
Structural Patterns for Soundness of Business Process Models

B.F. van Dongen
Department of Technology Management, Eindhoven University of Technology, The Netherlands.

b.f.v.dongen@tm.tue.nl

J. Mendling
Vienna University of Economics and Business Administration, Austria,

jan.mendling@wu-wien.ac.at

W.M.P. van der Aalst
Department of Technology Management, Eindhoven University of Technology, The Netherlands.

w.m.p.v.d.aalst@tm.tue.nl

Abstract

The correctness of business process models is of
paramount importance for the application on an enterprise
level. A severe problem is that several languages for busi-
ness process modelling do not have formal execution se-
mantics which is a prerequisite to check correctness crite-
ria. In this context, soundness defines a minimum correct-
ness criterion that a process model should fulfil. In this
paper we present a novel approach to reason about sound-
ness based on so-called causal footprints. A causal foot-
print represents a set of conditions on the order of activities
that holds for every case of a process model. We identify
three kinds of error patterns that affect the soundness of a
process model, namely the deadlock pattern, the multiple
termination pattern, and the trap pattern. We use Event-
driven Process Chains (EPCs) and Petri nets to demonstrate
the applicability of our approach for both conceptual as for
formal process modelling languages. Furthermore, it can
easily be applied to other languages, such as UML activ-
ity diagrams or BPEL. Based on the trap pattern, we prove
that the “vicious circle”, that is heavily discussed in EPC
literature, is unsound.

1. Introduction

Business process modelling is gaining increasing atten-
tion as a basis for the development of large-scale enterprise
information systems. In this context, business process mod-
els can either be used as a formalization of requirements that
guide the implementation, as input for code generation in a
model-driven architecture, or as executable templates on a

dedicated process engine defined e.g. with BPEL. All these
three scenarios have in common that the correctness of the
business process models is of paramount importance for the
application on an enterprise level. Formal errors such as
deadlocks can easily have a severe impact on the profits of
an enterprise if a key business process is affected.

The detection of errors in a business process model is
complicated by two problems. First, there is a plethora of
languages for business process modelling (cf. [21]). Even
though there are similarities concerning what workflow pat-
terns these languages supports (cf. [4]), analysis techniques
have to be defined for each language individually in or-
der to capture the specifics of the semantics. Second, and
even worse, there are several business process modelling
languages for which no formal semantics have been defined
or that have only formal semantics when certain structural
conditions are fulfilled. Still, any business process model
that is used in the development of enterprise systems needs
to be checked in order to prevent ambiguities in the design
phase and errors at run-time. In this paper, we address these
two problems in a novel way.

While several available analysis techniques (e.g. for
Petri nets) work on the state space that can be calculated
for a process model, we abstract from the actual behaviour
by introducing a concept that is called causal footprint.

The idea of a causal footprint is to derive a set of condi-
tions on the order of activities that holds for the process
model and to utilize it for reasoning on the correctness.
Soundness is an important correctness criterion in this con-
text. In essence, a process is sound if and only if (a) any case
terminates in one of some pre-defined termination states and
(b) for all activities in the process there is at least one case
in which they can be executed. Figure 1 illustrates that the
causal footprint gives an approximation of the process be-

1

D

C

B E F
H

G I
A

Process Model

Causal Footprint

Figure 1. Process model and causal footprint.

haviour in terms of conditions that every process instance
has to obey to. Throughout this paper, we use Event-driven
Process Chains (EPCs) and Petri nets to show the applica-
bility of causal footprints for both formal and conceptual
business process modelling languages. This choice is mo-
tivated by the fact that EPCs are widely used for the doc-
umentation of business process e.g. in the SAP reference
model. Furthermore, Petri nets are a well-understood for-
malism for the modelling of business processes that are used
for the formalization of a variety of languages and standards
(e.g. BPMN, BPEL, XPDL, UML activity diagrams).

The remainder of this paper is structured as follows. In
Section 2, we introduce EPCs and Petri nets. Section 3
provides the definition of causal footprints and a respective
mapping from EPCs and from Petri nets. Section 4 contin-
ues with two patterns (deadlock and multiple termination)
that are typically found in a causal footprint that has errors.
We use an example taken from the SAP reference model to
illustrate our “pattern-based error detection” approach. Fur-
thermore, we provide a third pattern (trap pattern) that rep-
resents a necessary condition for soundness. We apply this
technique to the famous “vicious circle” (cf. [3, 17, 18]) to
show that it is not sound under any semantics where block-
ing connectors are assumed to be unsound. In Section 5, we
introduce the implementation of our technique as a plug-in
for the ProM framework. Section 6 gives an overview of
related research on business process verification. We con-
clude the paper with some conclusions and an outlook on
future research.

2. Preliminaries

In the introduction, we mentioned two process modelling
languages, namely Petri nets and EPCs. In this section,
we introduce these modelling languages in the mathemat-
ical sense (that is, we formalize their structure). Both of
these languages, and also the formalism we introduce later,
are graph based. Therefore, we start by introducing some
notation specifically for directed graphs.

Definition 2.1. (Pre-set and Post-set) Let G = (N,E)
be a directed graph and let n ∈ N . We define G• n =

{m ∈ N | (m,n) ∈ E} as the pre-set and n
G•= {m ∈

N | (n,m) ∈ E} as the post-set of n with respect to the
graph G. If the context is clear, the superscript G may be
omitted, resulting in •n and n•.

Petri nets are a formal language that can be used to spec-
ify processes. Since the language has formal and executable
semantics, processes modelled in terms of a Petri net can be
executed by an information system. For an elaborate intro-
duction to Petri nets, the reader is referred to [9, 22, 23].
A Petri net consists of two types of node elements (cf. Fig-
ure 2):

Transitions, which typically correspond to either an activ-
ity which needs to be executed, or to a “silent” step (cf.
a routing step) that takes care of routing. A transition
is drawn as a rectangle.

