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Abstract. The research domain of process mining, or more specifically
process discovery, aims at constructing a process model as an abstract
representation of an event log. The goal is to build a model (i.e. in terms
of a Petri net) that (1) can reproduce the log under consideration, and
(2) does not allow for much more behaviour than shown in the log.

The Theory of Regions can be used to transform a state-based model
(such as a transition system) into a Petri net that exactly mimics the
behaviour of the transition system.

In this paper, we use the Theory of Regions to do process discovery,
and we address two problems. First, we show how event logs that do
not carry state information can be transformed into transition systems.
Second, we deal with the problem of large logs, by showing that the
proposed algorithm can be made iterative over the traces in a log, i.e. we
change the complexity of the algorithm, such that it requires significantly
less space, but more time.

1 Introduction

At the basis of process aware information systems, typically lie process models
of some sort, e.g. either conceptual models or executable models. The enactment
of processes by the information system, i.e. the operational process, is based on
these process models, and all steps performed during enactment are typically
logged in some sort of event log.

1.1 Event Logs

Figure 1 shows the relations between the operational process, the models that
describe it and the logs generated from it. Furthermore, it shows how the research
areas of process mining relates to these entities, by showing how event logs,
process models and some desired or undesired properties can be used for log-based
verification, process verification, process discovery and conformance testing.
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Fig. 1. Process Mining.

A complete overview of recent process mining research is beyond the scope
of this paper. Therefore, we limit ourselves to a brief introduction to process
discovery only and refer to [3, 4] and the http://www.processmining.org web
page for a more complete overview of the whole research domain.

1.2 Process Discovery

One of the main challenges in the context of process mining is process discovery,
i.e. how to generate a model describing a process while only looking at event
logs.

Event logs such as the one shown in Table 1 are used as the starting point
for process mining, and from a process perspective we focus on the control-flow,
i.e., the ordering of activities, which is shown in terms of a Petri net (cf. [27])
in Figure 2(a). The goal of process mining from this perspective is to find a
good characterization of all possible paths, e.g., expressed in terms of a Petri
net or Event-driven Process Chain (EPC) [21, 22]. The organizational perspective
focuses on the originator field, i.e., which performers are involved and how are

case id activity id originator case id activity id originator

case 1 activity A John case 5 activity A Sue
case 2 activity A John case 4 activity C Carol
case 3 activity A Sue case 1 activity D Pete
case 3 activity B Carol case 3 activity C Sue
case 1 activity B Mike case 3 activity D Pete
case 1 activity C John case 4 activity B Sue
case 2 activity C Mike case 5 activity E Clare
case 4 activity A Sue case 5 activity D Clare
case 2 activity B John case 4 activity D Pete
case 2 activity D Pete

Table 1. An event log (audit trail).



A

AND
-split

B

C

AND
-join

D

E

(a) The control-flow structure expressed in terms of a Petri net.

(b) The organizational structure expressed in
terms of a activity-role-performer diagram.
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(c) A sociogram based on transfer of work.

Fig. 2. Some mining results for the process perspective (a) and organizational (b and
c) perspective based on the event log shown in Table 1.

they related. The goal is to either structure the organization by classifying people
in terms of roles and organizational units (Figure 2(b)) or to show relation
between individual performers (i.e., build a social network as described in [2]
and references there, and as shown in Figure 2(c)). The case perspective focuses
on properties of cases. Cases can be characterized by their path in the process or
by the originators working on a case. However, cases can also be characterized by
the values of the corresponding data elements. For example, if a case represents
a replenishment order, it is interesting to know the supplier or the number of
products ordered.

Ever since the first work on process mining emerged, researchers in the area
of Petri nets were wondering how this relates to the so-called Theory of Regions.
In this paper, we focus on the process perspective, i.e. we discover the control
flow of a process from its event logs, using concepts from the Theory of Regions.

1.3 Theory of Regions

The Theory of Regions ([18, 8]) establishes a connection between transitions
systems and Petri nets through so called net synthesis. The idea behind the
Theory of Regions is that a state-based model i.e. a model describing which
states a process can be in and which transitions are possible between these
states, can be transformed into a Petri net, i.e. a compact representation of
the state space, explicitly showing causality, concurrency and conflicts between
transitions.

It is clear that the Theory of Regions shares common goals with the research
area of process mining. However, there are some subtle differences:

– First of all, the starting point for net synthesis is a so-called transition sys-
tem, i.e. a description of a process explicitly showing all possible states,
whereas event logs do not carry state information.



– Second, the Theory of Regions assumes the transition system to show all
possible transitions between states, while in process mining, the assumption
usually is that the logs are not exhaustive, i.e. they do not contain all possible
sequences of events.

