidt et al., 2001), the reasons for ES failures remain difficult to explain (Robey

et al., 2002), because ES are complex socio-technical systems (Somers et al., 2000) (this was

already acknowledged for Management Information Systems (Bostrom & Heinen, 1977)). ES

projects involve a variety of parties and players, and they often require or are used

(“technochange” (Markus, 2004)) for dramatic change within the organisation.

However, failure is at least partly attributable to insufficient means of adapting the ES to the

organisation leading to an insufficient quality of the actual system configuration (Rosemann

et al., 2004). This is enforced by the fact that escalated ES projects are turned around and

brought back on track by abandoning ES configuration (Sumner & Hamilton, 2005). The

customer then has to subscribe to the world-view of the ES vendor. A major problem is that

ES configuration knowledge is typically not embedded in the ES by means of intuitive

mechanisms, but tacitly held within certified experts (often consultants). This makes ES

implementation success directly depended on these experts (Robey et al., 2002) and drives

cost and dependence on external resources.

A proper solution to this problem consists in making the ES configuration process more

intuitive. In turn, this will facilitate lowering the cost of configuration during initial ES

implementation and during post-implementation adaptation resulting from organisational

change. In effect, configuration decisions must be made more intuitive for a larger audience

Page 2

including business users and management. This is of paramount importance, because

managers must know how their systems work, which was acknowledged already in the 1960s

(Ackoff, 1967) and became legal responsibility with the Sarbanes-Oxley act (Sarbanes &

Oxley, 2002; Ribstein, 2002).

Our contribution to overcoming the entangled configuration process consists in the

proposition of generic configuration patterns and their explication using two specific process

modelling languages. Configuration patterns (Dreiling et al., 2005) are derived from

workflow patterns (van der Aalst et al., 2003) and describe on a conceptual level which

situations can occur during business process configuration. They refer to configurable parts

within a process model, i.e., a part that can be adapted during implementation and after

implementation. We will illustrate how these generic configuration patterns can be applied

using two specific languages in which the configurable parts are explicitly highlighted. This

methodology allows a business user or a manager to identify configuration points in a

business process by graphical means and facilitate the decision making process regarding

how the process should be implemented in the organisation. The patterns then explicate to the

user the impact of this decision on the rest of the process. While we specifically address ES

we certainly think that our approach can be generalised in order to serve the configuration of

other types of process-aware information systems (as understood by Dumas et al., 2005) as

well.

The remainder of this paper is structured as follows. First, we discuss the research objectives

and relevant background on aligning business and IT. This will be followed by a

differentiation between customising and configuration based on the relevant literature.

Subsequently, we will introduce so-called semantic configuration patterns, i.e., patterns of

configuration activities that are required from a business perspective. The semantic

configuration patterns will then be applied to Event-driven Process Chains and Petri nets in

Page 3

order to show their general applicability and to discuss the steps that are necessary in order to

apply the semantic configuration patterns. We then discuss our contribution, limitations of

our approach and implications for academia and practice before we close our paper with a

short summary and outlook.

2 Motivation and Background

Our approach targets process configuration especially within the domain of enterprise

systems for several reasons:

• First and foremost, ES, as of today, represent a bundle of technical and business

expertise. This means that an ES cannot be viewed as a piece of technology that can

be simply contextualised within an organisation. An ES is delivered with a myriad of

pre-implemented business processes. The delivery of a comprehensive set of pre-

packaged content clearly differentiates enterprise systems from other types of

information systems. If a specific organisation wishes to support their processes with

an ES, the standard ES processes must often be adapted. However, due to the

complexity of the configuration and subsequent software maintenance processes,

organisations often subscribe to the standard (“vanilla”) set provided by the ES

(Davenport, 1998; Loonam & McDonagh, 2004).

• Secondly, ES form the backbone of an organisation. They are considered the norm for

holistically supporting all operations in an integrated way (Volkoff et al., 2005) and

for integrating an organisation into a supply chain (Lee et al., 2003). Therefore, in

essence, an ES is an enormously complex socio-technical system which again

contrasts it from other process-aware information systems. While this complexity is

required for the support of organisational operations, it is difficult for organisational

actors to embrace. The inherent and necessary complexity of ES and their importance

Page 4

also prevents most organisations to build them from scratch. Therefore, configuring a

pre-implemented ES seems to be the most promising way of achieving the desired

organisational and managerial support through an information system.

• Thirdly, the notion of workflow management or process-awareness exists for a

significant time both in academia and practice (zur Muehlen, 2004). However, within

the domain of ES, especially large-scale ES, workflow management and process

awareness is often not explicitly supported. Rather, many processes and procedures

are coded in user interfaces and application logic with models on top describing the

underlying processes. As a result the notion of process-awareness needs to be

promoted and the usability of business process models needs to be enhanced.

• Fourth and finally, the comprehensiveness of ES requires significant investments

making the ES selection and adaptation process one of the most costly IT investments

in many organisations. Consequently, any applied research leading to more efficient

and effective software configuration processes has a high potential for amortisation

when applied to ES.

We therefore argue that it is especially important to consider ES and languages that are used

in the ES context when examining model-based configuration and proposing an improved

methodological support. Our results are certainly applicable for other types of process-aware

information systems that feature a similar degree of complexity and coupling of business and

technical expertise, but we have explicitly investigated into ES for the reasons given above.

The concept of ES is subject to academic discussions for several years now. Examples of

recent contributions (typically under the name of Enterprise Resource Planning – ERP) cover

among others the definition of ERP (Klaus et al., 2000), critical success factors of ERP

Systems (Akkermans & van Helden, 2002; Holland & Light, 1999), modelling within the

Page 5

context of ERP (Dalal et al., 2004), and possible future developments of ERP (Markus et al.,

2000).

Enterprise systems stand at the end of a long development of organisational and managerial

support systems, which began in the 1950’s (Turban, 1995) building on the concept of

cybernetics (Ashby, 1956; Beer, 1966; Wiener, 1948; Wiener, 1967; Beer, 1959). Since then,

in essence, the scope of these applications and the intended user group has been continuously

extended and the nature of their provision to an organisation has changed. Whereas early

management support systems such as Inventory Control Systems were intended to support a

small part of organisational activities and actors, today’s ES target not only all major

processes within various organisations, but also facilitate the execution of entire industry

value chains. In addition, the development of a software industry and a sector for enterprise

applications of a considerable size within this industry led to the provision of pre-

implemented generic solutions that were delivered to organisations. With the advent of large-

scale off-the-shelf ES such as SAP’s R/3 system in the 1990s, an area of potential conflict

between business and IT arose from the individual nature of organisations and the highly

generic nature of ES as the most advanced form of off-the-shelf-software (Davenport, 1998).

Configuration is then seen as a structured process which transforms the generic package into

a system individualised for the organisation-specific context.

Significant discussions of alignment or fit reach back at least to the 1980s, when alignment

was perceived as being increasingly important in a SIM Delphi study (rank 5) (Hartog &

Herbert, 1986). The IS literature contains, since then, a broad spectrum of contributions on

alignment (or misalignment) and fit (or misfit) (Reich & Benbasat, 2000; Brown & Magill,

1994; Segars & Grover, 1998; Chan et al., 1997; Sabherwal & Chan, 2001; Palmer &

Markus, 2000; Segars & Grover, 1999; Robey et al., 2002; Henderson & Venkatraman, 1999;

Dennis et al., 2001; Silver et al., 1995; Nelson, 1991; Srinivasan, 1985; Majchrzak et al.,

Page 6

2000). Alignment is seen as either a dependent or an independent construct, i.e. alignment

can be achieved by influencing variables or alignment itself is important as an influencing

variable for another construct. Contributions of the latter type mainly agree that alignment is

bound to efficiency gains or is a factor for implementation success.

Although there is an established body of research on alignment, there remains a considerable

lack of research on actual methods that help achieving operational alignment within the field

of Information Systems. Related work mainly resides in the discipline of Computer Science.

Requirements engineering (elicitation, analysis, and the like) or software engineering are

seen as approaches leading to the desired computer-based information systems. However,

alignment research in Computer Science often fails to embrace the variety of approaches in

management science and organisation theory. Especially symbolic-interpretive (Weick, 1969)

and post-modern developments (Boje et al., 1996; Chia, 1996) in organisation theory, the

abandonment of concepts such as rationality (Hirschheim & Newman, 1991; Styhre, 2003),

the dissolution of organisational and managerial substance (Boje et al., 1996), and the

abandonment of Simon’s anthropological assumption of human beings as information-

processing systems (Newell & Simon, 1972), requires for re-thinking what the role of

requirements engineering is and how it can actually be supported. In fact, requirements

engineering in practice, especially for ES selection and implementation, is significantly

different from its academic understanding (Rosemann et al., 2005). However, alignment

research does often not transcend rationality assumptions or a sociology or order (Burrell &

Morgan, 1979) with consensus as a main theme. Alignment, by nature, is a socio-technical

task and requirements do not exist per se, but are being socially constructed (Berger &

Luckmann, 1966). Research on appropriate methodological support for alignment should

therefore not be mainly in the hands of computer scientists but also requires contributions

from the IS field (Eijnatten, 1993).

