
Verification of the SAP Reference Models

using EPC Reduction, State Space Analysis,

and Invariants

B.F. van Dongen , M.H. Jansen-Vullers, H.M.W. Verbeek ,
W.M.P. van der Aalst

Department of Technology Management, Eindhoven University of Technology,

P.O. Box 513, NL-5600 MB, Eindhoven, The Netherlands.

Abstract

A reference model is a generic conceptual model that formalizes recommended prac-
tices for a certain domain. Today, the SAP reference models are among the most
comprehensive reference models, including over 4000 entity types and covering over
1000 business processes and inter-organizational scenarios. The SAP reference mod-
els use Event-driven Process Chains (EPCs) to model these processes and scenarios.
Like other informal languages, EPCs are intended to support the transition from
a business model to an executable model. For this reason, researchers have tried
to formalize the semantics of EPCs. However, in their approaches, they fail to ac-
knowledge the fact that in EPCs constructs exist that require human judgment
to assess correctness. This paper aims to acknowledge this fact by introducing a
two-step approach. First, the EPC is reduced using universally accepted reduction
rules. Second, the reduced EPC is analyzed using a mixture of state-space analysis,
invariants, and human judgment. This approach has been implemented in a tool,
and using this tool we show that the SAP reference models contain errors, which
clearly shows the added value of this verification approach.

Key words: Process mining, Petri nets, Event-driven Process Chains, Verification,
SAP R/3, Reference Models.

Email addresses:

b.f.v.dongen@tm.tue.nl (B.F. van Dongen),
m.h.jansen-vullers@tm.tue.nl (M.H. Jansen-Vullers),
h.m.w.verbeek@tm.tue.nl (H.M.W. Verbeek),
w.m.p.v.d.aalst@tm.tue.nl (W.M.P. van der Aalst).

Preprint submitted to Elsevier Science 27 November 2006

Business
Model

Executable
Specification

Reference
Model

Process
Model

process model design

implementation

Fig. 1. Phases in the configuration of a PAIS

1 Introduction

1.1 Reference models

Today, process-aware information systems (PAISs) such as Enterprise Re-
source Planning (ERP) [1] systems and Workflow Management (WFM) [2,3]
systems are used to support a wide range of operational business processes.
On an operational level, these systems are often configured on the basis of a
process model. The design of such a process model is a complicated and error
prone task, and since process models that are designed in difference compa-
nies are often very similar, databases with such process models have been
developed. These databases are called reference models, as they can be used
as a reference during process design. Today, reference models exist for many
different applications.

Together with the business model of a company, a reference model is selected
that fits the process under consideration best. During the process model de-
sign phase, a designer customizes the reference model to fit the business model
of the company. The result of this customization phase is an abstract speci-
fication of the process in terms of a customized process model. In the imple-
mentation phase, this model is used to implement an executable model for a
specific information system, such as SAP R/3. These phases are presented in
Figure 1. Since all steps between selecting a reference model and producing
an executable specification are performed by humans, errors could very well
be introduced.

Unfortunately, the use of reference models does not eliminate the possibility
of introducing errors into the process model. It should, however, assist the
designer in such a way that errors are less likely to be introduced. Thus, it is
of the utmost importance that the selected reference model is correct itself.
Note that errors introduced in the process model may have severe consequences
if they are discovered as late as in the implementation phase or even if the
system is operational, let alone if they are never discovered at all.

To be able to detect possible errors in process models, many authors have

2

developed verification methods. Basically, all these verification methods can
be used to check whether a process model is correct, in other words, they
can be used to check for correctness of a process model. However, the process
model might only be incorrect for situations that will never occur in practice.
Consider, for example, a process model that can be triggered by a telephone
call or the receipt of a letter. If the designer knows that the call and letter
exclude each other, then the process model is allowed to be incorrect for both
triggers. Note that this exclusion information is available to the designer, and
that the aforementioned verification methods are not capable of handling this
crucial information.

1.2 SAP

This paper focuses on the correctness of reference models for a specific in-
formation system, namely SAP R/3 (or just SAP). We selected SAP as it
uses Event-driven Process Chains (EPCs) [1,4,5] as its modeling language.
EPCs are used in a large variety of other systems, and many verification
approaches exist for EPCs. The SAP reference models are available in the
ARIS for MySAP database from the ARIS Toolset, a commercial product of
IDS-Scheer. Using these SAP reference models, we present our verification ap-
proach and show that many of the SAP reference models are correct and can
indeed be used without any problems. However, we also show that some of the
models should be used with care, i.e., only if the environment in which they
are used satisfies certain conditions they are correct. Furthermore, we show
that several reference models are structurally incorrect, i.e., they need to be
revised before they can be used as reference models. With respect to these
errors, we investigate some common causes, and show how designers could
avoid these errors.

1.3 EPCs

Because this paper is about EPCs, it seems appropriate to use a (meta-level)
EPC to describe our approach, and to use this EPC to explain the issues at
hand. Figure 2 shows this EPC, which will be discussed in more detail later on.
The actual verification process consists of two steps. First, we use reduction
rules to eliminate the “easy” constructs for which it is generally accepted that
they are correct. This paper introduces these reduction rules later on, for now it
suffices to mention that all functions and events except initial and final events
are removed, and that local choices and trivial synchronization constructs
are eliminated. If the EPC at hand reduces to the trivial EPC, it is correct.
Otherwise, we take the second step. In the second step, we translate the EPC

3

EPC ready to
be verified

Apply Reduction
Rule

No reduction
possible,

EPC is trivial

More reduction
rules can be

applied

No reduction
possible,

EPC is not Trivial

EPC is correct and
executable

Check Result Check Result Check Result

EPC can be
correct, Further

investigation
necessary

EPC is incorrect,
Problem has to be

resolved

Calculate initial
events

Initial Events
are known

Transform to
Petri net

Ready for
transformation

Possible
combinations

of initial Events

Safe Petri net
with one

initial place
ready

Calculate state
space

Possible final
Markings known

Ready for
analysis

Allowed final
Markings

Color the state
space

All states
are colored

Not all states
are colored,

but all transitions
are covered

Some OR-
transitions

are not covered

Remove OR-
transitions if

allowed

All allowed OR
transitions are

removed

Not all transitions
are covered

Fig. 2. EPC describing the EPC verification process.

into a Petri net and use the theory of workflow nets [6,2] and related concepts
(such as soundness [6] and relaxed soundness [7,8]) to verify the reduced EPC.
If the state space of the Petri net can be constructed within reasonable time,
the second step provides the designer with one of the following three answers:

The Petri net is sound : The original EPC is correct and no further re-
viewing is necessary.