In Section 4, we introduce a region-based algorithm that deals with these
two issues. Then, in Section 5, we show how that algorithm can be applied in
an iterative way, thus reducing the space requirement of the algorithm. Before
we conclude this paper with Section 6 showing the implementation of our work
and the conclusions in Section 7, we first discuss some related work in Section 2
and introduce some notation in Section 3.

2 Related Work

2.1 Regions

Regions and the related theory has been developed starting from the seminal
papers of Ehrenfeucht and Rozenberg ([18]) and has been successfully applied to
the so called net synthesis (see, among others, [7, 16, 11]) and to the characteri-
zation of concurrency models (see, among others, [26, 20, 24]). To the best of our
knowledge, the approach to process mining based on regions has not yet received
great attention. In fact the use of regions in general, gives a saturated net (i.e.
with many more places) and the complexity is quite high in comparison with
other methods. The novelty of our approach lies in the incremental calculus of
regions. Although regions of a transition systems can be combined algebraically
under precise conditions ([9, 8]) the attempt to find regions of a compound tran-
sition system from the regions of the components is new. We believe that this
can give better performance.

It is worth recalling here that regions have been used in many different set-
tings, e.g. in the synthesis and verification of asynchronous circuits (e.g. [14]) or
in the verification of security properties (e.g. [10]).

2.2 Process mining

Since the mid-nineties several groups have been working on techniques for pro-
cess mining, i.e., discovering process models based on observed events. In [3, 4]
an extensive overview is given of the work in this domain. The idea to apply pro-
cess mining in the context of workflow management systems was introduced in
[6]. Cook et al. investigated similar issues in the context of software engineering
processes [12]. Herbst [19] was one of the first to tackle more complicated pro-
cesses, e.g., processes containing duplicate tasks. Most of the approaches have
problems dealing with concurrency. The α algorithm [5] is an example of a sim-
ple technique that takes concurrency as a starting point. However, this simple
algorithm has problems dealing with complicated routing constructs and noise
(like most of the other approaches described in literature). Approaches based on
heuristics or genetic algorithms can deal with noise [29].



The application of the Theory of Regions in the context of process mining has
been addressed in [1], where the authors address process mining in the context of
software engineering. One of the challenges faced in this context is to find state
information in event logs. In [1], the authors propose several ways of doing so.
Furthermore, their approach is implemented in ProM by making a link between
the event logs of ProM and a well-known tool tailored towards the application
of the Theory of Regions, called Petrify [13].

The results presented in this paper are fully implemented in the open source
framework ProM. (See www.processmining.org for the latest version.) ProM
serves as a testbed for our process mining research. Most of the leading pro-
cess mining approaches have been implemented in ProM.

3 Preliminaries

In this section, we introduce the notations and concepts we use in the remainder
of this paper.

3.1 Petri nets

Petri nets are a formalism that can be used to specify processes. Since Petri nets
have a formal and executable semantics, processes modelled in terms of a Petri
net can be executed by an information system. For an elaborate introduction
to Petri nets, we refer to [15, 25, 27]. For sake of completeness, we mention that
the Petri nets we use in this paper correspond to a classic subclass of Petri nets,
namely Place/Transition nets.

A Petri net consists of two modeling elements, namely places and transitions.
When a Petri net is represented visually, we draw transitions as boxes and places
as circles. Furthermore, to denote the state of a process execution the concept of
tokens is used. A token is placed inside a place to show that a certain condition
holds. Each place can contain arbitrarily many of tokens. If a transition fires,
one token is removed from each of the input places and one token is produced
for each of the output places. The distribution of tokens over the places is called
a marking.

Figure 3 shows an example of a marked P/T-net, containing 11 transitions,
i.e.
T = {A,B,C,D,E, F,G,H, I, J,K} and 10 places, of which we typically do not
show the labels. Furthermore, three places are marked, i.e. they contain a token
denoted by the black dot.

Formally, a Place/Transition net with some initial marking is defined as
follows.

Definition 3.1. (Place/Transition net) ℘ = (P, T, F ) is a place/transition
net (or P/T-net) if:

– P is a finite, non empty set of places,

– T is a finite, non empty set of transitions, such that P ∩ T = ∅ and T 6= ∅,
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Fig. 3. Example of a marked Petri net with 11 transitions and 10 places.

– F ⊆ (P × T ) ∪ (T × P ) is the flow relation of the net,

A marking is a bag over the set of places P and a marked P/T-net is a
pair (℘,M0), where ℘ = (P, T, F ) is a P/T-net and where M0 is a bag over P
denoting the marking of the net. The set of all marked P/T-nets is denoted N .