Page 7

In order to develop an intuitive, graphical mechanism for model configuration as part of a

requirements engineering phase, a layer of conceptual models abstracting from technical

details and visualising the core processes as supported by the selected system must be added.

Such a layer of conceptual models must be mutually dependent on the actual system, i.e.,

system or models change accordingly if models or system are configured. The field of

Business Process Management (Hammer & Champy, 1993; Davenport, 1993; Davenport &

Short, 1990; van der Aalst et al., 2000) (especially Workflow Management (Dumas et al.,

2005; van der Aalst & van Hee, 2002; Fischer, 2003; Georgakopoulos et al., 1995; Jablonski

& Bussler, 1996; Leymann & Roller, 1999; zur Muehlen, 2004)) which implies a separation

of process logic—expressed by means of a process language—from application logic led to

progress in this respect. It has also, both theoretically and practically, made software more

flexible. The remaining gap is constituted by a lack of understanding on how to

systematically adapt process models. Consequently, the question arises how the current

software configuration process can be made more intuitive and efficient. Our approach

discusses a model-based way towards configuring processes within ES based on extensions

of popular process modelling techniques, which is significantly different from current

practice.

3 Customising and Configuration

Configuration of software has been subject to academic discussion for a significant period of

time (Gibson et al., 1984; Lucas Jr. et al., 1988). Davenport (1998) describes the process of

configuration as a methodology performed to allow a business to balance their IT

functionality with the requirements of their business. More specifically, Soffer et al. (2003)

describe configuration as an alignment process of adapting the enterprise system to the needs

of the organisation. Especially, if an organisation achieves competitive advantages in

Page 8

enacting a business process in a certain way, it usually does not wish to change this business

process in order to fit into an enterprise system. In this case, the reference process within the

enterprise system needs to be changed according to the “real-world” business process. Soffer

et al.’s approach (2003) allows for implementing process variants based on the values of

certain attributes. Enterprise system configuration involves setting all the usage options

available in the package to reflect organisational features (Davenport, 1998). Brehm et al.

(2001) define nine different change options for enterprise systems from predefined alterations

(e.g. by marking checkboxes) within the enterprise system to alterations of the program code.

Holland and Light (1999) argue that a critical success factor of enterprise system

implementation is to avoid program code changes and wherever possible using predefined

change options. Becker et al.’s generic approach (2002) features several mechanisms for

transforming a reference model into an individualised process model. Our research differs

from the ones outlined here in that we seek generic configuration patterns that arise during

process model individualisation in order to better understand and guide the process

configuration. In particular, we build upon the notion of configuration patterns as described

in (Dreiling et al., 2005), and extend this approach by explicitly separating semantic and

syntactic configuration patterns. This explains what is necessary to implement such

configuration patterns. It is primarily necessary for separating business-related configuration

decisions from their technical execution. Furthermore, this distinction allows us to support

configuration patterns that are defined from a business perspective within several languages.

Configuration and customisation are often used interchangeably. Merriam-Webster's

Collegiate Dictionary defines configuration as the “relative arrangement of parts or elements”

whereas customising is defined as “to build, fit, or alter according to individual

specifications” (Merriam-Webster, 2003). With these definitions in mind we can only

perform re-configuration (alteration of relative arrangement of parts or elements within

Page 9

enterprise systems) or customisation (alteration of enterprise systems in order to meet the

specification of the enterprise). The latter includes alterations of program code, which we do

not pursue in our research. For the purpose of this paper, we define (re-)configuration of an

enterprise system as the process of aligning business requirements expressed as functions,

information, processes, or organisational structures with generic enterprise systems

capabilities. For the sake of simplicity we will use the term configuration instead of re-

configuration from here on.

Especially during process configuration, a simple configuration approach that can be

described as switching on or off functionality (Bancroft et al., 1998) seems to be

inappropriate. The SAP’s implementation guide (IMG), for example, includes several

thousand configuration tables. They define how the system should function, what a

transaction screen looks like, how many transaction screens there are, or what kinds of

information a process requires (Bhattacharjee & Ramesh, 2000). However, there is no

support on how explicit processes (i.e., processes that are represented by a process model)

can be altered, which is imperative for answering questions such as to how and when should

a process-related function be configured, and what interrelations a function has with another

functions in a process context.

4 Model-based Software Configuration

It has been argued in the preceding section that there is a pressing need to be able to

configure conceptual models as a proxy for system configuration tables. The results from this

phase would be a set of configured conceptual models. The phase of an ES implementation

project targeted by our approach is called configuration-time (Rosemann & van der Aalst,

2005). Configuration-time extends the commonly accepted two-stage model of built time and

Page 10

run-time with a preceding step. This step is necessary for our approach for three main

reasons:

• ES vendors equip their software with configuration mechanisms to adapt the system

for a specific customer. If process models are used for configuration, i.e., if process

models are adapted for a specific customer, these models consequently must

incorporate such configuration mechanisms. Configuration-time process models differ

from their build-time counterparts in that they must capture the wholeness of the

system’s capabilities. During configuration-time the total set of software

functionality, as expressed by a superset of models, is reduced to the subset of models

relevant for the organisation. The outcomes of this phase are build-time models,

which are used as templates for the actual execution of business processes, i.e. run-

time processes.

• Existing configuration mechanisms in ES highlight the parts of the ES that can be

changed. SAP, for example, has a specific tool called Implementation Guide (IMG)

for this purpose. The result of an action performed in the IMG is a built time

environment that defines run-time instances. The IMG, so to say, is a configuration-

time tool. Transferred to process model configuration, configuration-time is a

decoupled step that defines a build-time process model, according to which instances

at run-time will be executed. By incorporating configuration mechanisms into process

models, vendors are enabled to equip their solutions with a specification tool for

build-time models. Build-time models are derived in a methodologically assisted way

as opposed to freely altering them. They remain in a predefined solution space, which

allows for systematically avoiding configuration errors. ES vendors could furthermore

be made liable, grant guarantees, and compliance to standards could be ensured.

Page 11

• ES vendors face a continually increasing complexity of their solutions as a result of

integrating more and more functionality. In the same instance, the market demands

quick changes to recent trends such as the support of Customer Relationship

Management, Supplier Relationship Management, or compliance with new

interoperability standards and legislative requirements. ES vendors have increasing

difficulties with reacting to such demands if they do not decompose their applications

into manageable pieces. It becomes meaningful from a software engineering

perspective to implement configurable cores that can be easily adapted not only by

the customer, but also by the vendor in order to create, for instance, new industry-

specific solutions.

We distinguish between semantic configuration patterns, which refer to the content of a

process model and syntactic configuration patterns, which address syntactic correctness of

process models. Both types of configuration patterns are described in this section in detail

and by means of examples.

4.1 Semantic Configuration Patterns

Semantic configuration patterns allow for a formalised understanding of how configuration

occurs from a business perspective and help to identify possible configuration alternatives.

Semantic configuration patterns are defined as patterns which depict a configuration scenario

and specify the potential implementation alternatives which can be derived from this pattern.

Our work is anchored in a subset of the well-known workflow patterns (van der Aalst et al.,

2003). For a carefully selected set of patterns we examined how they can be made

configurable.

Page 12

4.1.1 Task Related Patterns

We have focused on the active parts of processes, i.e., functionality (functions, tasks,

transitions, and the like) and the control flow. We have not examined the configurability of

events (or states) as more passive parts of processes since they cannot actively be influenced

by the organisation in scope. It is the reaction to events that can be influenced and this

reaction is covered by our work because it is typically an activity within the organisation that

is being undertaken in order to react to an event.

We must, for the purpose of this paper, limit the discussion to examples. The discussion of

the complete set of configuration patterns based on the workflow patterns would exceed the

length of this paper and is furthermore not necessary in order to make our argument. We

want to show that pattern-based approaches help to understand process configuration and can

be used to guide process configuration. We discuss in more detail four semantic patterns that

are sufficiently different from each another. This will show the variety of decisions that can

be made during process configuration from a business perspective. For two of them, we will

then focus syntactic aspects, when it comes to concrete language support. Again, the two

chosen ones are sufficiently different from each other in terms of their technical realisation in

order to depict our approach.