The Petri net is relaxed sound (but not sound): The original EPC
can be correct, but the designer needs to assess some problematic con-
structs. If the designer assesses the EPC to be incorrect, corrections are
necessary.

The Petri net is not relaxed sound : The original EPC is incorrect, re-
gardless of the designer’s assessment. Corrections are necessary.

The construction of the state space may be time-consuming (especially if the
model is incorrect). Fortunately, techniques exist that do not depend on the
state space and that can show the EPC to be not relaxed sound: transition
invariants (T-invariants) [9–11]. Our approach can use these transition invari-
ants instead of relaxed soundness in case the state space turns out to be too
complex to be constructed within reasonable time. These transition invariants
however only give sufficient conditions to decide that a process is not sound,
it does not guarantee soundness, therefore using transition invariants alone
would not suffice.

4

To understand the rationale of our approach, it is important to see that we
address the issue of verification from a designer’s perspective instead of from
a formal perspective, where the result would always be sound or not sound
without any need for interpretation of the process model. Instead, our ver-
ification process consists of two main parts. First we take the EPC that is
defined by a process designer and, using simple reduction rules, we reduce the
net. As a result, the designer can focus on the possibly problematic areas.
Second, we translate the result into a Petri net and use variants of existing
Petri-net-based verification techniques to give feedback to the designer. By
using a more relaxed correctness notion (similar to relaxed soundness [7,8])
and, if needed, human judgment, the correctness of the model is assessed. Es-
pecially the explicit use of human judgement is a new factor in the area of
process verification.

1.4 Tool

We have developed a tool for the analysis of EPCs using the approach de-
scribed in this paper. The tool has been implemented as a verification plug-
in in the Process Mining (ProM) Framework 1 , which can exchange process
models with a variety of other software tools including the ARIS toolset and
PNML-enabled Petri net tools.

1.5 Agenda

Section 2 discusses related work. Section 3 discusses necessary concepts like
EPCs, Petri nets, state spaces, transition invariants, etc. Section 4 introduces
a set of powerful but simple reduction rules for EPCs that will be used in
the first step of our approach. Section 5 introduces the mapping from EPCs
onto Petri nets and discusses the verification process (second step) in more
detail. Section 6 describes the use of transition invariants if the state space of
the reduced EPC happens to be too complex. Section 7 presents the analysis
tool and discusses some initial experiences when applying the tool to real-life
processes. Section 8 applies our tool on the SAP reference models and discusses
the results. Section 9 concludes the paper.

1 See www.processmining.org for more information and to download the software.

5

2 Related work

Since the mid-nineties, a lot of work has been done on the verification of pro-
cess models, and in particular workflow models. In 1996, Sadiq and Orlowska
[12] were among the first to point out that modeling a business process (or
workflow) can lead to problems like livelock and deadlock. In their paper, they
present a way to overcome syntactical errors, but they ignore the semantical
errors. Nowadays, most work that is conducted is focusing on semantical is-
sues, i.e., “will the process specified always terminate” and similar questions.
Therefore, in this section we start by introducing related work on verification
of models. Furthermore, we present additional EPC-related literature, and end
with the main differences with regard to our approach.

2.1 Verification

The work on verification that has been conducted in the last decade can
roughly be put into three categories. In this section, we present these categories
and give relevant literature for each of them.

2.1.1 Formal models

In the first category we consider the work that has been done on the verification
of modeling languages with formal semantics. One of the most prominent
examples of such a language are Petri nets [9,10,13]. Since Petri nets have
a formal mathematical definition, they lend themselves to a large extent for
formal verification methods. Especially in the field of workflow management,
Petri nets have proven to be a solid theoretical foundation for the specification
of processes. This, however, led to the need of verification techniques, tailored
towards Petri nets that represent workflows. In the work of Van der Aalst and
many others [6,7,14–16], these techniques are used extensively for verification
of different classes of workflow definitions. However, the result is the same for
all approaches:

Given a process definition, the verification tool provides an answer in terms
of “correct” or “incorrect”.

However, not all modeling languages have formal semantics. On the contrary,
the most widely used modeling techniques, such as UML and EPCs, are merely
an informal representation of a process. Therefore, these modeling techniques
require a different approach towards verification.

6

2.1.2 Informal models

Modeling processes in a real-life situation is often done using less formal lan-
guages. People tend to understand informal models more easily, and even if
models are not executable, they can help a great deal when discussing process
definitions. However, at some point in time, these models usually have to be
translated into a specification that can be executed by an information sys-
tem. This translation is usually done by computer scientists, which explains
the fact that researchers in that area have been trying to formalize informal
models for many years now. Especially in the field of workflow management, a
lot of work has been done on translating informal models to Petri nets. Many
people have worked on the translation of EPCs to Petri nets, cf., [8,17–19].
The basic idea of these authors however is the same:

Restrict the class of EPCs to a subclass for which we can generate a sound
Petri net.

As a result, the ideas are appealing from a scientific point of view, but not
always as useful from a practical point of view.