Note that any place/transition net ℘ = (P, T, F ) defines a directed graph
((P ∪ T ), F ). In this paper, we restrict ourselves to P/T-nets where for all tran-
sitions t holds that •t 6= ∅ and t• 6= ∅ and for all places p holds that •p∪ p• 6= ∅.

As we stated before, Petri nets are used to describe processes and therefore,
to describe dynamic behaviour. So-far, we have only defined the static structure
of a Petri net. Therefore, we now define the dynamics. The dynamics of a Petri
net are defined using the concepts of a marking and a firing rule. However, first
we state when a transition is enabled.

Definition 3.2. (Enabled transition) Let ℘ = ((P, T, F ),M0) be a marked
P/T-net. Transition t ∈ T is enabled, denoted (℘,M0)[t〉, if and only if •t ≤M0.

In other words, a transition is enabled if each of its input places contains at
least one token. In Figure 3 for example, the transitions F ,G,H and I are all
enabled. If a transition is enabled, it can fire. Transitions fire one by one using
the following firing rule.

Definition 3.3. (Firing rule) Let ℘ = ((P, T, F ),M0) be a marked P/T-net.
The firing rule [ 〉 ⊆ N × T × N is the smallest relation satisfying for any
((P, T, F ),M0) ∈ N and any t ∈ T , (℘,M0)[t〉 ⇒ (℘,M0) [t〉 (℘,M0 − •t+ t•).

The firing rule says that if a transition is enabled then it can fire and when it
does, it removes exactly one token from each of its input places and adds exactly
one token to each of its output places. If in Figure 3 transition G would fire, then
the input place of G contains no tokens after the firing and the output place of
G contains one token after the firing.

The distribution of tokens over places is what we call a marking. Since the
firing rule defines how one marking can be transformed into another marking,
we can define a set of reachable markings.



Definition 3.4. (Reachable markings) Let (℘,M0) be a marked P/T-net in
N . A marking M is reachable from the initial marking M0 if and only if there
exists a sequence of enabled transitions whose firing leads from M0 to M . The
set of reachable markings of (℘,M0) is denoted [℘,M0〉.

If we look at a Petri net with an initial marking, then each marking that is
reachable, can be reached by executing some transitions in a given order. Such
a sequence of transition firings is what we call a firing sequence

Definition 3.5. (Firing sequence) Let ℘ = ((P, T, F ),M0), be a marked P/T-
net. A sequence σ ∈ T ∗ is called a firing sequence of (℘,M0), if and only if, for
some natural number n ∈ IN, there exist markings M1, . . . ,Mn and transitions
t1, . . . , tn ∈ T such that σ = t1 . . . tn and, for all i with 0 ≤ i < n, (℘,Mi)[ti+1〉
and Mi+1 = Mi − •ti+1 + ti+1•. (Note that n = 0 implies that σ = 〈〉 and that
〈〉 is a firing sequence of (℘,M0).) Sequence σ is said to be enabled in marking
M0, denoted (℘,M0)[σ〉. Firing the sequence σ results in a marking Mn, denoted
(℘,M0) [σ〉 (℘,Mn). Furthermore, for all i ∈ {0, . . . , n− 1} we use σi = ti+1 and,
we say t ∈ σ if there exists an 0 ≤ i < |σ| with σi = t.

The goal of process mining is to obtain a Petri net that can reproduce the
event log under consideration, i.e. each trace in the log is a firing sequence of
the resulting Petri net.

3.2 Process Logs

Information systems typically log all kinds of events. Unfortunately, most sys-
tems use a specific format. Therefore, we formalize the concept of process logs.
The basic assumption is that the log contains information about specific activi-
ties executed for specific cases (i.e., traces).

Definition 3.6. (Trace, Process log) Let T be a set of activities. σ ∈ T ∗ is a
trace, and W ∈ P(T ∗) is a process log.1

In Definition 3.6, we define a log as a set of traces. Note that in real life,
logs are bags of traces, i.e. the same trace may occur more than once, as shown
in our example. However, in this paper, we do not have to consider occurrence
frequencies of traces and therefore sets suffice for our properties and proofs.

In process mining, process logs are said to be globally complete if a log con-
tains all the possible behaviour of the underlying system (i.e. it shows complete
behaviour).

Definition 3.7. (Globally complete log) Let T be a set of log events and
L ∈ P(T ∗) be the set of all possible traces of some model or process. Furthermore,
let W ∈ P(T ∗) be a process log over T . We say that W is a globally complete
log if and only if W = L.

1 With P(T ) = {T ′ ⊆ T} we denote the powerset of a set T , i.e. the set of all subsets of
T and with T ∗ we denote the set of all sequences composed of zero or more elements
of T



The problem with the definition of globally complete logs is that it is hard to
tell whether a log is globally complete or not, if a process model of the underlying
process is not available. Since the goal of process discovery is to obtain such a
model from the log, we should not make the assumption that it is available
beforehand. Therefore, in this paper, we say that the goal of process discovery
is to find a Petri net, of which each trace in the log is a firing sequence.