Places, which are used to define the preconditions and
postconditions of transitions. A place is drawn as a
circle.

Transitions and places are connected through directed arcs
in such a way that (i) places and transitions have at least one
incident edge and (ii) in every path, transitions and places
alternate (no place is connected to a place and no transi-
tion is connected to a transition). For completeness sake,
we mention that the Petri nets we use in this paper corre-
spond to a classic subclass of Petri nets, namely workflow
nets (WF-nets, [1]), which are tailored towards workflow
modeling and analysis.

Definition 2.2. (Workflow net) ω = (P, T, F) is a work-
flow net (or WF-net [1]) if:

- P is a finite set of places,
- T is a finite, non empty set of transitions, such that

P ∩ T = ∅ and T �= ∅,
- F ⊆ (P ×T)∪ (T ×P) is the flow relation of the net,
- there exists exactly one pi ∈ P , such that | • pi| = 0,
- there exists exactly one pf ∈ P , such that |pf • | = 0,
- all places and transitions are covered by the paths from

pi to pf .

Except for Petri nets, we also use EPCs to illustrate
our ideas. EPCs provide an intuitive modeling language to
model business processes. EPCs were introduced by Keller,
Nüttgens, and Scheer in 1992 [15]. It is important to realize
that the language is not intended to be a formal specification
of a business process. Instead, it serves mainly as a means
of communication. EPCs are extensively used in large-scale
enterprise modelling projects. One prominent example of a
publicly available model is the SAP reference model [7, 16].
An EPC consists of three types of node elements (cf. Fig-
ure 2):

Functions, which are the basic building blocks. A function
corresponds to an activity (task, process step) which

needs to be executed. A function is drawn as a box
with rounded corners.

Events, which describe the situation before and/or after a
function is executed. Functions are linked by events.
An event may correspond to the position of one func-
tion and act as a precondition of another function.
Events are drawn as hexagons.

Connectors, which can be used to connect functions and
events to specify the flow of control. There are three
types of connectors: ∧ (AND), × (XOR) and ∨ (OR).
Connectors are drawn as circles, showing the type in
the centre.

Functions, events, and connectors can be connected with
edges in such a way that (i) events have at most one incom-
ing edge and at most one outgoing edge, but at least one
incident edge (i.e. an incoming or an outgoing edge), (ii)
functions have precisely one incoming edge and precisely
one outgoing edge, (iii) connectors have either one incom-
ing edge and multiple outgoing edges, or multiple incoming
edges and one outgoing edge, and (iv) in every path, func-
tions and events alternate (no two functions are connected
to one-another and no two events are connected to one-
another, not even when there are connectors in between).
Furthermore, as a guideline, an event should never be fol-
lowed by a choice connector. The latter relates to the imple-
mentation where all components of an information system
that can handle a certain event, should handle it and no se-
lection is made between those components.

Definition 2.3. (Event-driven Process Chain)
ε = (F,E,Cand, Cxor, Cor, A) is an EPC if:

- F is a finite set of functions,
- E is a finite set of events,
- C = Cand ∪ Cxor ∪ Cor is a finite set of connectors,

such that |C| = |Cand| + |Cxor| + |Cor|,
- A ⊆ ((F ∪E ∪C)× (F ∪E ∪C)) is the flow relation

of the net, such that:

- for all f ∈ F there is one (f, x) ∈ A and one
(x, f) ∈ A,

- for all e ∈ E there is at most one (e, x) ∈ A and
at most one (x, e) ∈ A,

- for all c ∈ C there is either one (c, x) ∈ A and
more than one (x, c) ∈ A, or one (x, c) ∈ A and
more than one (c, x) ∈ A,

- for all f1, f2 ∈ F holds (f1, f2) �∈ A,

- for all e1, e2 ∈ E holds (e1, e2) �∈ A,

- on all paths, functions and events alternate.

Note that in this section, we only provide an abstract syn-
tax of Petri nets and EPCs and do not give any semantics.
The reason is that we are not interested in the precise seman-
tics. As illustrated by Figure 1 we aim for a causal footprint

A

B

C

D

/\ A

B

C

D/\

Figure 2. EPC and Petri net for parallelism.

which is independent of specific semantical interpretations
(e.g., the OR-join in EPCs).

3. Causality graphs

As we stated in the introduction, we will look at the
structure of EPCs and Petri nets to provide conditions for
soundness. We do so, by deriving a higher level specifica-
tion, called a causality graph, that captures the intention of
the control flow described in the process model. It is im-
portant to realize that these causality graphs do not capture
the entire process model as such, in fact they are merely a
footprint of the control flow in the given process model, i.e.
they describe the approximate behaviour of a system at a
very high level.

Let us look at process modelling in general. The inten-
tion of any process model is to capture the behaviour of a
process in an understandable way, where the behaviour is
formed by the execution of activities within a case. 1

Definition 3.1. (Process behaviour/case)
Let T be a set of activities, and let ΦT be a process con-

taining these activities. The behaviour of the process ΦT

is defined as the set W ⊆ T ∗, where T ∗ is the set of all
sequences that are composed of zero of more tasks from T .
A σ ∈ W is called a case, i.e. a possible execution of the
process. To denote an activity at a specific index in σ, we
use σ[i], where i is the index ranging from 1 to |σ|.

We have now formalized the behaviour of a process and
each of the modelling languages of Section 2 is intended
to capture this behaviour in a structured way. As we stated
before, we will look at processes at a very high level. There-
fore, we introduce the causality graph, representing a foot-
print of the process.