Also non-Petri-net based approaches have been proposed for the verification
of informal modeling languages. One of these ideas is graph reduction. Since
most modeling languages are graph-based, it seems a good idea to reduce the
complexity of the verification problem by looking at a reduced problem, in
such a way that correctness is not violated by the reduction, i.e. if a model
is not correct before the reduction, it will not be correct after the reduction,
and if the model is correct before the reduction, it will be correct after the
reduction. From the discussion on graph reduction techniques started by Sadiq
and Orlowska in 1999 [20,21] 2 and followed up by many authors including Van
der Aalst et al. in [22] and Lin et al. in [23], it becomes clear that again the
modeling language is restricted to fit the verification process. In general this
means that the more advanced routing constructs cannot be verified, while
these constructs are what make informal models easy to use.

The tendency to capture informal elements by using smarter semantics is re-
flected by recent papers, cf. [8,18,24–26]. In these papers, the problem is looked
at from a different perspective. Instead of defining subclasses of models to fit
verification algorithms, the authors try to give a formal semantics to an infor-
mal modeling language. Even though these authors have different approaches,
the goal in every case is similar:

Try to give a formal executable semantics for an informal model.

As a result, these approaches all fail to take the designer’s knowledge into
account.

2 Note that the analysis technique presented in [20,21] is incorrect. As shown in
[22,23] not all correct models can be reduced.

7

2.1.3 By design

The last category of verification methods is somewhat of a by-stander. Instead
of doing verification of a model given in a specific language, it is also possible
to give a language in such a way that the result is always correct. An example
of such a modeling language is IBM MQSeries Workflow [3]. This language
uses a specific structure for modeling, which will always lead to a correct
and executable specification. However, modeling processes using this language
requires advanced technical skills and the resulting model is usually far from
intuitive.

2.2 Execution of informal models

It is interesting to note that verification is strongly related to the efficient ex-
ecution of models. Especially the approaches presented in the previous para-
graph, all rely on executable semantics of the process model under consid-
eration. As an example, we mention YAWL models. YAWL models use an
OR-join of which the intuitive idea is taken from EPCs. To obtain executable
semantics for YAWL models, YAWL models are mapped onto reset nets to
decide whether an OR-join is enabled or not in [27]. In the context of EPCs
the possibility to provide executable semantics has been investigated in [25],
where executable semantics are proven to exist for a large sub-class of all
EPCs. In [26] an approach is presented to efficiently calculate the state space
of an EPC, thereby providing executable semantics for the EPC. The au-
thors mainly motivate this work from the viewpoint of simulation/execution
although their approach can also be used for verification purposes. Because
of the semantical problems in some EPCs [25] the algorithm does not always
provide a result. Moreover, the authors also point out the need for “chain
elimination” to reduce the state space of large models.

2.3 Conclusion

In this section, we have presented an overview of the literature on process
model verification and related subjects. We have categorized the various veri-
fication methods in three main categories and pointed out why many of them
are not used in practice. The main difference between our approach and exist-
ing literature is that we will not restrict an informal modeling language to fit
our verification, nor will we give executable semantics of an informal model.
Instead, we combine the best of existing literature and provide the designer
with a tool to find possible problems in a specification. We do not aim at
solving these problems. Instead, we assume the designer to be able to decide
whether or not a specification is correct.

8

This paper builds on our earlier work of the authors on EPCs and reference
modeling. In [28] we presented the idea of verifying SAP models and in [29]
we presented the idea of using reduction rules for verification purposes. The
main contributions of this paper are a detailed description of the verification
approach, extended with the use of transition invariants and a detailed analysis
of the SAP reference models.

3 Preliminaries

In this section, we introduce the basic concepts used in the verification process.
We briefly introduce the languages used in this paper, i.e., EPCs and Petri
nets. Furthermore, we introduce the notions of soundness and relaxed sound-
ness and provide pointers to the Petri-net-based analysis techniques used in
our approach.

3.1 Event-driven Process Chains

The concept of Event-driven Process Chains (EPCs) is to provide an intuitive
modeling language to model business processes. EPCs were introduced by
Keller, Nüttgens and Scheer in 1992 [4]. It is important to realize that the
language is not intended to be a formal specification of a business process.
Instead, it serves mainly as a means of communication.

An EPC consists of three main elements:

Functions, which are the basic building blocks. A function corresponds to
an activity (task, process step) which needs to be executed. A function is
drawn as a box with rounded corners.

Events, which describe the situation before and/or after a function is ex-
ecuted. Functions are linked by events. An event may correspond to the
postcondition of one function and act as a precondition of another function.
Events are drawn as hexagons.

Connectors, which can be used to connect functions and events. This way,
the flow of control is specified. There are three types of connectors: ∧ (AND),
× (XOR) and ∨ (OR). Connectors are drawn as circles, showing the type
in the center of the circle.

Combined, these elements define the flow of a business process as a chain of
events.

Functions, events and connectors can be connected with edges in such a way
that

9

(1) events have at most one incoming edge and at most one outgoing edge,
but at least one incident edge (i.e. an incoming and/or an outgoing edge),

(2) functions have precisely one incoming edge and precisely one outgoing
edge,

(3) connectors have either one incoming edge and multiple outgoing edges,
or multiple incoming edges and one outgoing edge, and

(4) on every path, functions and events alternate (in between two functions,
there has to be an event, and vice versa).

The EPC shown in Figure 2 contains 9 functions, 17 events, and 9 connectors
(3 ∧, 5 ×, 1 ∨). If an EPC is ready to be verified (the event in the upper
left corner of Figure 2), a reduction rule has to be applied. Note that any
non-trivial EPC has to contain functions. Therefore, it is safe to assume that
initially some reduction rules can be applied. After we have applied the re-
duction rules, we have to make a choice. Either more reduction rules can be
applied, or the EPC is trivial, or the EPC is not trivial. Depending on the
situation at hand, we follow some path through the EPC, until we reach the
end.