3.3 Transition Systems

State-based models are widely used for the formal specification and verification
of systems. Such models are usually called transition systems, i.e. models that
explicitly show the states a process can be in and all possible transitions between
those states.

Definition 3.8. (Transition system) A labelled state transition system is a
triple (S,Λ,→), where S is a set of states, Λ is a set of labels, and→⊆ S×Λ×S
is a ternary relation. If p, q ∈ S and α ∈ Λ, (p, α, q) ∈→ is usually written as

p
α→ q. This represents the fact that there is a transition from state p to state q,

by executing a transition (or by performing an activity) labelled α. Furthermore,
in this paper, we assume that a transition system is connected.

In this paper, we restrict ourselves to transition systems with a single initial
state, i.e. one state without incoming transitions.

For the purpose of deriving Petri nets from transition systems, the concept of
regions was first introduced in [18], where these regions served as intermediate
objects, between a transition system on the one hand and a Petri net on the
other hand. This process, to go from a state-based model to a Petri net, is
called synthesis and the goal is to generate a Petri net that exactly mimics the
behaviour of the state-based model.

Definition 3.9. (Region in a transition system) Let TS = (S,Λ,→) be a
transition system. We say that R ⊆ S is a region of TS if and only if for all
(p, α, q), (p′, α, q′) ∈→ holds that:

– if p ∈ R and q 6∈ R then p′ ∈ R and q′ 6∈ R, i.e. all transitions labelled α exit
the region, and we say that R is a pre-region of α,

– if p 6∈ R and q ∈ R then p′ 6∈ R and q′ ∈ R, i.e. all transitions labelled α
enter the region, and we say that R is a post-region of α,

– if (p ∈ R) = (q ∈ R) then (p′ ∈ R) = (q′ ∈ R), i.e. all transitions labelled α
do not cross the region.

It is easy to see that there are two trivial regions, i.e. ∅ ⊆ S and S ⊆ S are
regions. The collection of all regions of a transition system TS is called <(TS).
A region R ∈ <(TS) is said to be minimal if and only if for all R′ ⊂ R with
R′ 6= ∅ holds that R′ 6∈ <(TS). The set of all minimal regions is denoted by
<min(TS). Furthermore, it is important to note that regions do not depend on
one label α, i.e. they always depend on the entire set of labels in the transition
system.



When reasoning about regions and events, we use a generic notation for re-
trieving pre-regions and post-regions of events and entering and exiting activities
of regions.

Definition 3.10. (Pre-set and post-set for events and regions) Let TS =
(S,Λ,→) be a transition system and a ∈ Λ an activity label. The pre-region set
and the post-region set of a are the sets of regions defined as follows:

–
TS◦ a = {R ∈ <(TS) | ∀(s, a, s′) ∈→: s ∈ R ∧ s′ 6∈ R} and

– a
TS◦ = {R ∈ <(TS) | ∀(s, a, s′) ∈→: s 6∈ R ∧ s′ ∈ R}

Given a region R ∈ <(TS),
TS◦ R = {a ∈ Λ | R ∈ a TS◦ } and R

TS◦ = {a ∈ Λ |
R ∈TS◦ a}. Note that if the context is clear, we omit the superscript TS, i.e. ◦R
and R◦.

As we explained before, in process discovery, we do not have a model to start
with. However, the Theory of Regions is still highly relevant. Assume that we
have a process log and we want to obtain a Petri net that exactly describes what
we have seen in the log, i.e. not only do we require that each trace in the log is
a firing sequence of the Petri net, but also that all possible firing sequences in
the Petri net are the traces in the log.

Obviously, if our log would be a state-based model, the Theory of Regions
would apply directly. However, there are two issues with our logs:

– Our process instances are sequences of events and do not carry any state
information, so there is no relation between different process instances,

– We will never know if our process log is large enough to exhibit all possible
behaviour of the underlying process.

4 Region-based Process Discovery

The first assumption about the log that we need to make in order to be able to
use the Theory of Regions is about its completeness. Since the Petri net resulting
from the synthesis will exactly mimic the behaviour shown in the log, we assume
that the log shows all possible behaviour, i.e. we assume it is globally complete
as defined in Definition 3.7.

4.1 From Process Logs to Transition Systems

To apply the Theory of Regions, we need a transition system, i.e. we need a way
to transform process logs into transition systems. For this, we need to identify
states, which are not contained in the log. To solve this problem, we take a naive
approach, i.e. we assume that there is only one known state, i.e. the initial state.
Furthermore, we assume that there is a unique activity that is the first activity
in all sequences of events in the log.