Definition 3.2. (Causality Graph) Let N be a set of activi-
ties. We define a causality graph G = (N,Flb, Fla), where:

- N is a finite set of nodes (activities),
- Flb ⊆ (P(N) × N) is a set of look-back links2,
- Fla ⊆ (N × P(N)) is a set of look-ahead links.

1Note that we assume trace semantics here rather than more refined
notions such as (branching/weak) bisimulation [14].

2With P(N), we denote the powerset of N , i.e. N ′ ∈ P(N) if and
only if N ′ ⊆ N and N ′ �= ∅.

3.1. Causal Footprint

When a causality graph is used to describe a process, it
should be interpreted in the following way. For each look-
ahead link, we say that the execution of the source of that
link leads to the execution of at least one of the targets of
that link. A look-ahead link is denoted as a bullet with one
or more outgoing arrows. Furthermore, for each look-back
link, the execution of the target is preceded by at least one
of the sources of that link. The notation of a look-back link
is a bullet with one or more incoming arrows. Note that
we do not give any information about when in the future
or past executions took place, but only that they are there.
This way of describing a process is similar to the work pre-
sented in [12]. However, by splitting up the semantics in the
two different directions (i.e. forward and backward), causal
footprints are more expressive. With footprints you can for
example express the fact that task A is always succeeded by
B, but that B can also occur before A, which is typically hard
to express in other languages.

If a causality graph indeed describes a process like this,
we call it a causal footprint. We formalize this concept us-
ing the notion of cases.

Definition 3.3. (Causal Footprint) Let T be a set of ac-
tivities, ΦT be a process with behaviour W . Furthermore,
let ti and tf be such that ti, tf �∈ T and ti �= tf . Further-
more, let G = (T ∪ {ti, tf}, Flb, Fla) be a causality graph.
(For notational purposes, we say that for all σ ∈ W with
n = |σ|,holds that σ[0] = ti and σ[n + 1] = tf , i.e. we add
artificial starts and ends to each trace). We say that G is a
causal footprint graph of ΦT , denoted by G ∈ FΦT

, if and
only if:

1. For all (a,B) ∈ Fla holds that for each σ ∈ W with
n = |σ|, such that there is a 0 ≤ i ≤ n + 1 with
σ[i] = a, there is a j : i < j ≤ n + 1, such that
σ[j] ∈ B,

2. For all (A, b) ∈ Flb holds that for each σ ∈ W with
n = |σ|, such that there is a 0 ≤ i ≤ n + 1 with
σ[i] = b, there is a j : 0 ≤ j < i, such that σ[j] ∈ A,

It is clear from Definition 3.3 that a causal footprint is
not unique, i.e., different processes can have common foot-
prints. For example, G = (T ∪ {ti, tf}, ∅, ∅) is the causal
footprint of any process having activities T . Therefore, we
aim at footprints that are more informative without trying
to capture detailed semantics. Moreover, by using a transi-
tive closure, a causal footprint can be extended to be a more
informative causal footprint.

In order to derive conditions for soundness of processes,
we need to consider the transitive closure of a causal foot-
print. To do so, we first give a general way to transitively
close a causality graph.

Definition 3.4. (Causal Closure) Let G = (N,Flb, Fla)
be a causality graph. We define G∗ = (N,F ∗

lb, F
∗
la) to be

the causal closure of G, where F ∗
lb and F ∗

la are the smallest
possible sets, such that:

1. (a,B) ∈ Fla implies that (a,B) ∈ F ∗
la,

2. (A, b) ∈ Flb implies that (A, b) ∈ F ∗
lb,

3. (a,B) ∈ F ∗
la implies that for all N ′ ⊆ N holds that

(a,B ∪ N ′) ∈ F ∗
la,

4. (A, b) ∈ F ∗
lb implies that for all N ′ ⊆ N holds that

(A ∪ N ′, b) ∈ F ∗
lb,

5. (a,B) ∈ F ∗
la , b ∈ B and (b, C) ∈ F ∗

la, implies that
(a, (B \ {b}) ∪ C) ∈ F ∗

la,
6. (B, c) ∈ F ∗

lb , b ∈ B and (A, b) ∈ F ∗
lb, implies that

((B \ {b}) ∪ A, c) ∈ F ∗
lb,

The rules for causally closing a causal graph obviously
apply to a causal footprint as well. More importantly, the
causal closure of a causal footprint is a causal footprint
again and we refer to it as a footprint closure.

To illustrate that the causal closure of a causal footprint
is indeed also a causal footprint, assume that an activity a
in some process is always followed by at least one element
of the set B. We can then extend the set B by any element,
which corresponds to rules 3 and 4 of Definition 3.4. Now
consider rule 5 and again assume a is always follows by
some element of the set B (i.e. (a,B) ∈ F ∗

la). Furthermore,
we know that there is an activity b ∈ B, which is always fol-
lowed by one element of the set C (i.e. (b, C) ∈ F ∗

la). Then,
it is easy to see that the activity b ∈ B can be substituted
by C, i.e. a is always followed by an element of C, or an
element of B, except b, i.e. (B\{b})∪C. Note that is it im-
portant to first remove b from B and then add all elements
of C, since C might contain b.

It is important that the rules for making a causal closure
are valid under the assumption that the process under con-
sideration has sound behaviour. Obviously, when investi-
gating soundness, soundness cannot be assumed right from
the beginning. However, in this paper, we only investigate
conditions for soundness using the following way of rea-
soning. If a process is indeed sound, it is safe to make
this assumption. If the process is not sound and we use
the causal closure, some of the derivations may not be cor-
rect. However, if we find a error using the causal closure it
may result from a correct derivation showing a problem or
the initial assumption (the process is sound) was wrong. In
both cases, we can conclude that there is indeed a problem
and the process is not sound.