From the definition of an EPC it is clear that a process always starts when
a certain event occurs. Such an event should be one of the initial events, i.e.,
one of the events without incoming edges (cf. “EPC is ready to be verified”).
After the process is finished, the events that have not been dealt with yet
should be final events, i.e., events without outgoing edges (cf. “EPC is correct
and executable”). If this is the case, we call the EPC correct.

3.2 Petri nets

Petri nets are a formal language that can be used to specify processes. Since
the language has a formal and executable semantics, processes modeled in
terms of a Petri net can be executed by an information system. For an elabo-
rate introduction to Petri nets, the reader is referred to [9,10,13]. For sake of
completeness, we mention that the Petri nets we use in this paper correspond
to a classic subclass of Petri nets, namely Place/Transition nets.

A Petri net consists of two modeling elements:

Transitions, which typically correspond to either an activity (cf. an EPC
function) which needs to be executed, or to a “silent” step (cf. an EPC AND
connector) that takes care of routing. A transition is drawn as a rectangle.

Places, which are used to define the preconditions and postconditions of tran-
sitions (cf. an EPC event). A place is drawn as a circle.

Transitions and places are connected through directed arcs in such a way that
(i) places and transitions have at least one incident edge and (ii) in every

10

A

E

P

O

G

C

R

R R

t

u

Fig. 3. A Petri net resembling the EPC shown in Figure 2

path, transitions and places alternate (no place is connected to a place and
no transition is connected to a transition).

Figure 3 shows an example Petri net. This Petri net resembles the EPC shown
in Figure 2, which is visualized in Figure 3. For ease of discussion, we have
abbreviated the names of the EPC functions to A (Apply Reduction Rule),
E (Initial Events are known), P (Transform to Petri net), G (Calculate state
space, or Generate state space), C (Color the state space), O (Remove OR-
transitions if allowed), and R (Check Result). Furthermore, as we explain later
on, we have added transitions t and u, and have folded the three final events
at the bottom of Figure 2 onto one place.

To denote the state of a process execution the concept of tokens is used. A
token is placed inside a place to show that a certain condition holds. In Figure 3
one place is marked with one token. Each place can contain arbitrarily many
of such tokens. If a transition execution occurs (or fires), one token is removed
from each of the input places and one token is produced for each of the output
places. Note that this restricts the behavior in such a way that a transition
can only occur when there is at least one token in each of the input places.
The distribution of tokens over the places is called a state, better know as

11

marking in Petri net jargon.

As indicated the Petri net in Figure 3 and the EPC in Figure 2 resemble each
other. By playing the “token game” one can indeed verify that this is the case.

3.3 Analysis techniques

Petri nets can be used as executable specifications of business processes, i.e.,
their unambiguous semantics can be used to enact business processes. More-
over, it is possible to use a variety of analysis techniques answering different
questions. In this subsection we discuss some of the classical questions and
briefly describe two analysis techniques: state spaces and invariants.

3.3.1 State space

Given a marked Petri net, i.e., a Petri net and some initial marking, an in-
teresting question is which markings can be reached. That is, what is the set
of reachable markings (also called the state space) for that marked Petri net?
Related to this is the question whether the state space is finite, i.e., whether
the number of reachable markings is finite. If this is the case, the marked Petri
net is called bounded. It has been proven that a marked Petri net is bounded
if and only if for every place we can find some upper bound on the number of
tokens inside that place. If this upper bound is 1, then the marked Petri net
is called safe. A marked Petri net is called live if every transition can be fired
from any reachable marking (possibly after some other transitions have been
fired first). Although the state space of a bounded Petri net is finite, it can
be too big for any computer to compute. Therefore, alternative analysis tech-
niques with better complexity have been developed, including the so-called
place and transition invariants.

3.3.2 Invariants

A place invariant assigns a weight to each place such that no firing of a tran-
sition changes the “weighted token sum”, where the weighted token sum is
defined as the sum of all tokens multiplied by the weights of the correspond-
ing places. Note that place invariants are structural, i.e., they do not depend
on the initial state. Place invariants correspond to conservation laws. A place
invariant is called semi-positive if it does not assign negative weights to tran-
sitions.

Transition invariants are the dual of place invariants. A transition invariant
assigns a weight to each transition such that if every transition fires the spec-

12

ified number of times, the initial state is restored, where negative weights
correspond to “backward firing” of the transition. For our approach, we only
consider semi-positive transition invariants. The net effect of executing every
transition as many times as indicated by a semi-positive transition invariant
is zero. Note that a transition invariant does not specify any order. Moreover,
a transition invariant does not state that it is indeed possible to fire each
transition as many times as indicated by the transition weights. This a direct
consequence of the fact that invariants do not depend on a marking.

A base of invariants can be computed quite easily (polynomial time w.r.t.
the number of places and transitions) [9–11]. However, the computation of
a minimal set of semi-positive invariants is more complex (exponential time
w.r.t. the number of places and transitions) [30].

3.4 Workflow nets, soundness, and relaxed soundness

In this paper, we mostly consider workflow nets (WF-nets). WF-nets are a
subclass of Petri nets tailored towards workflow modeling and analysis. A
WF-net has one source place (no incoming arcs, usually denoted i), one sink
place (no outgoing arcs, usually denoted o), and all places and transitions are
covered by the paths from i to o. Note that the Petri net shown in Figure 3
is a WF-net, because we added transitions t and u and have folded the three
final events at the bottom of Figure 2 onto one place. Based on WF-nets,
correctness notions such as soundness [2,6], generalized soundness [15] and
relaxed soundness [7,8] have been defined.