The assumption that the initial state is the same for all traces is an intuitive
one, whereas the assumption that all traces start with the same transition is not
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Fig. 4. The 5 cases of Table 1 as transition systems.

so trivial. In practice, traces can easily start with many different alternatives
(for example different activities for first-time customers or recurrent customers).
However, this can easily be solved by adding an artificial activity to the start of
each trace and therefore the assumption is not restrictive.

The first step in region based process mining is to convert each trace of
the process log into a transition system. This translation is rather trivial, and
Figure 4 gives the 5 translations for the 5 cases of Table 1

Definition 4.1. (Trace to transition System) Let T be a set of log events and
let W be a globally complete process log over T , i.e., W ∈ P(T ∗). Furthermore,
let σ ∈ W be an arbitrary trace. We define TS(σ) = (Sσ, Λσ,→σ) to be a
transition system, such that:

– Sσ = {(σ, i) ∈ {σ}×IN | 0 ≤ i < |σ|}∪{(W,−1)}, i.e. the set of states consists
of all indices in all process instances, as well as a global state (W,−1), which
is the initial state,

– Λσ = {t | t ∈ σ}, i.e. the set of labels is the set of log events,

– →σ= {((σ, i), σi+1, (σ, i+ 1)) ∈ S × T × S)}, i.e. the trace is represented as
a sequence of state transitions, starting in the initial state. The transitions
between each two states are defined as the activity at the given position in
the trace.

Using the translation from a single trace to a transition system, we can
translate an entire log to a transition system. Again this is a straightforward
translation and the result of our example log is shown in Figure 5.
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Fig. 5. Combining the 5 transition systems of Figure 4 into one transition system.
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Fig. 6. Some minimal regions of the transition system in Figure 5 and the generated
Petri net.

Definition 4.2. (Process log to transition system) Let T be a set of log
events and let W be a globally complete process log over T , i.e., W ∈ P(T ∗).
We define TS(W ) = (S,Λ,→) to be a transition system, such that:

– S =
⋃
σ∈W
TSσ=(Sσ,Λσ,→σ)

Sσ, i.e. the union over the states of the transition

system translations of each individual trace,

– Λ = T , i.e. the set of labels is the set of log events,

– →=
⋃
σ∈W
TSσ=(Sσ,Λσ,→σ)

→σ, i.e. each trace is represented as a sequence of state

transitions, starting from the common initial state. The transition between
each two states is made by the activity at the given position in the trace.

It is important to note that this algorithm presented in Definition 4.3 has been
proven to work on so-called elementary transition systems only, i.e. on transition
systems where each two different states have to belong to two different sets of
regions, and if a state s is included in all pre-regions of an event e, then that event
e must be enabled in s. Our translation from process logs to transition systems
does not enforce this, i.e. the resulting transition system is not necessarily an
elementary transition system. However, for now, we assume that this is the
case and in Section 6, we shown an example where the transition system is not
elementary, but the approach still works.

Once a process log is converted into the transition system, we can use the
Theory of Regions to generate a Petri net from it. The idea is that each log
event from the log is represented as a transition in the transition system and
therefore, we know that each log event has a set of pre-regions and post-regions
in the transition system, which may represent the input and output places in
the Petri net. Note that many algorithms in the area of Petri net synthesis have
been developed, to come up with smaller Petri nets in terms of the number of
places, or with free-choice Petri nets by introducing multiple transitions with
the same name [8]. However, in this paper, we present the most basic algorithm,
presented in [16] and [18], where minimal regions are translated into places. In
Figure 6, we show the result of the synthesis on our example of Figure 5.

Definition 4.3. (Region-based mining algorithm) Let T be a set of log
events, W a process log over T with ti ∈ T an initial event in W and TS(W ) =



(S,Λ,→) to be the transition system generated from that using Definition 4.2.
We define a marked Petri net ℘ = ((P,Λ, F ),M0), synthesized from TS(W ), as
follows:

– P = <min(TS(W )), i.e. each place corresponds to a minimal region in the
transition system,

– F = {(R, t) ∈ P×T | R ∈ ◦t}∪{(t, R) ∈ T×P | R ∈ t◦}, i.e. each transition
is connected to an input place if the corresponding region is a pre-region and
to an output place if the corresponding region is a post-region,

– M0 =
℘• ti, i.e. the initial transition has all its input places marked, with one

token.

The definition of Petri net synthesis results in a Petri net whose state space
is bisimilar to the original transition system. Without going into details about
bisimilarity, it is enough to realize that this implies that the state space is trace
equivalent with the original transition system and hence the Petri net can gen-
erate exactly those traces we observed in the log.