In light of the configurability of tasks, the first pattern called optionality is foundational and

the most critical. During configuration-time, a task can be declared configurable by allowing

switches on, off or optional choices to be made. If a task is switched on during configuration-

time, it will remain in the build-time model. Hence, all instances of this process during run-

time will include this specific task. If a task is switched off, then it will be permanently

removed from the build-time model and with it from all instances at run-time. If a function is

deemed optional, the decision about its execution is postponed to run-time where it is made

on a case-by-case basis. Table 1 illustrates this pattern. We did not choose a specific

Page 13

modelling technique in order to highlight the generalisability of our approach. The

application of this pattern within specific modelling techniques will be discussed later in this

section.

Table 1 approximately here

The configuration decision of any configurable task must be examined in a broader context.

Thus, the closely related semantic pattern of sequence inter-relationships is founded on the

principle that two or more functions may be dependable on each other during configuration.

The resulting dependency is called a relationship. This relationship can be either mutually

exclusive or mutually dependent. In case of a mutually dependent relationship, all tasks of the

relationship must be selected in the same consistent way during configuration-time. For

instance, two mutually dependent tasks A and B must either both be switched on or off.

Mutually exclusive tasks must be configured opposite to each other. In the case of two tasks

A and B, A must be switched on if B is off, and vice versa. As in the first two patterns, the

decision might be deferred to run-time. In this case the build-time model must leave the

decision as to whether switching a task on or off open. Mutual dependency and exclusiveness

between tasks must then be ensured at run-time. Table 2 is an illustration of the semantic

configuration pattern of sequence inter-relationship.

Table 2 approximately here

In some cases, the order of execution for a number of tasks within a process can be

configured. This leads to the semantic configuration pattern of interleaved parallel routing. If

an arbitrary sequential order of execution of a number of functions is allowed during build-

time, i.e., if no semantic interrelationship exists between the tasks that is influenced by the

order in which they are executed, the decision about the order of execution of these tasks is

left open at configuration-time. In certain cases it might be necessary to defer the decision

Page 14

about this order even to run-time. The set of functions must then remain within the build-time

model. The semantic configuration pattern of interleaved parallel routing is depicted in Table

3.

Table 3 approximately here

4.1.2 Control-flow Related Patterns

The semantic configuration pattern of parallel split is the first of a series of control-flow-

related patterns. It is focused on capturing configuration alternatives at instances where the

AND connector is configurable. The only important implication in this case is the number of

outgoing branches of the configured AND connector. This means that the connector itself

must remain an AND connector with at least two outgoing branches, but further outgoing

branches from this connector can be removed. Conversely, the pattern synchronisation

handles the merging of branches from the configurable AND connector. As with the

corresponding split, the connector itself cannot be changed but incoming arcs can be

removed. The semantic configuration pattern of exclusive choice explains the instances where

an XOR can be modified during configuration-time. This pattern caters for the possible logic

that can be derived from a configurable XOR connector. Its corresponding pattern of simple

merge focuses on the merging that happens on a configurable XOR connector. The final

pattern that handles a connector is multi choice. This pattern captures the configuration

alternatives found in a configurable OR split. As a result, this pattern can potentially support

an OR, AND, XOR, and individual sequences during build-time. Table 4 illustrates the three

splitting patterns, showing configurable alternatives and their build-time sequences. The

corresponding join connectors lead to the same population of Table 4 highlighting the

reversing joins for the splits.

Table 4 approximately here

Page 15

4.2 Syntactic Aspects of Configuration

The semantic configuration patterns defined above are not language-specific. In order to

actually apply the semantic patterns during configuration, they need to be embedded in a

specific modelling technique. As examples, we discuss the application of semantic patterns to

two popular process modelling languages, Event-Driven Process Chains (EPCs) and Petri

nets. We will elaborate why in the case of EPCs it is meaningful to define syntactic patterns

for explaining the configuration alternatives of business processes expressed in this language.

In the case of Petri nets we apply a different approach which uses two steps: one step to

obtain the desired logic and another step to clean up the model (using reduction rules). The

examples show that the steps involved in transforming a lawful configurable business process

model into another lawful configured one are significantly different for alternative languages.

Moreover, some semantic patterns are not necessarily expressible within certain languages.

Therefore, our approach can also potentially be used to evaluate the suitability of a process

modelling language to be enhanced to a configurable process modelling language.

4.2.1 Syntactic Patterns for Lawful Event-Driven Process Chain Configuration

Event-Driven Process Chains (EPCs) (van der Aalst, 1999; Scheer, 2000) became popular

with the success of the modelling solution ARIS and the use of EPCs for the documentation

of SAP-enabled business processes. EPCs are perceived as being more useful from a business

perspective than from a technical perspective because they have been designed with an

intuitive notation in mind, and do to cater, in contrast to Petri nets, for executability. The

missing formal semantics of EPCs have been identified as a problem and several attempts

have been made to establish formal semantics for EPCs in retrospect (e.g., Kindler, 2004).

Nevertheless, due to the informality of an EPC’s semantics, the process models are kept very

simple and can be understood relatively easy.

Page 16

Within EPCs, events and functions occur strictly alternately. The alternation of functions and

events may be extended using connectors (splits and joins). In-between an event and function

there may be connectors specifying the routing logic. Splits (AND, XOR, OR) may require

for a decision as to which branches are being executed. This decision is made by the function

before the split and thus, no event is allowed to be preceded by an OR or an XOR split.

The semantic pattern of optionality requires for switching tasks on, off, or optional. Resulting

from the decision made in an optionality scenario, changes to other parts of an EPC may be

necessary, which results from the semantic pattern sequence inter-relationships. Both of

these semantic patterns are addressed in the following discussion.

Tasks in EPCs are resembled by functions. In order to enable correct atomic configuration

steps that consist of a semantic decision and a subsequent syntactical clean-up, event(s) must

be removed from an EPC along with functions because otherwise events would follow each

other, leading to syntactically incorrect EPCs. Table 5 presents a configurable function (one

that can be switched in accordance with the semantic pattern of optionality) in all of its

lawful environments. It must be both preceded and succeeded by an event, a split or a join

leading to nine different syntactic configuration patterns for the semantic pattern of

optionality within EPCs.

Table 5 approximately here

We use the example of the syntactic pattern EFE (a configurable function (F) is preceded and

succeeded by an event (E)) in order to show the next necessary step for a deeper

understanding of EPC configuration. In this example (depicted in Table 6), there are several

configuration options. The configuration decision of leaving the function within the process

leads to transforming the configurable function into a non-configurable function and both the

preceding and succeeding events remain within the process.

Page 17

Table 6 approximately here

The second group of decisions is concerned with switching off the configurable function

(function A). A connection of two successive events is syntactically incorrect. Therefore, one

configuration option removes the preceding event (EP) along with the function, one

configuration option the succeeding event (ES), and the third one removes both events (ES

and EP) and replaces them with a new one (X). This last option, of course, is not a purely

syntactic decision, since the new event (X) is semantically different from the previously

existing ones. However, a user configuring a process model must have this option in case the

process after configuration would not make sense semantically with either one of the two

original events.

The third set of configuration alternatives defers the decision as to whether switching a

function is switched on or off to run-time where it is made on a case by case basis. This

requires for a split of the process branch before the function (A) and a join after it with the

second branch excluding the function. The syntactic restrictions of EPCs lead to four

different configuration options with variations depending on the direct environment (i.e., one

step behind and ahead in the process) of the configurable function. Variant 1 splits before the

preceding event (EP) of the configurable function and rejoins immediately after it (A). The

split in this variant, as in the following ones, must be of type XOR, because it must show at

build-time that there are two distinct possibilities at run-time with either executing the

function or not. Variant 2 also splits before the preceding event (EP) of the configurable

function, but it rejoins after the succeeding event (ES) of the same function. This variant

requires a new (artificial) event (EX) because otherwise the alternative process branch of the

configurable function would include two functions following each other which is

syntactically incorrect. Variants 3 and 4 are problematic because they split before the

configurable function (A), hence after its preceding event (EP). Since the split must be an

Page 18

XOR, it must not succeed an event. This syntactic rule denotes that the decision as to which

process branch will be performed must be made by a function and cannot be made by an

event. However, we included these variants for completeness purposes and also because this

syntactic rule is more of an informal nature than of a formal one. Variant 3 rejoins after the

succeeding event (ES) of the configurable function and variant four immediately after it.