3.4.1 Soundness

For our approach, the notions of soundness and relaxed soundness are highly
relevant, therefore we describe these in more detail. Place i is the entry point
for new cases (i.e., process instances), while place o is the exit point. Ideally,
every case that enters the WF-net (by adding a token to place i) should exit
it exactly once (by removing a token from place o) while leaving no references
to that case behind in the WF-net (no tokens should be left behind). Fur-
thermore, every part of the process should be viable, that is, every transition
in the corresponding WF-net should be executable. Together these properties
correspond to the notion of soundness [2,6], i.e., a WF-net is sound if and only
if:

• From every marking reachable from [i], the marking [o] is reachable (com-
pletion is always possible).

• If in some marking M reachable from [i] the place o is included in M , then
M = [o] (completion is always proper).

13

• Every transition is included in at least one firing sequence starting from [i]
(no dead transitions).

Note that [i] denotes the state with a token in place i and [o] denotes the state
with a token in place o. The WF-net shown in Figure 3 is sound.

Some verification techniques require the addition of an extra transition con-
necting the sink place back to the source place. Such a short-circuited WF-net
can be used to express soundness in terms of well-known Petri-net properties:
A WF-net is sound if and only if its short-circuited net is live and bounded
[31]. Liveness and boundedness are two well-known properties supported by a
variety of analysis tools and techniques [9,10,13]. This transformation is based
on the observation that an execution path that moves a token from place i to
place o corresponds to a cyclic execution path in the short-circuited net: By
executing the short-circuiting transition once, the token is back in place i. If
we short-circuit the WF-net shown in Figure 3, the sink place is connected
to the source place using a new transition (cf. Figure 4 for the short-circuited
net of the Petri net shown in Figure 3).

3.4.2 Relaxed soundness

In some circumstances, the soundness property is too restrictive. Usually, a
designer of a process knows that certain situations will not occur. As a result,
certain execution paths in the corresponding WF-net should be considered
impossible. Thus, certain reachable states should be considered unreachable.
Note that in the verification process we are often forced to abstract from data,
applications, and human behavior, and that it is typically impossible to model
the behavior of humans and applications. However, by abstracting from these
aspects, typically more execution paths become possible in the model. The
notion of relaxed soundness [7,8] aims at dealing with this phenomenon. A
WF-net is called relaxed sound if every transition can contribute to proper
completion, i.e., for every transition there is at least one execution of the WF-
net starting in state [i] and ending in state [o] which involves the execution
of this transition. A WF-net is said to be relaxed sound if all transitions are
relaxed sound.

As mentioned before, every case that enters a WF-net should exit it exactly
once while leaving no references to that case behind in the WF-net (no tokens
should be left behind). Thus, the ultimate goal of a WF-net is to move from
place i to place o. The notion of relaxed soundness brings this goal down to the
level of transitions: every transition should aid in moving a token from place
i to place o. A transition that cannot aid in moving a token from place i to
place o cannot help the WF-net in achieving its goal. Hence, such a transition
has to be erroneous.

14

3.4.3 Transition invariants

By definition, every relaxed sound transition is covered by some path from
the initial marking [i] to the final marking [o]. As a result, every relaxed sound
transition is covered by some semi-positive transition invariant in the short-
circuited net. However, this does not work the other way around since tran-
sition invariants abstract from the state of the net. Therefore, it might be
possible that the transitions covered by some transition invariant cannot be
executed (because some tokens are required for a transition to fire, while they
are only produced later). As a result, there may be a transition that is covered
by some transition invariant in the short-circuited net, but that is not covered
by any execution path from state [i] to state [o]. Nevertheless, if we are un-
able to generate the state space in reasonable time (i.e., it is too large to be
computed), then we can use transition invariants as an approximation. Note
that for every execution path from state [i] to state [o] the short-circuiting
transition needs only to be executed once to obtain a cyclic execution path.
Furthermore, note that there may be cyclic execution paths present in the
WF-net itself. For these two reasons, we restrict ourselves to transition invari-
ants where the short-circuiting transition has either weight 0 (corresponds to
a cycle in the WF-net itself) or 1 (corresponds to an execution path from [i]
to [o]).

3.4.4 Example

To summarize and illustrate the issues related to (relaxed) soundness, we use
Figure 4. Figure 4 shows the short-circuited variant of the WF-net shown in
Figure 3. The transition that short circuits the net is the one on the bottom,
that transfers the token back to the initial place. Figure 4 also shows two (semi-
positive) transition invariants. One invariant assigns weight 1 to all transitions
labeled x (all others have weight 0). The second transition invariant assigns
weight 1 to all transitions labeled y (again, all others have weight 0). It is not
hard to show that all transitions in Figure 3 can be covered by semi-positive
transition invariants, which suggests (but does not prove) that the WF-net is
indeed relaxed sound.

3.5 Conclusion

In this section, we introduced EPCs, Petri nets, and relevant notions such as
(relaxed) soundness and invariants. In the remainder of this paper, we show
the process of EPC verification. The first step is made in Section 4, where
we reduce the verification problem of a large EPC to that of a smaller (and
possibly trivial) EPC. In Section 5, we present the whole approach and show

15

x

x

yy

x

y

x

x

x

y

Fig. 4. Two possible transition invariants, denoted with x and y.

how we can use Petri-net-based techniques to further analyze the reduced
EPC. Section 6 discusses the use of invariants if the state space is too large.

4 Reduction rules

EPCs can contain a large number of functions, events and connectors. How-
ever, for the verification of EPCs, not all of these elements are of interest. In
particular, we are interested in the routing constructs that are used in the
EPC, since that is where the errors can be. Furthermore, it is obvious that
some constructs are trivially correct. For example, an arbitrary long sequence
of events and functions is clearly correct and does not need to be considered in
detail in the verification process. Moreover, if a split of some type is followed
by a join of the same type, the exact semantics of the splits and joins is irrel-
evant as under any semantics this will be considered correct. In this section,

16

we introduce a set of reduction rules. These rules can be applied on any EPC
in such a way that, if the EPC is correct before the reduction, then the result
after reduction is correct and if the EPC is not correct before reduction, then
the result after reduction is not correct, i.e. these rules are correctness pre-
serving. However, we do not intend these rules to be complete. Instead, they
merely help to speed up the verification process, by removing trivial parts
before going to the more demanding steps in process (i.e., both in terms of
computation time and human interpretation).