It is important to note that this algorithm presented in Definition 4.3 has been
proven to work on so-called elementary transition systems only, i.e. on transition
systems where each two different states have to belong to two different sets of
regions, and if a state s is included in all pre-regions of an event e, then that event
e must be enabled in s. Our translation from process logs to transition systems
does not enforce this, i.e. the resulting transition system is not necessarily an
elementary transition system. However, for now, we assume that this is the case
and at the end of Subsection ??, we show an example where the transition system
is not elementary and the approach still works.

Although the algorithm presented in Definition 4.3 results in a large number
of places, there are many ways to reduce that number, for example by just
looking at the minimal regions, or by removing redundant places (or regions).
Another way of reducing the number of places is by making a better transition
system out of the log. However, that would require us to have state information
in the log, or to estimate such information, for example by saying that the same
sequences of events in different traces lead to the same global state. Under the
assumption of a globally complete log, such estimations will never introduce new
traces that we did not observe in the log, however it does reduce the transition
system and therefore the possible number of regions.

4.2 Mining Quality

It is straightforward to see that the approach presented here indeed leads to
a Petri net and due to the fact that the state space of that net is bisimilar
to the original transition system, the state space is also trace equivalent with
the transition system. Furthermore, since the transition system contains exactly
those traces that are represented in the event log, the Petri net can reproduce
the event log exactly.



At first sight, it seems that the Theory of Regions provides the answer to
process discovery, i.e. the resulting Petri net can reproduce the event log and
that was our goal. However, there are some down sides to this result.

First of all, we still do not know whether our log is globally complete, i.e.
we are not sure if the resulting Petri net should allow for more behaviour than
it currently does. Taking a larger log could help in solving this issue, but the
answer to whether or not a log is globally complete can never be answered.

An even greater limitation is that the algorithm requires the transition system
to be built before the calculation of regions. Especially for large, complex logs,
this is not feasible since the resulting transition system would be too big for
memory, i.e. there is a space limitation. Therefore, we take advantage of the
structure of our transition system to introduce an iterative approach.

5 Iterative Region Calculation

Our naive approach towards using the Theory of Regions in the context of process
discovery has the problem that it requires the entire transition system to be built
in memory. Since process logs can easily contain thousands of cases, referring to
hundreds of events each, the resulting transition system may be too large to be
stored in computer memory. Therefore, in this section, we use the structure of
our transition system to introduce an iterative approach.

Recall that the transition system we built from the process logs in Defini-
tion 4.2 is basically a straightforward sum over a set of sequential transition
systems with a known initial state. In this section, we show that if we have two
transition systems with equal initial states, we can calculate the regions of the
combination of these two transition systems without constructing the transition
system itself. Finally, after iterating over all traces individually, we translate the
resulting set of regions to a Petri net.

In Definition 3.9, we defined a region as a set of states, such that each tran-
sition in the transition system either enters, exits or does not cross the region.
Since our aim is to obtain the regions of an unknown transition system by com-
bining the regions of two smaller transition systems with similar initial states, we
introduce the concept of compatible transition systems and compatible regions.

Definition 5.1. (Compatible transition systems) Let TS1 = (S1, Λ1,→1)
and TS2 = (S2, Λ2,→2) be two transition systems. We say that TS1 and TS2

are compatible if and only if:

– |S1 ∩ S2| = 1, i.e. there is only one common state and,

– For s ∈ S1 ∩ S2 holds that there is no p ∈ S1 ∪ S2 and α ∈ Λ1 ∪ Λ2 with
(p, α, s) ∈→1 ∪ →2, i.e. the common state is an initial state.

Two transition systems are compatible if they share a common initial state, but
no other states. It is easily seen that the translation of two traces from one
process log to two transition systems yields two compatible transition systems.

For compatible transition systems, we define compatible regions.



Definition 5.2. (Compatible regions) Let TS1 = (S1, Λ1,→1) and TS2 =
(S2, Λ2,→2) be two compatible transition systems. Let R1 ∈ <(TS1) and R2 ∈
<(TS2). We say that R1 is compatible with R2, denoted by R1 ↔ R2 if and only
if

– (
TS1◦ R1\ TS2◦ R2) ∩ Λ2 = ∅, and,

– (
TS2◦ R2\ TS1◦ R1) ∩ Λ1 = ∅, and,

– (R1
TS1◦ \R2

TS2◦ ) ∩ Λ2 = ∅, and,

– (R2
TS2◦ \R1

TS1◦ ) ∩ Λ1 = ∅, and,

– ∀s∈S1∩S2
s ∈ R1 if and only if s ∈ R2

A region of one transition system is compatible with a region of another tran-
sition system if all transitions that enter the first region also enter the second
region, or do not appear at all in the second transition system. Similarly, this
has to hold for all exiting transitions. Furthermore, if a common state appears
in one region, it should appear in the other region as well.