The latter property will be used in this paper, where we
actually do not have the full behaviour of a process, but only
the process model, describing the behaviour in a more or
less formal way.

The fact that a causal footprint of a process is not unique
is irrelevant for the work presented in this paper. Any prop-

a

C B a

C B

a

C B a

C B

Xa

C B

Va

C B

/\a

C BXa

C B

Va

C B

/\a

C B

Figure 3. Mapping of EPC to causal footprint.

A A BB

C D C D

Figure 4. Mapping for
Petri net.

erty that we derive that holds on a causal footprint of a pro-
cess, holds on the process itself. The better the causal foot-
print of a process is, i.e. the more information it contains,
the more properties we are able to deduce. As an exam-
ple, again consider the graph that only has the activities of a
process as nodes and no edges. This graph is a causal foot-
print of any process, but it does not contain any information
about the process.

3.2. Deriving Causal Footprints

In the introduction, we stated that, as an example, we
would focus on soundness properties using EPCs and Petri
nets. Therefore, in this section, we present algorithms to de-
rive causal footprints of EPCs and Petri nets. This is done
in two stages. First, the models are translated to causality
graphs in such a way that these graphs contain all elements
of the modelling languages and only causalities that can be
derived locally (i.e., immediate predecessor and successor
relationships). These graphs are then transitively closed and
projected onto the subset of interesting elements, thus lead-
ing to causal footprints.

Definition 3.5. (EPC to causal graph) Let ε =
(F,E,Cand, Cxor, Cor, A) be an EPC, with the set of mod-
elling elements N ′ = F ∪ E ∪ Cand ∪ Cxor ∪ Cor, the set
of initial elements Ni = {n ∈ N ′ | ε• n = ∅} and the set
of final elements Nf = {n ∈ N ′ | n

ε•= ∅}. We define a
causality graph Gε = (N,Flb, Fla) as follows:

- N = N ′ ∪ {ni, nf}, where ni, nf �∈ N ′ and ni �= nf ,
- Fla =
{(a, {b}) ∈ N×P(N) | a ∈ F ∪E∪Cand∧b ∈ a

ε•}∪
{(a,B) ∈ N × P(N) | a ∈ Cor ∪ Cxor ∧ B = a

ε•}∪
{(ni, Ni)} ∪ {(a, {nf}) | a ∈ Nf},

- Flb =
{({a}, b) ∈ P(N)×N | b ∈ F ∪E∪Cand∧a ∈ε•b}∪
{(A, b) ∈ P(N) × N | b ∈ Cor ∪ Cxor ∧ A =ε•b}∪
{(Nf , nf)} ∪ {({ni}, a) | a ∈ Ni}.

Definition 3.5 gives an algorithm to derive a causality
graph from an EPC and Figure 3 a respective illustration.
However, since we want to talk about processes, we are only
interested in the functions and connectors of this EPC and

not its events. By taking the causal closure of the causal-
ity graph and projecting it onto the functions and connec-
tors (i.e. removing all events and all edges related to these
events), we obtain a causal footprint of the process mod-
elled by the EPC. For this, we first define a projection of a
causal graph.

Definition 3.6. (Causal Graph Projection) Let G =
(N,Flb, Fla) be a causal graph and let N ′ be a set of
nodes, such that N ′ ⊆ N . We define the projection
G′ = (N ′, F ′

lb, F
′
la) of G onto N ′, such that:

- Flb
′ = Flb ∩ (P(N ′) × N ′),

- Fla
′ = Fla ∩ (N ′ × P(N ′))

Property 3.7. (Causal graph gives a causal footprint for
EPC)

Let T be a set of activities and ΦT a process over T .
Let ε = (F,E,Cand, Cxor, Cor, A) be an EPC that mod-
els the process ΦT . Note that F = T . Furthermore, let
Gε = (N,Flb, Fla) be a causality graph following Defini-
tion 3.5. The causal closure of Gε, G∗

ε = (N,F ∗
lb, F

∗
la),

projected onto F ∪ C ∪ {ni, nf}, i.e. G∗
ε
′ = (F ∪ C ∪

{ni, nf}, F ∗
lb
′, F ∗

la
′), is a causal footprint of the process de-

fined by the EPC, i.e. G∗
ε
′ ∈ F(ΦT).

As we stated before, the translation rules from an EPC to
a causal graph are given under the assumption that the EPC
is sound. However, soundness would imply that there are
clear executable semantics, which is not always the case.
Therefore, our translation rules do not require explicit se-
mantics. The only requirement for our rules to hold is that
soundness should be defined in such a way that a blocking
connector is considered to be unsound. Under this assump-
tion, the proof of Property 3.7 is rather intuitive, i.e. any
element in the EPC is always followed by all its successors,
unless it is an XOR-split or OR-split in which case the ele-
ment is followed by at least one of its successors. The same
applies for the join connectors.

Similar to EPCs, we derive a translation for WF-nets to
causality graphs and show that the result is a causal footprint
for the modelled process (cf. Figure 4).