It is easily seen that the application of the reduction rules does not result in an
EPC, since functions and events no longer alternate. However, for the process
of verification, this is not a problem and we will refer to this reduced model
as a reduced EPC.

f

t
1

e

Fig. 5. Trivial construct.

t1

t
2

t1

t
2

t1 = t2

OR
t2 = \/

Fig. 6. Simple split/join.

t1

t
2

t
1

t
1

= t
2

Fig. 7. Similar joins.

t1

t
2

t1t
1

= t
2

Fig. 8. Similar splits.

X

X

X

X

Fig. 9. XOR loop.

\/

t
1

\/

t
1

t
1
 = x

OR
t
1
 = \/

Fig. 10. Optional OR loop.

4.1 Trivial constructs

Figure 5 shows the reduction rules for trivial constructs. It shows that a func-
tion f , an event e or a connector with type t1 with precisely one ingoing and
one outgoing edge can be removed completely. As stated before, we are only
interested in routing constructs. Functions, events, or connectors with only one

17

incoming and only one outgoing edge do not provide any routing information.
Therefore, they can be removed while preserving correctness.

4.2 Simple splits/joins

Figure 6 shows the reduction rule for a split that is followed by a join connector.
This rule can be applied if both connectors are of the same type (i.e. AND,
OR or XOR), or if the join connector is of type OR. Again it is trivial to see
that correctness is preserved.

4.3 Similar splits/joins

Figures 7 and 8 show the rules for two connectors of the same type that
directly follow each other. These two connectors can then be merged into one
connector of the same type. Note that syntactical restrictions of (reduced)
EPCs do not allow for more than one edge between the first and the second
connector, since connectors are either a split or a join and never both.

4.4 Loops

Finally, figures 9 and 10 show two very similar reduction rules that deal
with loops. In these cases correctness preservation is less straightforward.
For Figure 9 it is clear that removing the possibility to loop back is cor-
rectness preserving, because the “backward arc” does not introduce any new
states. Figure 10 shows an optional rule. Unlike the others it is not correct-
ness/incorrectness preserving in any situation like the first five rules. The rule
assumes that the intended semantics is safe (i.e., no multiple activations of
functions and no events that are marked multiple times). This implies that if
t1 is an OR-join either the backward arc is taken or any combination of the
other arcs.

4.5 Example

Figure 11 shows the result of applying the reduction rules to the EPC of
Figure 2. The resulting reduced EPC does not contain any functions, and
only some of the connectors from the original EPC. We know that none of
the reduction rules will make the reduced EPC incorrect if the original was
correct, and they will not make the reduced EPC correct if the original was

18

EPC ready to
be verified

EPC is correct and
executable

EPC can be
correct, Further

investigation
necessary

EPC is incorrect,
Problem has to be

resolved

Initial Events
are known

Possible
combinations

of initial Events

Possible final
Markings known

Allowed final
Markings

Fig. 11. Reduced EPC for the verification process.

incorrect. Therefore, we can now proceed with the verification process using
this reduced EPC and the result can directly be translated back to the original
EPC.

5 Verification of the reduced EPC

In the previous section, we introduced reduction rules for EPCs in such a way
that we can use a reduced EPC for the verification process. In this section, we
will translate the reduced EPC into a Petri net. This is also the part of the
verification process where user interaction plays an important role. The user
has to provide us with possible combinations of initial events. These combina-
tions are then translated into initial markings of the Petri net. By calculating
the state space, we can then provide the user with all possible combinations of
final events that can happen. It is again up to the user to divide those into a
set of desired and undesired combinations. Using this information we go into
the final stage, where we use a simple coloring algorithm on the state space
to decide whether the reduced EPC is correct. This is then translated back to
the original EPC.

In this section we will use Figure 2 to describe the overall verification approach
in more detail and focus on the second phase of the algorithm where the Petri-
net mapping for the reduced EPC is used for deciding (relaxed) soundness.
Note that the whole process shown in Figure 2 is implemented in the context
of the ProM framework (cf. Section 7).

5.1 User interaction 1

As we stated before, the process of EPC verification relies on user interaction
at two points. The first point is where the user has to specify which combina-
tions of initial events can appear to initiate the process described by the EPC

19

An AND-join is mapped onto a
single transition

Each possible output of an XOR-
split is mapped onto a transition

Every event/connection is
represented by two places: a
normal place and its shadow place

To make this into
a true WF-net all
shadow places
need to be
initialized, a
unique sink place
needs to be
added, and for
every possible
combination of
end events a
transition needs
to be added.

Every possible combination of
inputs of an OR-join is

mapped onto a transition

Each possible input of an XOR-join
is mapped onto a transition

An AND-split

t1a

t1b
t2 t3 t4

t5a

t5b

t5c

t6a

t6b

t7a

t7b

t7c

Fig. 12. Petri net translation of the reduced EPC.

(i.e., event “Possible combinations of initial Events” in Figure 2). Using this
information from the user, we can calculate which initial markings are possible
for the Petri net that we will build. If we consider the example from Figure 2,
then there is only one combination of events that can start the process. This
is the combination of the events “EPC ready to be verified”, “Possible com-
binations of initial events” and “Allowed final markings”. It has to be noted
that the events “Possible combinations of initial events” and “Allowed final
markings” can only appear as a consequence of some choice that was made
in the model. However, these causalities are not expressed in the EPC, and
therefore they cannot be known to the verification system. As can be seen in
the procedure shown in Figure 2, we are now ready to transform the EPC into
a Petri net.