The first step towards our iterative approach is to define how to add two
compatible transition systems, where we use the earlier translation of a process
log to a transition system, i.e. Definition 4.2.

Definition 5.3. (Adding compatible transition systems) Let TS1 = (S1, Λ1,→1

) and TS2 = (S2, Λ2,→2) be two compatible transition systems. We define TS =
(S,Λ,→) as the sum of the two transition system, denoted by TS = TS1⊕TS2,
such that:

– S = S1 ∪ S2, i.e. the union over the states of both transition systems,

– Λ = Λ1 ∪ Λ2, i.e. the union over the labels of both transition systems,

– →=→1 ∪ →2, i.e. the union over the transitions of both transition systems.

Property 5.4. (Adding yields a compatible transition system) Let TS1 =
(S1, Λ1,→1), TS2 = (S2, Λ2,→2) and TS3 = (S3, Λ3,→3) be three compatible
transition systems and let TS = (S,Λ,→) = TS1 ⊕ TS2 be the sum over the
first two. TS is compatible with TS3.

Proof. For TS and TS3 to be compatible, we need to show that there is one
common initial state. Let si ∈ S1 ∩ S2 be the common initial state of TS1 and
TS2. Since there is only one initial state, we know that this is the initial state
of both TS3 and of TS, hence TS and TS3 share one initial state and hence TS
and TS3 are compatible. �
It remains to be shown that we are able to calculate the set of regions of the
sum of two transition systems from the sets of regions of the transition systems
we are adding.

Property 5.5. (Region summation is possible) Let TS1 = (S1, Λ1,→1)
and TS2 = (S2, Λ2,→2) be two compatible transition systems. Furthermore, let
TS = (S,Λ,→) = TS1⊕TS2 be the sum over both transition systems. We show
that <(TS) = D, where D = {R ∈ P(S) | ∃R1∈<(TS1)∃R2∈<(TS2)R2 ↔ R1∧R =
R1 ∪R2}



Proof. Assume that R = R1 ∪ R2 with R1 = R ∩ S1 and R2 = R ∩ S2. It is
easy to see that R1 ∈ <(TS1) and R2 ∈ <(TS2). The question remains whether
R1 ↔ R2, however since R ∈ <(TS), we know that all events entering R also

enter R1, or do not appear in Λ1, i.e. for all e ∈TS◦ R holds that either e ∈TS1◦ R1

or e 6∈ Λ2, hence (
TS◦ R\ TS1◦ R1) ∩ Λ2 = ∅. Since

TS1◦ R1 ⊆TS◦ R, we know that

(
TS1◦ R1\ TS1◦ R1) ∩ Λ2 = ∅. Similarly, all events entering R also enter R2, or do

not appear in Λ2, as well as for the exiting events. Hence R1 ↔ R2 and therefore
R ∈ D, which contradicts our initial assumption. �

In Property 5.5, we have shown that if we have two compatible transition
systems TS1 and TS2, then we can calculate the regions of the sum of TS1 and
TS2, using the regions of the individual transition systems. If we have a large
collection of compatible transition systems, then adding two of them up to a new
one yields a transition system which is compatible with all others as shown in
Property 5.4. Since we have provided an algorithm in Definition 4.1 to translate
all traces of a process log to a collection of compatible transition systems, we have
constructed an iterative algorithm for the calculations presented in Section 4.

With Property 5.6, we conclude this section. Property 5.6 shows that the it-
erative algorithm yields the same transition system as Definition 4.2. Combining
this with Property 5.4 and Property 5.5 leads to the conclusion that the set of
regions resulting from our iterative approach indeed yields the set of regions of
the transition system obtained by applying Definition 4.2 directly.

Property 5.6. (Iterative approach works) Let T be a set of log events, let
W be a globally complete process log over T , i.e., W ∈ P(T ∗) and let TS(W ) =
(S,Λ,→) be a transition system. Furthermore let TS ′ =

⊕
σ∈W TS(σ) = (S′, Λ′,→′

) be the transition system gained by adding all transition systems corresponding
to each instance. We show that TS = TS ′.

Proof.

– From Definition 4.2, we know that S =
⋃
σ∈W
TSσ=(Sσ,Λσ,→σ)

Sσ and,

from Definition 5.3, we know that S ′ =
⋃
σ∈W
TSσ=(Sσ,Λσ,→σ)

Sσ, hence S = S′,

– From Definition 4.2, we know that Λ = T . Furthermore, from Definition 5.3,
we know that Λ′ =

⋃
σ∈W {t | t ∈ σ}. Assuming that for all t ∈ T there is at

least one σ ∈W , such that t ∈ σ, we know that Λ = Λ′,

– From Definition 4.2, we know that →=
⋃
σ∈W
TSσ=(Sσ,Λσ,→σ)

→σ and,

from Definition 5.3, we know that→′= ⋃σ∈W
TSσ=(Sσ,Λσ,→σ)

→σ, hence→=→′.