Definition 3.8. (Workflow net to causal footprint) Let
ω = (P, T, F) be a WF-net, with the set of modelling ele-
ments N ′ = P ∪ T , the initial place pi ∈ P and final place

pf ∈ P . We derive a causality graph Gω = (N,Flb, Fla)
as follows:

- N = T ∪ {ni, nf}, where ni, nf �∈ N ′and ni �= nf ,
- Fla = {(n,N ′) ∈ N × P(N) | ∃p∈P\{pf} n ∈ω• p ∧

N ′ = p
ω•} ∪ {(ni, pi

ω•)} ∪ {(t, {nf}) | t ∈ω•pf},
- Flb = {(N ′, n) ∈ P(N) × N | ∃p∈P\{pi} n ∈ p

ω•
∧N ′ =ω•p} ∪ {(ω•pf , nf)} ∪ {({ni}, t) | t ∈ pi

ω•},

Property 3.9. (Causal graph gives a causal footprint for
workflow net) Let T be a set of activities and ΦT a process
over T . Let ω = (P, T ′, F) be a WF-net that models the
process ΦT . Note that T ′ = T . Furthermore, let Gε =
(N,Flb, Fla) be a causality graph following Definition 3.8.
The causal closure of Gω , G∗

ω = (N,F ∗
lb, F

∗
la), is a causal

footprint of the process defined by the WF-net, i.e. G∗
ω ∈

F(ΦT).

WF-nets have a clear executable semantics and therefore
a clear definition of soundness. For this definition, we know
that a WF-net is not considered to be sound if it contains
deadlocks. Therefore, the proof of Property 3.9 is again
rather intuitive, i.e. a transition t is always followed by one
of the transitions that consumes a token that was produced
by t and vice versa.

Both for WF-nets and EPCs, we have defined a transla-
tion to causal graphs, and we have shown that when these
causal graphs are projected onto the interesting elements,
they are causal footprints of the process under considera-
tion. In the next section, we show that if these causal foot-
prints have certain properties, our assumption that the EPC
or WF-net was sound is violated and therefore the process
is not sound.

4. Erroneous patterns

Typically, processes are considered to be sound if and
only if the process fulfills the following conditions:

- Any case that is started terminates in one of some pre-
defined termination states,

- For each activity in the process there is at least one pos-
sible occurrence sequence (i.e., case execution) going
from the initial state to a pre-defined termination state
that contains this activity.

For WF-nets, the definition of soundness is such that
there is exactly one final state, i.e. the state where there
is one token in the output place and no tokens in any other
place. Furthermore, there can be no dead transitions.

The definition of soundness helps to identify three typi-
cal error patterns. Two of them indicate potential errors that
affect the soundness of a business process model: deadlocks
(Sect. 4.1) and multiple termination (Sect. 4.2). Section 4.3
illustrates the deadlock pattern with an example from the

SAP reference model. Furthermore, the trap pattern gives
rise to a sufficient condition for showing that a process is
not sound (Sect. 4.4).

4.1. Deadlock Pattern

Figure 5 shows a process having a simple deadlock
caused by an exclusive choice followed by a synchronizing
join (AND-join). The process is depicted, both as an EPC
and as a Petri net. In this case, the AND-join remains wait-
ing for both b and c to complete while only one of them is
activated. Accordingly, the process cannot terminate prop-
erly and is therefore not sound. The respective Petri net
contains a so-called “Place-Transition handle” (PT-handle,
[13]) as there are alternative paths from one place to a tran-
sition that waits for all paths to complete.

Definition 4.1. (Deadlock Pattern) Let T be a set of activ-
ities and ΦT a process over T . Let G = (N,Flb, Fla) be a
causal footprint of the process defined, i.e. G ∈ F(ΦT).
If there is a (a,B) ∈ Fla with |B| > 1 and there ex-
ists a (a, {d}) ∈ Fla such that for all b ∈ B holds that
({b}, d) ∈ Flb and (a, {b}) �∈ Fla then we say that (a,B, d)
is a Deadlock Pattern.

In causality footprints such PT-handles always map to a
set of activities B (in our example B = {b, c}) that all share
one look-ahead link from a that is in the causal graph of the
model and one common successor d in the look-back link
set plus a look-ahead link from a to d. Furthermore, there
is no single look-ahead link from a to B (i.e. (a, {b}) and
(a, {c}) do not exist). It can be proven that a PT-handle
always produces a deadlock pattern. The idea of the proof
is that there can be no predecessors of a that have a look-
ahead link to successors of a. Therefore, there is no simple
look-ahead link from the start to activities that are succes-
sors of a and predecessors of d. Following the soundness
assumption of the mapping of the AND-join, d can always
be reached from any activity in B. According to the look-
back links, every predecessor of d is executed which finally
contradicts that the successors of a are exclusive. Yet, it
is still an open question whether models without errors can

A

D

A

B C

D

X

/\

A

B C

D

X X

B C

Figure 5. Deadlock in EPC and Petri net and
the respective pattern in the causal footprint.

produce a deadlock pattern. The reason is that the deadlock
pattern does not show that the paths from a to b and a to c
are mutually exclusive. Thus, if we find a deadlock pattern
between a and d in the causal footprint, it is likely that this
really indicates a deadlock.

4.2. Multiple Termination Pattern

Figure 6 shows a process having an improper multiple
instantiation both as an EPC and as a Petri net. In this case,
the successors of d are executed each time a path to the
XOR-join is completed. This leads to multiple terminations
of the process which is not sound. The respective Petri net
contains a so-called “Transition-Place handle” (TP-handle,
[13]) as there are parallel paths from one transition to a set
of places that propagate each token.

Definition 4.2. (Multiple-Termination Pattern) Let T be
a set of activities and ΦT a process over T . Let G =
(N,Flb, Fla) be a causal footprint of the process defined,
i.e. G ∈ F(ΦT). If there is a (B, d) ∈ Flb with |B| > 1
and there exists a ({a}, d) ∈ Flb such that for all b ∈ B
holds that (d, {b}) ∈ Fla and ({a}, b) �∈ Flb then we say
that (a,B, d) is a Multiple Termination Pattern.