Variant 4 requires for an artificial (empty) function (A’) as an alternative to the configurable

one (A), because without this artificial function the alternative branch to the one including

the configurable function would directly combine two events with each other which would be

syntactically incorrect.

The configuration alternatives for the remaining EPC syntactic configuration patterns from

Table 5 are constructed in a similar way. We examined the lawful environments of the

configurable function and constructed configuration alternatives for all combinations of

predecessors and successors. In general, the configuration alternatives look more complicated

because of the splits and joins but are similar in principle. They switch-off or switch-optional

preceding or succeeding sets of events. However, as already mentioned we cannot discuss

them in detail here.

Some syntactical patterns require for a second syntactical configuration step in order to

perform meaningful configuration. This necessity arises from the possible wider

environments in which some of the syntactic patterns are embedded. Our configuration

approach explicitly does not remove a process branch if all of its elements are removed. This

leads to shortcuts from a split to a join. We argue that—for syntactic configuration—it is

illegitimate to remove such a shortcut because this would constitute a semantic change.

Hence, the shortcut remains and typically leads therefore to no problems with removing

connectors if the content of a branch has been removed. Despite from this, Table 7 depicts

two scenarios, where the examination of the wider environment of two syntactic patterns

Page 19

becomes necessary. The patterns of EFJ and SFE can be in an environment where the

configurable function is in one of two branches and the second branch already is a shortcut

between the connectors that frame the configurable function. In this case, we must look one

additional step ahead or back in order to be able to detect such a situation. It is obvious, that

in such a case we need to remove the branch and with it the framing connectors because

otherwise there would be two shortcuts between the same set of connectors which would be

meaningless.

Table 7 approximately here

The connector-related semantic patterns need to be handled differently from the function-

related ones in terms of their syntactically correct application within a modelling language.

As an example, we use well-structured EPCs (every split has a corresponding join) and

discuss the case of a configurable OR split that divides the process into n branches and

rejoins them later via a configurable OR join. The configuration options are a logical subset

of the different behaviours an OR can express, hence, the OR option itself, the XOR, and the

AND. The OR and XOR options would defer the decision as to which branch to execute at

run-time. If at build-time a decision for one of the branches can be made, the configuration

option would be to decide for a sequence of this branch in the context of its preceding and

succeeding process segments. Table 8 depicts these configuration options. It is furthermore

necessary to consider the predecessor of the configurable OR join. As already mentioned, one

of the informal rules of EPCs is that an XOR and OR split must not succeed an event. Hence,

if a configurable OR is placed after an event the OR and XOR configuration options must be

enhanced by adding an artificial decision function before the split and artificial reacting

events for the decision function directly after it.

Table 8 approximately here

Page 20

4.2.2 Graph Reduction for Lawful Petri net Configuration

The classical Petri net model was one of the first models adequately describing concurrency

(Desel & Esparza, 1995; Murata, 1989; Reisig & Rozenberg, 1998). It is a simple, but also

rather expressive, language consisting of just two objects: places and transitions. Places can

be connected to transitions and transitions can be connected to places. Together they form a

directed graph. One can think of places as being passive and transitions as being active. The

state of a Petri net, also named marking is determined by the distribution of tokens over

places. At any point in time a place contains a given number of tokens. Transitions consume

tokens from their input places and produce tokens for their output places. To be more precise,

we need to introduce two concepts: enabling and firing. A transition is enabled if each of its

input places contains at least one token. Enabled transitions may fire. Firing a transition

implies the removal of one token from each input place and the addition of one token to each

output place. This way the state of the Petri net can change while its network structure is

fixed.

Petri nets are graphical and have formal semantics. This allows for intuitive models and a

wide variety of analysis techniques. Although few modelling tools and information systems

directly apply Petri nets, the fundamental ideas in Petri nets have been adopted by many

languages and commercial systems such as COSA, Protos, Income, and Baan-DEM. Note

that for example the EPCs discussed in the previous section have been inspired by Petri nets.

In order to apply the semantic configuration patterns introduced above to Petri nets, we must

discuss the impact of the configuration choices proposed by the semantic patterns for the

syntactic validity of Petri nets. We will do this in terms of syntactic patterns similarly to the

EPC discussion and furthermore use reduction rules to transform configured Petri nets into

smaller ones. The reduction rules simplify the resulting Petri net without changing the

tangible behaviour.

Page 21

Let us first consider the pattern of optionality. Tasks in a Petri net are represented by

transitions. Transitions are represented by squares. To indicate that they are optional at

configuration-time, they are shown using thick lines. In Table 9, the transition on the left is

optional. If the transition is configured "on", then the transition is replaced by a normal

transition. If the transition is configured "off", then the transition is replaced by a so-called

silent transition. Silent transitions are transitions that do not represent tasks but that are

merely added for the routing of tokens. To indicate that a transition is silent, it is labelled

with τ. If the decision is postponed until run-time, there is a choice between a transition

representing the task (i.e., A) and a silent transition (i.e., τ). Note that a place with multiple

output arcs represents a choice, i.e., if both input places contain one token then both A and τ

are enabled. However, if one of them fires, the other one is disabled. This way it is enforced

that exactly one of the two is executed.

Table 9 approximately here

Table 9 shows that it is easy to represent the first configuration pattern in terms of Petri nets.

However, this may lead to the addition of many silent transitions making the model

unreadable. Fortunately, we can apply so-called reduction rules to get rid of superfluous

silent transitions. We propose the τ-reduction rules shown in Table 10. These rules are

inspired by (Verbeek et al., 2004; Desel & Esparza, 1995; Murata, 1989), however, unlike the

classical rules they differentiate between silent and non-silent transitions. The first rule shows

that a transition connecting two places may be removed by merging the two places, provided

that tokens in the first place can only move to the second place. The rules are self-

explanatory. However, when applying the rules one should clearly differentiate between

silent and non-silent transitions. For example, in the fourth rule at least one of the transitions

should be silent; otherwise the rule should not be applied (as indicated). The τ-reduction rules

shown in Table 10 do not preserve the moment of choice and therefore assume trace

Page 22

semantics rather than branching/weak bisimulation. In this paper, we do elaborate on this and

simply refer to (van der Aalst & Basten, 2002) for a more detailed discussion of the various

notions of equivalence in the context of (workflow) processes. For this paper, trace semantics

with silent tasks suffices. However, for more advance applications involving automated

support, a more refined notion is needed.

Table 10 approximately here

Table 11 shows the syntactical Petri-net-based pattern for Parallel Split and Synchronisation.

Again we use thick lines to indicate the configurable parts. Note that the patterns are similar

to EPCs. The main difference is that there are no explicit AND-split and AND-join

connectors. In a Petri net, a single transition can act as an AND-split and AND-join.

Table 11 approximately here

Table 12 shows the syntactical Petri-net-based pattern for Exclusive Choice and Simple

Merge. Again we use thick lines to indicate the configurable parts. Note that a single place

can act as an XOR-split and XOR-join. If the configuration decision is "XOR", the whole net

is copied. Again we allow for selecting a subset of all possibilities. In the extreme case

(sequence), only one possibility remains. The latter case is presented by the right most Petri

net in Table 12.

Table 12 approximately here

Compared to EPCs, AND/XOR-splits and joins are very simple; they directly correspond to

transitions and places and there is no need to introduce additional connectors. Unfortunately,

it is more difficult to model OR-splits (Multi Choice) and OR-joins (Synchronising Merge)

as shown in Table 13.

Table 13 approximately here

Page 23

To explain the Multi Choice and Synchronising Merge patterns in terms of Petri nets, we

assume (for simplicity) that there are two tasks (or sub-processes) A and B. There are three

possibilities: (1) just A is executed, (2) just B is executed or (3) both A and B are executed.

In an EPC it suffices to simply use OR connectors. This may lead to semantic problems as

mentioned before. Therefore, it needs to be specified in more detail in a Petri net as shown in

Table 13. There are three split (sA, sB, sAB) and three join (jA, jB, jAB) transitions. These

transitions need to be connected through additional places to ensure that e.g. sAB is not

followed by jA and jB instead of jAB. If one understands the left-most un-configured Petri net,

it is easy to understand the configured Petri nets on the right.

5 Discussion

The preceding section has introduced semantic and syntactic configuration patterns that in

conjunction allow for transforming a semantically meaningful and syntactically correct

process model base into another model base that is semantically meaningful and syntactically

correct. Semantic configuration patterns are language-independent and refer to the semantic

consequences of a model decision on model base. Syntactic configuration patterns, in a

second step, re-establish syntactical correctness that may have arisen while a semantic

configuration pattern was applied. This section discusses our contribution, its limitations and

its implications for research and practice.