5.2 Translation to Petri net

Many authors have described algorithms to translate EPCs to Petri nets. In
this paper, we use a modified version of the translation proposed in [7,8]. The
translation presented there gives a translation into normal Petri nets, whereas
we use the same translation algorithm, but enforce the result to be a safe
Petri net. The reasons for doing so are twofold. First, events in EPCs either
have occurred or not. Therefore, it makes no sense to map an event onto a
place that can contain multiple tokens. Second, the state space of a safe Petri
net is more likely to be small, hence, it is more likely that we will be able
to construct the state space. Furthermore, enforcing safeness is similar to the
interpretation of EPCs in [25].

20

t1at1bt6a t2 t3 t4

t5bt5at5ct5a

t7a

t7b
t7c

t6b

t2 t3 t4t1at6a t1b

t7a

t7b

t7c
t6b

t5c

t5c

t5c

t6b

t7a

t7b
t7c

t6b

t5a

t5a

t5a

t5a

t7a

t7b

t7c
t6b

t2 t3t1at6a t1b

t2 t3t1at1b

t2 t3t1at6a t1b

t2 t3t1at6a t1b

t4

t4

t4

t4

t5a t5a t5a t5a t5a

t7a t7a t7a t7a t7a

t6b t6b t6b t6bt7b t7b t7b t7b t7b

t7c t7c t7c t7c t7c
t7a

t5c

Fig. 13. State space of the Petri net as shown in Figure 12

To enforce safeness, we duplicate all places with arcs in the reversed direction,
i.e., every “normal place” gets a “shadow place” that initially contains one
token. Each time a token is produced for the normal place, a token is consumed
from the shadow place. If the token on the normal place is consumed, a token
is returned to the shadow place. Therefore, the sum of tokens in a normal
place and it’s shadow place is always 1. This way the resulting net is forced
to be safe.

The result of the transformation process for our running example of Figure 2
is shown in Figure 12. Note that in the layout of the Petri net the reduced
EPC from Figure 11 is visible. Also note that, by definition, the reduced EPC
only contains events and connectors, and that the EPC cannot be reduced
completely. Again each event is modelled by two places (i.e., a normal place
and shadow place) and connectors are modelled by a small network of transi-
tions. Note that this is not yet a WF-net. However, it can be used to generate
the state space.

Using the combinations of initial events calculated in the previous step, we
are ready for the state space generation.

5.3 State space generation

Figure 13 shows the state space of the Petri net as shown in Figure 12. For
ease of reference, we have highlighted the initial state (the open dot).

As we discussed in Section 3.3, a state space of a bounded Petri net is always
finite. Still, it may be too complex to be constructed (within reasonable time).
However, given the fact that the Petri net results from a reduced EPC and

21

t

i

u v w

o

Fig. 14. The essence of the resulting WF-net

that the Petri net is safe by construction, we expect to be able to construct
the state space for the vast majority of EPCs found in practice. Moreover,
based on our experiences so far (with EPCs up to 100 functions and events),
it seems possible to construct the state space without any problems for all
EPCs encountered in practice (especially after reduction). Nevertheless, as
discussed in Section 3.4, it is also possible to use transition invariants if the
state space cannot be constructed. We discuss this in detail later.

5.4 User interaction 2

Now that we have calculated the state space, we are able to provide the user
with details about the possible outcomes of the process. In our example, there
are many different outcomes that were not intended to be there. The reason
for this is the informal definition of the OR-connector in the process. From
this paper it will become clear that for the OR-connector you either have both
events “Ready for analysis” and “Allowed final markings”, or you have “All
allowed OR transitions are removed” (cf. Figure 3, where we already took this
into account). However, from the description of the EPC, this is not entirely
clear. Therefore, we require the user to select those possible outcomes (set of
final events) that correspond to correct executions of the process. In this case,

22

t1at1bt6a t2 t3 t4

t5bt5at5ct5a

t7a

t7b
t7c

t6b

t2 t3 t4t1at6a t1b

t7a

t7b
t7c

t6b

t5c

t5c

t5c

t6b

t7a

t7b
t7c

t6b

t5a

t5a

t5a

t5a

t7a

t7b
t7c

t6b

t2 t3t1at6a t1b

t2 t3t1at1b

t2 t3t1at6a t1b

t2 t3t1at6a t1b

t4

t4

t4

t4

t5a t5a t5a t5a t5a

t7a t7a t7a t7a t7a

t6b t6b t6b t6bt7b t7b t7b t7b t7b
t7c t7c t7c t7c t7c

t7a

t5c

Fig. 15. Colored state space of the Petri net as shown in Figure 12

the user selects the three final states in the rightmost column of the state
space.

Using this information about the allowed final markings, we can transform the
Petri net generated earlier into a WF-net, i.e., a Petri net with a single source
place and a single sink place. This implies that we can apply all the notions
and results presented in Section 3.4. Figure 14 shows the essence of this WF-
net: transitions t, u, v, and w have been added. For sake of readability, we
restricted ourselves to the most relevant arcs to and/or from these transitions,
i.e., we have not drawn all arcs from and/or to these transitions. Transition t
also has to initialize all shadow places, while transitions u, v, and w also have
to remove all remaining tokens from these shadow places. Note that transition
u needs to remove the tokens corresponding to the initial events “Possible
combinations of initial events” and “Allowed final markings”, as these two
initial events are not needed if the EPC reduces to the trivial EPC.

5.5 The decision process

Finally, we have all the ingredients we need to decide whether the EPC is
correct. We have a state space, of which we know all initial states and all al-
lowed final states. The first step toward the final decision is to color everything
from the state space that appears on a path from a initial state to one of the
allowed final states. The colored part of the state space then describes all the
behavior that the user allows. Then, we look for all transitions that do not
have a colored edge in the state space. We call those transitions “not covered”.
Figure 15 shows the colored state space, where the black parts represent the
allowed behavior.