In causal footprints such TP-handles always map to a set
of activities B (in our example B = {b, c}) that all share
one look-back link to d that is in the causal graph of the
model and one common predecessor a in the look-ahead
link set plus a look-back link from a to d. Furthermore,
there is no single look-back link from B to d. It can be
proven that a TP-handle always produces a multiple termi-
nation pattern. The idea of the proof is analogous to the
proof for the deadlock pattern. Furthermore, it is still an
open question, whether models without errors can produce
a multiple termination pattern. The reason is that the multi-
ple termination pattern does not enforce that the paths from
b to d and from c to d are mutually exclusive paths. Thus,
if we find a multiple termination pattern between a and d
in the causal footprint, it is likely that this really indicates
a multiple termination. However, in terms of an EPC for

A

D

A

B C

D

/\

X

A

B C

D

X

B C

X

Figure 6. Multiple termination in EPC and
Petri net and the respective pattern in the
causal footprint.

example, if the XOR-join is replaced by an OR-join, the
pattern can still be found, but one might argue that the EPC
is sound. This however depends on the semantics of the
OR-join.

4.3. SAP reference model example

Figure 7 gives a part of the “Release and Implementation
of Measure” EPC that is part of the asset accounting branch
of the SAP reference model [7, 16]. The corresponding
causal footprint includes the deadlock pattern. This pro-
cess part indeed contains a deadlock, e.g., taking the path
starting with event “Reserved funds to reduce” leads to a
deadlock before the last AND-join.

4.4. Trap Pattern

So far, we have shown that we can take a process model
in terms of an EPC or WF-net and that we can describe
the behaviour of the underlying process using a causal foot-
print. A causal footprint is declarative in nature, i.e. it
describes what happens, but it does not describe how it
happens. This property can be used to give conditions for
soundness.

Definition 4.3. (Singular Trap Pattern) Let T be a set of
activities and ΦT a process over T . Let G = (N,Flb, Fla)
be a causal footprint of the process defined, i.e. G ∈
F(ΦT). If there is a n ∈ N , such that (n, {n}) ∈ Fla,
or ({n}, n) ∈ Fla then we say that (n) is a Singular Trap
Pattern.

The singular trap pattern is stronger than the previous
patterns, since we can say that if a process contains sin-
gular trap pattern, the process is not sound. The proof of
this property is trivial. The presence of a look-ahead link
(n, {n}) means that if activity n appears once in a case,

X Order
release

Budget s
assigned

Order
release

Actual
costs are

known

Reserved
funds to
reduce

Funds to
be set
aside

Manual
Fund Re-
servation

/\
Item

based on
order

Funds
are

reserved

/\

/\

Manual
Fund Re-
duction

Reserved
funds are
reduced

Manual
Fund Re-
duction

/\

Manual
Fund Re-
servation

Figure 7. EPC from the SAP reference model
and part of its causal footprint.

then it appears infinitely often in that case. Therefore, ei-
ther the activity can never be performed, which means that
the activity is dead, or there is a livelock. Similarly, if there
is a look-back link ({n}, n) then every occurrence of activ-
ity n has to be preceded by activity n. Therefore, activity n
can never be performed, thus indicating that it is dead.

Definition 4.3 can easily be extended to a more general
pattern.

Definition 4.4. (Generalized Trap Pattern) Let T be a
set of activities and ΦT a process over T . Let G =
(N,Flb, Fla) be a causal footprint of the process defined,
i.e. G ∈ F(ΦT). If there is a non-empty set of nodes
N ′ ⊂ N , such that for all n′ ∈ N ′ there is a N ′′ ⊆ N ′

with (n′, N ′′) ∈ Fla or for all n′ ∈ N ′ there is a N ′′ ⊆ N ′

with (N ′′, n′) ∈ Flb then we say that (N) is a Generalized
Trap Pattern.

The idea behind the generalized trap pattern is similar to
the singular one and they have the same property that the
process is not sound if the pattern occurs. Again the proof
is straightforward, since as soon as one of the activities of
the subset N ′ occurs, it will always lead to the execution of
another element of that set, implying that there is a livelock,
or the set is dead. For the look-back links the set is always
dead. Note that these potential problems are related to the
concepts of traps and siphons in Petri nets [9].

A

/\

X

B

/\

X

C

/\

X
A

B C

Figure 8. Vicious circle and causal footprint.

Figure 8 gives the famous EPC for the vicious circle.
The EPC shows that there is a possible paradox when us-
ing multiple OR-joins and has been extensively discussed
in literature(cf. [3, 17, 18]). The calculated causal footprint
indicates that the model is not sound, regardless of any se-
mantics, as long as a blocking connector is assumed to be
unsound.

5. Tool support

The (Pro)cess (M)ining framework ProM has been de-
veloped as a completely plug-able environment for process
mining and related topics in the context of business pro-
cess analysis. It can be extended by simply adding plug-ins,
i.e., there is no need to know or to recompile the source
code. Currently, more than 80 plug-ins have been added.
The ProM framework has been described before in [10] and

can be obtained via www.processmining.org. The architec-
ture of ProM allows for five different types of plug-ins:

Mining plug-ins which implement some mining algo-
rithm, e.g., mining algorithms that construct a Petri net
or EPC based on some event log.

Export plug-ins which implement some “save as” func-
tionality for some objects. For example, there are plug-
ins to save EPCs, Petri nets, spreadsheets, etc.

Import plug-ins which implement an “open” functionality
for exported objects, e.g., load instance-EPCs from the
Aris Process Performance Manager.

Analysis plug-ins which typically implement some prop-
erty analysis on some mining result. For example, for
Petri nets there is a plug-in which constructs place in-
variants, transition invariants, and a coverability graph.

Conversion plug-ins which implement conversions be-
tween different data formats, e.g., from EPCs to Petri
nets.