5.1 Contributions

We have argued in the beginning of this paper that a layer of conceptual models bound to

enterprise system functionality is necessary in order to facilitate a more intuitive ES

configuration process. We have also argued why an extension of the two-stage model of

build-time and run-time is necessary in order to specify build-time models which remain in a

predefined solution space.

Page 24

The combination of semantic and syntactic configuration patterns transfers and extends the

idea of ACID transactions (atomicity, consistency, integrity, durability) known from database

management to model configuration. In the first step, a configuration decision is examined

towards its semantic impact on the remaining model base. All semantic consequences are

taken into account and are handled appropriately in the way exemplarily described in the

previous section. In a second step a syntactic clean-up re-establishes syntactic correctness of

the model base.

The introduced configuration patterns do not only contribute to the body of knowledge on

configuration in that they highlight which situation can occur during configuration, but also

add description to the business process. Semantic configuration patterns establish a link

between different parts of a process model that are not evidentially connected by control or

data flow or other means. In that they provide an additional layer of description of a business

process that did not exist before.

Furthermore, we argued that from a vendor perspective, the implementation of configurable

cores is meaningful as a tool for handling increased solution complexity. Many aspects of an

ES can be implemented by the vendor once and then applied within a certain situation. A

certain business process can, for instance, look different in two different countries due to

legal requirements. In such a case it can be meaningful to implement a generic business

process and add configuration rules for the two different countries as opposed to providing

different hard-coded solutions for the two countries. If a third country is added, the

configuration rules for this country must be defined as opposed to implementing yet another

solution. The same applies for industries and corresponding industry-specific solutions and

other examples where generic solutions can be configured.

Page 25

5.2 Limitations

Several decisions limit our contribution and need to be discussed. First and foremost, we

chose to examine configuration of tasks (or functions or actions) as active parts of business

processes as opposed to events. We implied that a process can be conceived of as a complex

event-reaction pattern and that it is mainly the actions that an organisation can influence. In

this conception an event is something that just happens outside of or within the organisation

and the organisation must decide on how to react to it. However, this is not necessarily the

only way of addressing process model configuration. It is also possible to examine

configurability of events. An organisation may as well define a certain amount of escalation

guidelines and define in a second step to which events these escalation principles constitute

reactions to. We still think that the majority of configuration decisions within ES rather refer

to the active parts of the process. Moreover, some process modelling techniques do not even

consider the notion of events but just focus on the task flow of a process. In this respect we

believe that we provided a more generically applicable approach. However, we acknowledge

that this will only solve the problem of process model configuration to a certain extend. We

will focus on event configuration in our future work.

Another limitation arises from the fact that we use the paradigm of fixed build-time models.

Some authors believe that this already limits organisational reality to an illegitimate extent

because the process changes mainly occur during run-time (e.g., Bernstein, 2000). While we

readily acknowledge this limitation we nevertheless point to the areas of applicability. Many

processes within ES are absolutely fixed over quite a significant period as a reaction to legal

requirements, organisational values or the like. Nevertheless, they must be implemented in

the first place and this is where our suggestions contribute. Processes that are subject to

frequent change may escape our contribution.

Page 26

5.3 Implications

Several implications for research stem from our discussion. Alignment between business and

IT has been a research topic for within Information Systems and Computer Science for many

years (examples include Reich & Benbasat, 2000; Brown & Magill, 1994; Segars & Grover,

1998; Chan et al., 1997; Sabherwal & Chan, 2001; Palmer & Markus, 2000; Segars &

Grover, 1999; Robey et al., 2002; Henderson & Venkatraman, 1999; Dennis et al., 2001;

Silver et al., 1995; Nelson, 1991; Srinivasan, 1985; Majchrzak et al., 2000). However,

research in the area of conceptual modelling as a means for bridging the gap between

business and IT has widely ignored the context of large off-the-shelf-solutions such as

enterprise systems. The methodology proposed in this paper provides just one example for

the additional or at least different requirements of such software solutions. In the chosen

context, enterprise systems, configuration is a common activity within many organisations.

However, many comprehensive ES packages only insufficiently allow lifting this task to a

level, were non-technical staff of an organisation can be involved as well. We proposed a

method that caters for configuration at a model-level. ES vendors are continuously setting the

stage for model-driven process configuration. Academia should respond and put more

emphasis on investigating issues with conceptual models in turn. It has been argued that

relevance is vital within IS research (Applegate, 1999; Davenport & Markus, 1999; Benbasat

& Zmud, 1999; Lyytinen, 1999), and in the case of model-driven configuration ES vendors

continually provide relevance (e.g., SAP's (2004) Enterprise Service Architecture strategy).

This paper hopefully stimulates the research community in the domain of conceptual

modelling to further explore the application and adaptation of existing modelling techniques

and methods in the context of enterprise systems. Several research projects build on our

work. Event-based process configuration as opposed to function-based process configuration,

Page 27

technical support for the conceptual ideas, or empirical studies as to how usable the concepts

outlined here are in large real-world settings are just a few examples.

In terms of implications for practice, the proposed methodology has potential for significant

“real world” impact as it provides a reasonably pragmatic approach towards a model-based

configuration process. The increased interest of large enterprise systems vendors such as SAP

and Oracle to convert their solutions into more process-aware information systems including

a decoupling of processes from the application layer provides fertile ground for an increased

demand for such model-based configuration methodologies. Furthermore, the idea of

configurable models can also be applied to a wide range of available reference models such

as eTOM, ITIL or SCOR.

6 Conclusions & Outlook

Enterprise systems provide a wide range of pre-defined solutions for typical intra- and inter-

organisational business processes. Appropriate process variants have to be derived from this

set of processes during the system configuration process. As such, the adoption of off-the-

shelf solutions can be seen as a materialisation of the alignment process, in which IT

solutions of strategic importance are configured so that they correspond to the business. The

current practice of this alignment process largely relies on expensive external resources.

It has been proposed in this paper to utilise extended business process models for a more

intuitive and structured configuration process. Various configuration patterns have been

presented and exemplary insights into the challenge of deriving syntactically correct models

have been given. By contrasting those patterns in two popular modelling techniques, i.e.

Event-driven Process Chains and Petri nets, it became clear how different the requirements

for supporting these patterns can be.

Page 28

Our future research has three main directions. First, we will work on further developing and

empirically testing notations for visualising configuration patterns. Second, we will extend

the focus on a configurable control flow by studying configurability of related data and

organisational entities. Third, we will explore how configurable models can be derived by

mining enterprise systems.

7 Acknowledgements

We would like to thank the two anonymous reviewers and associate editor for providing

extensive and valuable feedback for amending the paper.

8 References

AALST WMPVD (1999) Formalization and verification of event-driven process chains.
Information & Software Technology 41(10), 639-650.

AALST WMPVD and BASTEN T (2002) Inheritance of workflows: An approach to tackling
problems related to change. Theoretical Computer Science 270(1-2), 125-203.

AALST WMPVD, DESEL J and OBERWEIS A (Eds.) (2000) Business process
management: Models, techniques, and empirical studies. Springer, Heidelberg,
Germany et al.

AALST WMPVD and HEE KMV (2002) Workflow management: Models, methods, and
systems. MIT Press, Cambridge, MA.

AALST WMPVD, HOFSTEDE AHMT, KIEPUSZEWSKI B and BARROS A (2003)
Workflow patterns. Distributed and Parallel Databases 14(3), 5-51.

ACKOFF RL (1967) Management misinformation systems. Management Science 14(4), B-
147-B-156.

AKKERMANS H and VAN HELDEN K (2002) Vicious and virtuous cycles in ERP
implementation: A case study of interrelations between critical success factors.
European Journal of Information Systems 11(1), 35-46.

APPLEGATE LM (1999) Rigor and relevance in MIS research-introduction. MIS Quarterly
23(1), 1-2.

Page 29

ASHBY WR (1956) An introduction to cybernetics. Chapman and Hall, London, UK.

BANCROFT N, SEIP H and SPRENGEL A (1998) Implementing SAP R/3: How to
introduce a large system into a large organisation. Manning Inc, Greenwich.

BECKER J, DELFMANN P, KNACKSTEDT R and KUROPKA D (2002) Konfigurative
Referenzmodellierung. In Wissensmanagement mit Referenzmodellen. Konzepte für die
Anwendungssystem- und Organisationsgestaltung (BECKER J and KNACKSTEDT R,
Eds), pp 25-144, Heidelberg.

BEER S (1959) Cybernetics and management. Wiley, New York, NY, USA.

BEER S (1966) Decision and control. John Wiley & Sons, London, UK et al.