�

Note that by showing that the iterative approach works in Property 5.6, we
can apply the synthesis algorithm of Definition 4.3 on the set of regions that
results from the iterative algorithm.



5.1 Complexity

In Subsection 4.2, we mentioned that the synthesis algorithm of Definition 4.3
requires the full transition system to be built in memory. The space required
to do so is obviously linear in the size of the log. However, our experience with
process mining has shown that typical process logs found in practice are too big
to be stored in memory.

In process mining, all algorithms have to make a trade-off between compu-
tation time on the one hand and space-requirements on the other. In [23] for
example, a genetic-algorithm approach toward process mining is shown, where
the algorithm scales linearly in the size of the log, i.e. if a log contains twice the
number of cases, but the same number of different events, the algorithm is twice
as slow, but requires the same amount of memory.

However, when a full transition system is stored in memory, the calculation
of only minimal regions is simpler than in our iterative approach, i.e. using a
breadth-first search, all minimal regions could be found, without considering
larger regions. Our iterative approach requires all regions to be calculated, after
which the minimal regions need to be found in the set of all regions. Therefore,
the computation time is larger with our iterative approach.

In fact, it is not too hard to see that our iterative approach scales linearly
in the size of the log, i.e. by adding more cases, while keeping the number of
different activities equal, we need more processing time, but not more memory.

6 Tool Support in ProM

The (Pro)cess (M)ining framework ProM has been developed as a completely
plugable environment for process mining and related topics. It can be extended
by simply adding plug-ins, and currently, more than 140 plug-ins have been
added. The ProM framework has been described before in [17, 28] and of course
the web site www.processmining.org.

Fig. 7. A screenshot of ProM, showing the Petri net of Figure 6.



In the context of this paper, the region miner was developed, that implements
the iterative algorithm described in Section 5. Figure 7 shows a screenshot of
ProM, clearly showing the Petri net of Figure 6 that was derived from the process
log of Table 1 using the region miner. Note that the plugin automatically inserts
a common first step, which is shown as a black transition in Figure 7. Note
that the model of Figure 7 contains many output places. These places could be
removed using an algorithm tailored toward removing so-called implicit places,
i.e. places that do not contribute to the behaviour of the Petri net.

Even though our algorithm does not guarantee that the resulting transition
system is an elementary transition system, the result can still be very insightful.
Consider for example a log with three cases, i.e. case1: A,B,D; case2: A,C,D
and case3: A,B,C,D. Figure 8 shows the result of both the α-algorithm (top)
and the region miner (bottom) on this log in ProM. Note that the result of the
α-algorithm can only replay 1 out of three cases, whereas the result of the region
miner can replay all cases.

Figure 9 shows why the log with three instances does not result in an el-
ementary transition system, i.e. the three highlighted states all appear in all
pre-regions of transition D (there is only one minimal pre-region of D, which is
highlighted as well). Therefore, in all the highlighted states (case1, 0), (case2, 0)
and (case3, 0) transition D is assumed to be enabled.

Fig. 8. A screenshot of ProM, showing the result of the α-algorithm and the region
approach.
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Fig. 9. A non-elementary transition system with some of its regions.

7 Conclusions and Future Work

Using the algorithm described in this paper, we can use the Theory of Regions in
process discovery. The result is that, given an event log, a Petri net is obtained
for which (1) each trace in the log is a firing sequence in the Petri net and (2)
each firing sequence in the Petri net is a trace in the log. Furthermore, we have
shown that the algorithm can be applied iteratively, thus reducing the space-
complexity, which is commonly accepted to be the bottle neck for many process
mining algorithms.

The biggest problem of the Theory of Regions in the context of process
discovery corresponds to an advantage in the Theory of Regions domain. The
resulting Petri net mimics the behaviour of the log exactly, i.e. the Theory of
Regions was developed to generate a compact representation of an elementary
transition system in terms of a Petri net. Although the result of our approach on
non-elementary transition system does imply that the resulting Petri net allows
for more behaviour, this is still very different from the goal of process mining,
i.e. to generate a process model that is an abstract representation of the process
log.

Despite this downside however, we see many future applications for the The-
ory of Regions in the context of process mining [1]. In our current approach for
example, we have assumed that only the initial state of the transition systems is
known. However, we foresee many other ways to derive state information from
a process log, i.e. for example by assuming that the state is determined by the
set of activities performed within a case so-far.
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