In the context of this paper, we developed two conver-
sion plug-ins and one analysis plug-in. First, we imple-
mented two plug-ins to convert an EPC or a Petri net to
a causal footprint. The two conversion plug-ins follow the
rules presented in this paper and after conversion, they both
calculate the causal closure of the result. The visualiza-
tion is done in such a way that only informative relations
are shown, i.e. only the relations for which there are no
“larger” relations. The look-ahead links are shown in blue,
the look-back links are shown in red. However, even with
these restrictions, the resulting graph may still have many
connections and appears to be “spaghetti-like”. . Therefore,
we implemented an analysis plug-in to find the erroneous
patterns as described in Section 4. Figure 9 shows the result
of the analysis plug-in, when applied on the EPC containing
the vicious circle from Figure 8. The left-hand side shows
the vicious circle in a generated layout. The right-hand side
shows a selected part of the generated causal footprint. We
chose to search for “Singular Trap Patterns” and the plug-in
returned three results. Then, we asked it to show the pattern
involving function “C”, at which point the function “C” was
highlighted in the EPC as well as in the causal footprint.

For the practical application of our results it is impor-
tant to note that the ProM framework is currently capable
of reading and writing EPCs to AML (native to the Aris
Toolset), EPML (a standard for storing EPCs) and the Aris
graph format used by Aris PPM. For Petri nets, multiple
formats are available, including the standard PNML format.
The framework is open-source and the latest release is avail-
able for download from www.processmining.org.

Figure 9. The vicious circle in ProM

6. Related Work

The synchronization semantics of OR-joins have been
one of the focal points of research on EPCs. In [8] the so-
called relaxed soundness criterion is presented to guide the
modeller towards the specification of a sound WF-net from
an EPC. The WofYAWL approach introduced in [24] ex-
tends this work to YAWL. The WofYAWL tool has been
used to check the correctness of the EPCs in the SAP ref-
erence model [20] revealing that at least 5 % of the mod-
els have errors. In [11] an interactive verification approach
is presented that builds on reduction rules. The possibility
to provide executable semantics for EPCs has been inves-
tigated in [18], where executable semantics are proven to
exist for a large sub-class of all EPCs. The vicious circle
is an example of an EPC for which no suitable semantics
exist. In [6] an approach is presented to efficiently calcu-
late the state space of an EPC, thereby providing executable
semantics for the EPC. The authors mainly motivate this
work from the viewpoint of simulation/execution although
their approach can also be used for verification purposes.
Because of the semantical problems in some EPCs the algo-
rithm does not always provide a result [18]. Our approach
based on causal footprints identifies the vicious circle at
least to be unsound, but with a much simpler calculation.

In a way our approach is related to classical approaches
in Petri nets where traps, siphons, handles, and invariants
are used to identify problems [1, 9, 13, 22]. In many cases
these structural properties are used to derive statements on
the behaviour of the Petri net. However, instead of working
directly on a Petri net representation we use a more abstract
representation that is language independent. Moreover, we
use the causal closure to obtain our results.

Causal graphs can be seen as a declarative language,
i.e., instead of using explicit control-flow operators like se-
quence, iterations, etc., constraints are given. In this pa-
per we consider two types of constraints (look-back links
and look-ahead links). These can easily be translated into
a temporal logic [19]. In [5], DecSerFlow, the Declarative

Service Flow Language, is defined which includes the two
types of constraints used in this paper but also many oth-
ers. This illustrates that the approach presented in this pa-
per could be extended to include other types of constraints
in the causal footprint. In [5] its is shown how these can
be represented in Linear Temporal Logic (LTL). Moreover,
ProM already contains an LTL checker which can check ar-
bitrary LTL formulas on the basis of events logs [2].

7. Conclusion and Future work

In this paper, we have presented a novel approach for
checking soundness of business process models. We cap-
ture the intent of a process model by deriving a causal
footprint. Such a footprint should be seen as an abstrac-
tion of the process behaviour. As a causal footprint does
not require an executable semantics of the process mod-
elling language, we can apply our analysis technique both
to formal languages such as Petri nets and to concep-
tual/informal languages such as EPCs. Even though we use
these two languages throughout the paper to demonstrate
the applicability of our technique, it can be easily adapted
to other languages such as UML activity diagrams, BPMN,
or BPEL. This is especially helpful regarding the hetero-
geneity of business process modelling languages. Based on
causal footprints, we are able to identify three error patterns,
namely deadlocks, multiple termination, and traps. For the
latter we provide a proof that a trap pattern always implies
that the model is unsound.

The work presented here scratches the surface of a new
way of describing processes. Instead of taking a process
model describing which activities have to be performed in
which order, we derive a description of what can and can-
not be done. In this paper, we only looked at two types of
relations, i.e. one activity is always followed by at least one
of a set of other activities (look-ahead links) and the coun-
terpart in the other direction (look-back links). Obviously,
this can be extended to more complex relations or relations
of a different nature. More importantly, the causal footprint
may be a way to bridge the gap between business process
modelling and business rules. In future research, we aim to
identify further relations and derivation rules and to provide
further conditions for a process model to be sound or not.

References

[1] W.M.P. van der Aalst. The Application of Petri Nets
to Workflow Management. The Journal of Circuits,
Systems and Computers, 8(1):21–66, 1998.

[2] W.M.P. van der Aalst, H.T. de Beer, and B.F. van Don-
gen. Process Mining and Verification of Properties:
An Approach based on Temporal Logic. In R. Meers-
man and Z. Tari et al., editors, OTM Conferences 2005,

volume 3760 of Lecture Notes in Computer Science,
pages 130–147. Springer-Verlag, Berlin, 2005.