BENBASAT I and ZMUD RW (1999) Empirical research in information systems: The
practice of relevance. MIS Quarterly 23(1), 3-16.

BERGER PL and LUCKMANN T (1966) The social construction of reality: A treatise in the
sociology of knowledge. Doubleday, Garden City, NY, USA.

BERNSTEIN A (2000) How can cooperative work tools support dynamic group processes?
Bridging the specificity frontier. In ACM 2000 Conference on Computer Supported
Cooperative Work, pp 279-288, ACM Press, Philadelphia, PA, USA.

BHATTACHARJEE S and RAMESH R (2000) Enterprise computing environments and cost
assessment. Communications of the ACM 43(10), 75-82.

BOJE DM, GEPHART JR. R and THATCHENKERY TJ (Eds.) (1996) Postmodern
management and organization theory. SAGE Publications, Thousand Oaks, CA, USA
et al.

BOSTROM RP and HEINEN JS (1977) MIS problems and failures: A socio-technical
perspective. Part 1: The causes. MIS Quarterly 1(3), 17-32.

BREHM L, HEINZL A and MARKUS ML (2001) Tailoring ERP systems: A spectrum of
choices and their implications. In 34th Hawaii International Conference on System
Sciences (HICSS), IEEE, Hawaii, USA.

BROWN CV and MAGILL SL (1994) Alignment of the IS functions with the enterprise -
toward a model of antecedents. MISQ Quarterly 18(4), 371-403.

BURRELL G and MORGAN G (1979) Sociological paradigms and organisational analysis:
Elements of the sociology of corporate life. Heinemann, London, UK.

Page 30

CHAN YE, HUFF SL, BARCLAY DW and COPELAND DG (1997) Business strategic
orientation, information systems strategic orientation, and strategic alignment.
Information Systems Research 8(2), 125-150.

CHIA RKG (1996) Organizational analysis as deconstructive practice. Walter de Gruyter,
Berlin, Germany et al.

DALAL NP, KAMATH M, KOLARIK WJ and SIVARAMAN E (2004) Toward an
integrated framework for modeling enterprise processes. Communications of the ACM
47(3), 83-87.

DAVENPORT TH (1993) Process innovation: Reengineering work through information
technology. Harvard Business School Press, Boston, MA, USA.

DAVENPORT TH (1998) Putting the enterprise into the enterprise system. Harvard Business
Review 76(4), 121-131.

DAVENPORT TH and MARKUS ML (1999) Rigor vs. Relevance revisited: Response to
Benbasat and Zmud. MIS Quarterly 23(1), 19-23.

DAVENPORT TH and SHORT JE (1990) The new industrial engineering: Information
technology and business process redesign. Sloan Management Review 31(4), 11-27.

DENNIS AR, WIXOM BH and VANDENBERG RJ (2001) Understanding fit and
appropriation effects in group support systems via meta-analysis. MISQ Quarterly
25(2), 167-193.

DESEL J and ESPARZA J (1995) Free choice petri nets. Cambridge University Press,
Cambridge, UK.

DREILING A, ROSEMANN M, AALST WMPVD, SADIQ W and KHAN S (2005) Model-
driven process configuration of enterprise systems. In Wirtschaftsinformatik 2005.
eEconomy, eGovernment, eSociety (FERSTL OK, SINZ EJ, ECKERT S and
ISSELHORST T, Eds), pp 691-710, Physica-Verlag, Heidelberg, Germany.

DUMAS M, AALST WMPVD and HOFSTEDE AHMT (2005) Process-aware information
systems. Wiley & Sons.

EIJNATTEN FMV (1993) The paradigm that changed the work place. Van Gorcum, Assen,
The Netherlands.

FISCHER L (Ed.) (2003) Workflow handbook 2003. Workflow Management Coalition,
Lighthouse Point, FL.

Page 31

GEORGAKOPOULOS D, HORNICK, M. and SHETH A (1995) An overview of workflow
management: From process modeling to workflow automation infrastructure.
Distributed and Parallel Databases 3, 119-153.

GIBSON CF, SINGER CJ, SCHNIDMAN AA and DAVENPORT TH (1984) Strategies for
making an information system fit your organization. Management Review 73(1),
American Management Association, 8-14.

HAMMER M and CHAMPY J (1993) Reengineering the corporation. A manifesto for
business revolution. HarperBusiness, New York, NY, USA.

HARTOG C and HERBERT M (1986) 1985 opinion survey of MIS managers - key issues.
MISQ Quarterly 10(4), 351-361.

HENDERSON JC and VENKATRAMAN N (1999) Strategic alignment: Leveraging
information technology for transforming organizations. IBM Systems Journal 38(2/3),
472-484.

HIRSCHHEIM RA and NEWMAN M (1991) Symbolism and information systems
development: Myth, metaphor and magic. Information Systems Research 2(1), 29–62.

HOLLAND CP and LIGHT B (1999) A critical success factors model for ERP
implementation. IEEE Software 16(3), 30-36.

HONG K-K and KIM Y-G (2002) The critical success factors for ERP implementation: An
organizational fit perspective. Information & Management 40(1), 25-40.

JABLONSKI S and BUSSLER C (1996) Workflow management: Modeling concepts,
architecture, and implementation. International Thomson Computer Press, London,
UK.

KEIL M (1995) Pulling the plug: Software project management and the problem of project
escalation. MIS Quarterly 19(4), 421-447.

KEIL M, MANN J and RAI A (2000) Why software projects escalate: An empirical analysis
and test of four theoretical models. MIS Quarterly 24(4), 631-664.

KEIL M and ROBEY D (2001) Blowing the whistle on troubled software projects.
Communications of the ACM 44(4), 87-93.

KEY P (1998) SAP America hit with a $500m suit. Philadelphia Business Journal.

KINDLER E (2004) On the semantics of EPCs: A framework for resolving the vicious circle.
In Business Process Management: Second International Conference (Lecture Notes in
Computer Science, Vol. 3080 / 2004) (DESEL J, PERNICI B and WESKE M, Eds), pp
82-97, Springer, Potsdam, Germany.

Page 32

KLAUS H, ROSEMANN M and GABLE GG (2000) What is ERP? Information Systems
Frontiers 2(2), 141-162.

LEE J, SIAU K and HONG S (2003) Enterprise integration with ERP and EAI.
Communications of the ACM 46(2), 54-60.

LEYMANN F and ROLLER D (1999) Production workflow: Concepts and techniques.
Prentice-Hall, Upper Saddle River, NJ.

LOONAM J and MCDONAGH J (2004) Principles, foundations & issues in enterprise
systems. In Managing business with sap: Planning implementation and evaluation
(LAU L, Ed), pp 1-32, IDEA Group Publishing, Hershey, PA, USA.

LUCAS JR. HC, STERN LN, WALTON EJ and GINZBERG MJ (1988) Implementing
packaged software. MIS Quarterly 12(4), 536-549.

LYYTINEN K (1999) Empirical research in information systems: On the relevance of
practice in thinking of is research. MIS Quarterly 23(1), 25-27.

MAJCHRZAK A, RICE RE, MALHOTRA A, KING N and BA SL (2000) Technology
adaptation: The case of a computer-supported inter-organizational virtual team. MISQ
Quarterly 24(4), 569-600.

MARKUS ML (2004) Technochange management: Using it to drive organizational change.
Journal of Information Technology 19(1), 4-20.

MARKUS ML, PETRIE D and AXLINE S (2000) Bucking the trends: What the future may
hold for ERP packages. Information Systems Frontiers 2(2), 181-193.

Merriam-Webster (2003) Merriam-Webster's Collegiate Dictionary, 11th ed, Springfield,
MA, USA.

MURATA T (1989) Petri nets: Properties, analysis and applications. In Proceedings of the
IEEE, pp 541-580.

NELSON RR (1991) Educational-needs as perceived by is and end-user personnel - a survey
of knowledge and skill requirements. MISQ Quarterly 15(4), 503-521.

NEWELL A and SIMON HA (1972) Human problem solving. Prentice-Hall, Englewood
Cliffs, NJ, USA.

ORACLE CORP. (2006) Oracle business benefits series. Oracle Corporation.
http://www.oracle.com/customers/business-benefits/index.html, accessed on 2006-02-
13

Page 33

PALMER JW and MARKUS ML (2000) The performance impacts of quick response and
strategic alignment in specialty retailing. Information Systems Research 11(3), 241-259.

REICH BH and BENBASAT I (2000) Factors that influence the social dimension of
alignment between business and information technology objectives. MISQ Quarterly
24(1), 81-113.

REISIG W and ROZENBERG G (Eds.) (1998) Lectures on petri nets I: Basic models.
Springer, Berlin, Germany et al.

RIBSTEIN LE (2002) Market vs. Regulatory responses to corporate fraud: A critique of the
Sarbanes-Oxley act of 2002. Journal of Corporation Law 28(1), 1-67.

ROBEY D, ROSS JW and BOUDREAU M-C (2002) Learning to implement enterprise
systems: An exploratory study of the dialectics of change. Journal of Management
Information Systems 19(1), 17-46.

ROSEMANN M and AALST WMPVD (2005) A configurable reference modelling
language. Information Systems (in press).

ROSEMANN M, VESSEY I and WEBER R (2004) Alignment in enterprise systems
implementations: The role of ontological distance. In Twenty-Fifth International
Conference on Information Systems, pp 439-448, Association for Information Systems,
Washington, DC.

ROSEMANN M, VESSEY I, WEBER R and WYSSUSEK B (2005) Reconsidering the
notion of requirements engineering for enterprise system selection and implementation.
In 16th Australasian Conference on Information Systems, Manly, Australia.

SABHERWAL R and CHAN YE (2001) Alignment between business and is strategies: A
study of prospectors, analyzers, and defenders. Information Systems Research 12(1),
11-33.

SAP AG (2004) Consumer product companies run SAP.
http://www.sap.com/industries/consumer/pdf/CSBook_Consumer_Products.pdf ,
accessed on 2006-02-13, SAP AG, Walldorf, Germany.

SAP AG (2004) Enterprise services architecture: An introduction. SAP White Papers, SAP
AG, Walldorf, Germany.

SARBANES P and OXLEY MG (2002) Sarbanes-Oxley act. Report by the House Financial
Services committee, US Congress, Washington, DC, USA.

SCHEER A-W (2000) ARIS - business process modeling. Springer, Berlin.

Page 34

SCHMIDT R, LYYTINEN K, KEIL M and CULE P (2001) Identifying software project
risks: An international delphi study. Journal of Management Information Systems
17(4), 5-36.

SEGARS AH and GROVER V (1998) Strategic information systems planning success: An
investigation of the construct and its measurement. MISQ Quarterly 22(2), 139-163.

SEGARS AH and GROVER V (1999) Profiles of strategic information systems planning.
Information Systems Research 10(3), 199-232.

SILVER MS, MARKUS ML and BEATH CM (1995) The information technology
interaction-model - a foundation for the MBA core course. MISQ Quarterly 19(3), 361-
390.

SMITH HJ, KEIL M and DEPLEDGE G (2001) Keeping mum as the project goes under:
Toward an explanatory model. Journal of Management Information Systems 18(2),
189-228.

SOFFER P, GOLANY B and DORI D (2003) ERP modeling: A comprehensive approach.
Information Systems 28(6), 673-690.

SOMERS TM, NELSON K and RAGOWSKY A (2000) Enterprise resource planning (ERP)
for the next millennium: Development of an integrative framework and implications for
research. In Americas Conference on Information Systems, pp 998-1004, Association
for Information Systems, Long Beach, CA.

SRINIVASAN A (1985) Alternative measures of system effectiveness - associations and
implications. MISQ Quarterly 9(3), 243-253.

STEIN T (1998) SAP sued over R/3. InformationWeek 1998(698), 134.

STYHRE A (2003) Understanding knowledge management - critical and postmodern
perspectives. Marston Book Services, Abingdon, UK.

SUMNER M (1999) Critical success factors in enterprise wide information management
systems projects. In Proceedings of the 1999 ACM SIGCPR conference on Computer
personnel research, pp 297-303, ACM Press, New Orleans, LA.

SUMNER M and HAMILTON J (2005) The turnaround ERP project: Strategies and issues.
In 11th Annual Americas Conference on Information Systems (AMCIS), pp 2093-2098,
AIS, Omaha, NE, USA.

TURBAN E (1995) Decision support and expert systems: Management support systems.
Prentice-Hall, Englewood Cliffs, NJ.

Page 35

UMBLE EJ, HAFT RR and UMBLE MM (2003) Enterprise resource planning:
Implementation procedures and critical success factors. European Journal of
Operational Research 146, 241-257.

VERBEEK HMW, AALST WMPVD and KUMAR A (2004) XRL/Woflan: Verification and
extensibility of an XML/petri-net-based language for inter-organizational workflows.
Information Technology and Management Journal 5(1-2), 65-110.

VOLKOFF O, STRONG DM and ELMES MB (2005) Understanding enterprise systems-
enabled integration. European Journal of Information Systems 14(2), 110-120.

WEICK KE (1969) The social psychology of organizing. Addison-Wesley, Reading, MA,
USA.

WIENER N (1948) Cybernetics. J. Wiley, New York.

WIENER N (1967) The human use of human beings: Cybernetics and society. Avon Books,
New York, NY, USA.

ZUR MUEHLEN M (2004) Workflow-based process controlling: Foundation, design and
application of workflow-driven process information systems. Logos, Berlin, Germany.

Page 36

9 Figures and Tables

Configuration
Pattern Optionality

Build-time
Configuration

Decision
“switched on”

Build-time
Configuration

Decision
“switched off”

Build-time Configuration
Decision

“switched optional”

Preceding
Process to A

Configurable
Task A

Succeeding
Process after

A

Preceding
Process to A

Task A

Succeeding
Process after

A

Preceding
Process to A

Succeeding
Process after

A

Preceding
Process to A

Task A

Succeeding
Process after

A

Decision: XOR

Table 1. Configuration Pattern of Optionality

Page 37

Configuration Pattern Sequence Inter-
Relationship

Case “Mutually Dependent”
Build-time Configuration Decision

“switched on”

Case “Mutually Dependent”
Build-time Configuration Decision

“switched optional”

Preceding
Process to A

Configurable
Task A

Succeeding
Process after

A

Preceding
Process to A

Task A

Succeeding
Process after

A

Preceding
Process to A

Task A

Succeeding
Process after

A

Preceding
Process to B

Configurable
Task B

Succeeding
Process after

B

Preceding
Process to B

Task B

Succeeding
Process after

B

Case “Mutually Dependent”
Build-time Configuration Decision

“switched off”

Preceding
Process to A

Succeeding
Process after

A

Preceding
Process to B

Succeeding
Process after

B

Preceding
Process to B

Task B

Succeeding
Process after

B

Local Decisions, each XOR, A=on <=> B=on

Case “Mutually Exclusive”
Build-time Configuration Decision
“A switched on, B switched off”

Case “Mutually Exclusive”
Build-time Configuration Decision

“switched optional”

Preceding
Process to A

Task A

Succeeding
Process after

A

Preceding
Process to A

Task A

Succeeding
Process after

A

Preceding
Process to B

Succeeding
Process after

B

Case “Mutually Exclusive”
Build-time Configuration Decision
“A switched off, B switched on”

Preceding
Process to A

Succeeding
Process after

A

Preceding
Process to B

Succeeding
Process after

B

Preceding
Process to B

Task B

Succeeding
Process after

B

Local Decisions, each XOR, A=on <=> B=off

Task B

Table 2. Configuration Pattern of Sequence Inter-relationship

Page 38

Configuration
Pattern Interleaved

Parallel Routing

Build-time
Configuration

Decision
1 of n!

Preceding
Process

Set of Process
Blocks

{PB1,...PBn}

Succeeding
Process

Preceding
Process

PB1

Succeeding
Process

PBn

PB2

Build-time
Configuration

Decision
2 of n!

Preceding
Process

PB2

Succeeding
Process

PBn

PB1

Build-time
Configuration

Decision
n! of n!