[3] W.M.P. van der Aalst, J. Desel, and E. Kindler. On the
semantics of EPCs: A vicious circle. In M. Nüttgens
and F. J. Rump, editor, Proc. of the 1st GI-Workshop
on Business Process Management with Event-Driven
Process Chains (EPK 2002), Trier, Germany, pages
71–79, 2002.

[4] W.M.P. van der Aalst, A.H.M. ter Hofstede, B. Kie-
puszewski, and A.P. Barros. Workflow Patterns. Dis-
tributed and Parallel Databases, 14(1):5–51, 2003.

[5] W.M.P. van der Aalst and M. Pesic. Specifying,
Discovering, and Monitoring Service Flows: Making
Web Services Process-Aware. BPM Center Report
BPM-06-09, BPMcenter.org, 2006.

[6] N. Cuntz, J. Freiheit, and E. Kindler. On the Semantics
of EPCs: Faster Calculation for EPCs with Small State
Spaces. In M. Nuettgens and F.J. Rump, editors, Pro-
ceedings of Fourth Workshop on Event-Driven Pro-
cess Chains (WI-EPK 2005), pages 7–23, Hamburg,
Germany, December 2005. Gesellschaft fuer Infor-
matik, Bonn.

[7] T. Curran and G. Keller A. Ladd. SAP R/3 Business
Blueprint: Understanding the Business Process Ref-
erence Model. Enterprise Resource Planning Series.
Prentice Hall PTR, Upper Saddle River, 1997.

[8] J. Dehnert and W.M.P. van der Aalst. Bridging the
Gap Between Business Models and Workflow Speci-
fications. International Journal of Cooperative Infor-
mation Systems, 13(3):289–332, 2004.

[9] J. Desel and J. Esparza. Free Choice Petri Nets, vol-
ume 40 of Cambridge Tracts in Theoretical Computer
Science. Cambridge University Press, Cambridge,
UK, 1995.

[10] B.F. van Dongen, A.K.A. de Medeiros, H.M.W. Ver-
beek, A.J.M.M. Weijters, and W.M.P. van der Aalst.
The ProM framework: A new era in process mining
tool support. In Application and Theory of Petri Nets
2005, volume 3536 of Lecture Notes in Computer Sci-
ence, pages 444–454. Springer-Verlag, Berlin, 2005.

[11] B.F. van Dongen, H.M.W. Verbeek, and W.M.P. van
der Aalst. Verification of EPCs: Using reduction rules
and Petri nets. In Conference on Advanced Informa-
tion Systems Engineering (CAiSE 2005), volume 3520
of Lecture Notes in Computer Science, pages 372–
386. Springer-Verlag, Berlin, 2005.

[12] H. Eertink, W. Janssen, P. Oude Luttighuis, W. B.
Teeuw, and C. A. Vissers. A business process de-
sign language. In FM ’99: Proceedings of the World
Congress on Formal Methods in the Development of

Computing Systems-Volume I, pages 76–95, London,
UK, 1999. Springer-Verlag.

[13] J. Esparza and M. Silva. Circuits, Handles, Bridges
and Nets. In G. Rozenberg, editor, Advances in
Petri Nets 1990, volume 483 of Lecture Notes in
Computer Science, pages 210–242. Springer-Verlag,
Berlin, 1990.

[14] R.J. van Glabbeek and W.P. Weijland. Branching Time
and Abstraction in Bisimulation Semantics. Journal of
the ACM, 43(3):555–600, 1996.

[15] G. Keller, M. Nüttgens, and A.W. Scheer. Semantische
Processmodellierung auf der Grundlage Ereignisges-
teuerter Processketten (EPK). Veröffentlichungen des
Instituts für Wirtschaftsinformatik, Heft 89 (in Ger-
man), University of Saarland, Saarbrücken, 1992.

[16] G. Keller and T. Teufel. SAP(R) R/3 Process Ori-
ented Implementation: Iterative Process Prototyping.
Addison-Wesley, 1998.

[17] E. Kindler. On the semantics of EPCs: Resolving
the vicious circle. In J. Desel and B. Pernici and
M. Weske, editor, Business Process Management, 2nd
International Conference, BPM 2004, volume 3080
of Lecture Notes in Computer Science, pages 82–97,
2004.

[18] E. Kindler. On the Semantics of EPCs: A Framework
for Resolving the Vicious Circle. Data and Knowl-
edge Engineering, 56(1):23–40, 2006.

[19] Z. Manna and A. Pnueli. The Temporal Logic of Reac-
tive and Concurrent Systems: Specification. Springer-
Verlag, New York, 1991.

[20] J. Mendling, M. Moser, G. Neumann, H.M.W. Ver-
beek, B.F. van Dongen, and W.M.P. van der Aalst. A
quantitative analysis of faulty epcs in the sap reference
model. BPM Center Report BPM-06-08, BPMcen-
ter.org, 2006.

[21] J. Mendling, G. Neumann, and M. Nüttgens. The
Workflow Handbook 2005, chapter A Comparison of
XML Interchange Formats for Business Process Mod-
elling, pages 185–198. Future Strategies Inc., 2005.

[22] T. Murata. Petri Nets: Properties, Analysis and Ap-
plications. Proceedings of the IEEE, 77(4):541–580,
April 1989.

[23] W. Reisig and G. Rozenberg, editors. Lectures on Petri
Nets I: Basic Models, volume 1491 of Lecture Notes
in Computer Science. Springer-Verlag, Berlin, 1998.

[24] H.M.W. Verbeek, W.M.P. van der Aalst, and A.H.M.
ter Hofstede. Verifying workflows with cancella-
tion regions and OR-joins: An approach based on
invariants. BETA Working Paper Series, WP 156,
Eindhoven University of Technology, Eindhoven, The
Netherlands, 2006.