Preceding
Process

PBn

Succeeding
Process

PB1

PBn-1

Build-time
Configuration

Decision
“Defer to Run-

Time”

Preceding
Process

Set of Process
Blocks

{PB1,...PBn}

Succeeding
Process

Table 3. Configuration Pattern of Interleaved Parallel Routing

Page 39

Configuration Pattern
Exclusive Choice

Configuration Pattern
Multi Choice

Configuration Pattern
Parallel Split

Preceding
Process to

Split

Parallel Split

Split
Part
A1

Succeeding
Process after

Split

Split
Part
An

Build-time Configuration
Decision
“XOR”

Build-time Configuration
Decision
“XOR”

Build-time Configuration
Decision

“OR”

Build-time Configuration
Decision
“AND”

Build-time Configuration
Decision
“AND”

Build-time
Configuration

Decision
“Sequence 1”

Preceding
Process to

Split

Split
Part
A1

Succeeding
Process

after Split

Build-time Configuration
Decision

“Sequence 2”

Preceding
Process to

Split

Succeeding
Process

after Split

Split
Part
Ai

Build-time Configuration
Decision
“XOR”

Build-time Configuration
Decision

“OR”

Build-time Configuration
Decision

“OR”

Build-time Configuration
Decision
“AND”

(…)

Preceding
Process to

Split

Exclusive
Choice

Split
Part
A1

Succeeding
Process after

Split

Split
Part
An

(…)

Preceding
Process to

Split

Multi Choice

Split
Part
A1

Succeeding
Process after

Split

Split
Part
An

(…)

Preceding
Process to

Split

Split
Part
A1

Succeeding
Process after

Split

Split
Part

Am (m≤n)

(…)

AND

Build-time
Configuration

Decision
“Sequences i”

(1≤i≤n)

Build-time
Configuration

Decision
“Sequence n”

Preceding
Process to

Split

Succeeding
Process

after Split

Split
Part
An

Preceding
Process to

Split

Split
Part
A1

Succeeding
Process after

Split

Split
Part

Am (m≤n)

(…)

AND

Build-time
Configuration

Decision
“Sequence 1”

Preceding
Process to

Split

Split
Part
A1

Succeeding
Process

after Split

Build-time Configuration
Decision

“Sequence 2”

Preceding
Process to

Split

Succeeding
Process

after Split

Split
Part
Ai

Build-time
Configuration

Decision
“Sequences i”

(1≤i≤n)

Build-time
Configuration

Decision
“Sequence n”

Preceding
Process to

Split

Succeeding
Process

after Split

Split
Part
An

Preceding
Process to

Split

Split
Part
A1

Succeeding
Process after

Split

Split
Part

Am (m≤n)

(…)

XOR

Build-time
Configuration

Decision
“Sequence 1”

Build-time Configuration
Decision

“Sequence 2”

Build-time
Configuration

Decision
“Sequences i”

(1≤i≤n)

Build-time
Configuration

Decision
“Sequence n”

Preceding
Process to

Split

Split
Part
A1

Succeeding
Process after

Split

Split
Part

Am (m≤n)

(…)

XOR

Preceding
Process to

Split

Split
Part
A1

Succeeding
Process after

Split

Split
Part

Am (m≤n)

(…)

OR

Table 4. Semantic Configuration Patterns of Parallel Split, Exclusive Choice, and Multi
Choice

Page 40

Syntactic Pattern EFE

A
EP

ES
A
ES

Syntactic Pattern JFE

A

Syntactic Pattern SFE

EP1 EPn

An

EP

ESn

Syntactic Pattern EFJ

ES

EPnEP

A An

ES

A

EP1 EPn

ES

Syntactic Pattern JFJ

A An

EP

ES

Syntactic Pattern SFJ

A
ll

po
ss

ib
le

 s
ce

na
rio

s
w

he
re

fu

nc
tio

n
is

 s
uc

ce
ed

ed
 b

y
an

d
ev

en
t

A
ll

po
ss

ib
le

 s
ce

na
rio

s
w

he
re

fu

nc
tio

n
is

 s
uc

ce
ed

ed
 b

y
jo

in
A

ll
po

ss
ib

le
 s

ce
na

rio
s

w
he

re

fu
nc

tio
n

is
 s

uc
ce

ed
ed

 b
y

sp
lit

Syntactic Pattern EFS Syntactic Pattern JFS Syntactic Pattern SFS

EP

A

ESnES1

A

EP1 EPn

ESnES1

A

ESnES1

An

EP

An

All possible scenarios where function
succeeds an event

All possible scenarios where
function succeeds a join

All possible scenarios where
function succeeds a split

Table 5. Syntactic EPC Pattern as a result of all lawful contexts of a configurable Function A
within an EPC

Page 41

Table 6. Configuration Decisions (Choices) for Syntactic EPC Pattern EFE

Page 42

Syntactic
Pattern

EFJ

A
ESA

EP A
ESA

EP

Syntactic
Pattern

SFE

Possible
context of

SFE

Possible
context of

EFJ

Table 7. Possible Contexts of Syntactic Configuration Patterns EFJ and SFE

Page 43

Semantic Patterns
in an EPC

environment

Build-time configuration Decisions for Semantic Patterns Multi Choice/Synchronizing Merge, Exclusive Choice/Simple Merge,
Parallel Split/Synchronization, Case “Choice/Split succeeds Function”

A A
E1

A1

E

Sequence n
(Exclusive

Choice/Simple
Merge, Multi

Choice/
Synchronizing

Merge)

A
En

E
An

Sequence 1
(Exclusive

Choice/Simple
Merge, Multi

Choice/
Synchronizing

Merge)

Build-time Configuration Decision
“XOR” (Exclusive Choice/Simple

Merge, Multi Choice/
Synchronizing Merge)

Build-time Configuration Decision
“OR” (Multi Choice/

Synchronizing Merge)

Build-time Configuration
Decision “AND” (Exclusive
Choice/Simple Merge, Multi

Choice/Synchronizing
Merge, Parallel Split/

Synchronization)

AND

E

AND

Multi Choice and
Synchronizing

Merge

Exclusive Choice
and Simple Merge

Parallel Split and
Synchronization

OR

OR

EP
C

 1

EP
C

 n

(…)

XOR

XOR

EP
C

 1

EP
C

 n

(…)

AND

AND

EP
C

 1

EP
C

 n

(…)

XOR

XOR

EP
C

 1

EP
C

 m
(m

≤n(…)

A
OR

OR

EP
C

 1

EP
C

 m
(m

≤n(…)

A
AND

AND

EP
C

 1

EP
C

 m
(m

≤n(…)

Sequence i
(1≤i≤n)

(Exclusive
Choice/Simple
Merge, Multi

Choice/
Synchronizing

Merge)

A
Ei

E
D

R1

Artificial
Decision
Function

XOR

XOR

(…) Rm (m≤n)

EP
C

 1

EP
C

 n

E
D

R1

Artificial
Decision
Function

OR

OR

(…) Rm (m≤n)

EP
C

 1

EP
C

 n

EP
C

 1

EP
C

 m
(m

≤n

Ai

E

Build-time configuration Decisions for Semantic Patterns Multi Choice/Join, Exclusive Choice/Join, Parallel Split/Join, Case
“Choice/Split succeeds Event”

Sequence n
(Exclusive

Choice/Simple
Merge, Multi

Choice/
Synchronizing

Merge)

Sequence 1
(Exclusive

Choice/Simple
Merge, Multi

Choice/
Synchronizing

Merge)

Build-time Configuration Decision
“XOR” (Exclusive Choice/Simple

Merge, Multi Choice/
Synchronizing Merge)

Build-time Configuration Decision
“OR” (Multi Choice/

Synchronizing Merge)

Build-time Configuration
Decision “AND” (Exclusive
Choice/Simple Merge, Multi

Choice/Synchronizing
Merge, Parallel Split/

Synchronization)

Sequence i
(1≤i≤n)

(Exclusive
Choice/Simple
Merge, Multi

Choice/
Synchronizing

Merge)

Table 8. Configuration Decisions for Semantic Patterns Multi Choice/Synchronisation,
Exclusive Choice/Simple Merge, and Parallel Split/Synchronisation

Page 44

Table 9. Petri-net-based Configuration Semantic Pattern of Optionality

Page 45

Table 10. Reduction Rules for Removing Silent Steps in Petri Nets

Page 46

Semantic Patterns
of Parallel Split

and
Synchronization

in a Petri Net
Environment

Build-time
Configuration

Decision “AND”

A

A1 An(…)

A

A

A1 Am(…)

A

m<n

Table 11. Petri-net-based Configuration Patterns for Parallel Split and Synchronisation

Page 47

Build-Time
Configuration

Decision “XOR”

Build-Time
Configuration

Decision
“Sequence i”

A1 An(…) A1 Am(…)

m<n

Ai

Semantic Patterns
of Exclusive
Choice and

Simple Merge in a
Petri Net

Environment

Table 12. Petri-net-based Configuration Patterns for Exclusive Choice and Simple Merge

Page 48

Semantic Patterns of Multi
Choice and Synchronizing Merge

in a Petri Net Environment

sAB

A B

sA sB

jABjA jB

sAB

A B

sA sB

jABjA jB

sAB

A B

jAB

A B i

Build-Time Configuration
Decision “OR”

Build-Time
Configuration

Decision “AND”

Build-Time
Configuration

Decision “AND”

Build-Time
Configuration

Decision
“Sequence i”

i={A,B}

Table 13. Petri-net-based Configuration Patterns for Multi Choice and Synchronising Merge

Page 49