23

In principle, transitions that are not covered show that there is possibly in-
correct behavior. Translating this back to an EPC would result in saying that
a certain connector is used incorrectly. This is indeed the case for connectors
of type XOR and AND. However, for connectors of type OR, we need to per-
form an additional step. When people use connectors of type OR, they do not
necessarily want all the possible behavior to appear. As mentioned earlier, the
designer knows that the OR-connector in the example EPC will either use the
event “All allowed OR transitions are removed” or will synchronize and use
the events “Ready for analysis” and “Allowed final Markings”. As a result,
the user can tell that the transitions t5a and t5c cannot occur in practice, and
they should be removed from the Petri net. After all such transitions have
been removed from the Petri net, the state space is then recalculated with-
out the need for user interaction. Again, the coloring process is repeated and
finally, we can provide the final answer:

The EPC is correct (i.e., the corresponding WF-net after reduction is
sound). This is the case if the entire state space is colored. If the EPC
is correct, then it is always possible to execute the process without ending
up in some undesired state.

The EPC can be correct (i.e., the corresponding WF-net after reduction
is relaxed sound but not sound). This is the case if the state space is not
entirely colored, but all transitions are covered. This result tells the designer
that the EPC can be executed, but special care has to be taken to make
sure that an execution does not end up in some undesired state. Consider for
example Figure 16, where the choices following functions A and B need to be
synchronized to get proper execution paths. However, this synchronization
is not made explicit in the model.

The EPC is incorrect (i.e., the corresponding WF-net after reduction not
relaxed sound). This is the case when not all transitions are covered. Basi-
cally this means that there is some part of the EPC that cannot be executed
without running into some undesired behavior. Consider for example Fig-
ure 17, where an obvious modeling mistake is depicted.

Note that in this final phase we heavily rely on the correctness criteria defined
for WF-nets (cf. Section 3.4).

Despite the fact that the Petri net is safe, the state space can still be too
complex to construct, especially if many parallel branches exist in the reduced
EPC. Fortunately, we can use transition invariants as shown in Section 3.4 to
detect errors. In the following section we briefly discuss the way that transition
invariants can be deployed.

24

A B

e2 e5

e4e3
XX

/\

/\

C D

e
1

/\

Fig. 16. An EPC with choice synchro-
nization.

A B

e2 e5

X

C

e
1

/\

Fig. 17. An EPC with erroneous rout-
ing.

5.6 Conclusion

In this section, we have presented a step by step algorithm for the verification
of EPCs. We have shown that we need user interaction on two levels, and that
the resulting answer does not need to be conclusive. There is a “grey area”
where the EPC can be executed correctly, but can also run into problems (i.e.,
relaxed soundness). This gray area is not a weakness of the verification pro-
cess! Instead, it shows the difference between a conceptual modeling language
such as EPCs and an executable specification in terms of a Petri net. The EPC
language is an informal language aiming at discussions about the process and
not intended as an executable specification. However, by making the implicit
assumptions explicit, it is possible to derive an executable specification from
the EPC. This way the model can be used as a starting point for the con-
figuration of enterprise systems (e.g., in the form of an executable workflow
model).

6 Using transition invariants

For well-structured EPCs (e.g., a 1-to-1 correspondence between splits and
joins) the approach discussed in previous section is very effective. The reduc-
tion rules immediately remove all the complexity. However, for more complex
“spaghetti-like” diagrams the reduced EPC may still be large and exhibit a
lot of parallelism. Note that for an EPC with 10 functions in parallel there are
at least 10! = 3628800 possible states (as there are 10! possible sequences of
these functions), and that for an OR-split/join construct with 10 functions to

25

choose from, there are 210
− 1 = 1023 possible sets of functions that can all be

executed in parallel. Hence, if the reduction rules fail to reduce the EPC suf-
ficiently, the construction of the state space may simply take too much time.
To address this problem we return to the observations made in Section 3.4.

If the state space is too complex to construct, we make use of so-called tran-
sition invariants. Transition invariants do not require the state space to be
constructed, and it is straightforward to show that a transition that cannot be
covered by any of the transition invariants, can also not be covered by relaxed
soundness. Recall that every relaxed sound transition is covered by some path
from the initial marking [i] to the final marking [o]. As a result, every relaxed
sound transition is covered by some transition invariant in the short-circuited
net. For the analysis it suffices to focus on transition invariants where the
short-circuiting transition has either weight 0 or 1. The former corresponds to
a cycle in the WF-net itself (cf. the transition invariant labelled y in Figure 4),
the latter to an execution path from [i] to [o] (cf. the transition invariant la-
belled x in Figure 4). Using standard algorithms [30] it is possible to calculate
a set of minimal semi-positive transition invariants, and to select the relevant
ones in a second step.

As discussed in Section 3.4, it might be possible that the transitions covered
by some transition invariant cannot be executed (because some tokens are
lacking). As a result, there may be a transition that is covered by some tran-
sition invariant in the short-circuited net, although it is not covered by any
execution path from state [i] to state [o]. As an example, consider the reduced
EPC as shown in Figure 18.

The thick path shown in this figure corresponds to a transition invariant in the
corresponding short-circuited Petri net. As a result, the two AND-connectors
in the middle are covered by transition invariants. However, these connectors
are not covered by relaxed soundness (as there is no executable sequence that
uses these connectors, because the top connector would block). This example
shows that if all transitions are covered by invariants, this is not a sufficient
condition for relaxed soundness.

Examples such as the reduced EPC in Figure 18 are rare. In most cases invari-
ants and relaxed soundness will yield identical results. Moreover, the designer
should realize that all errors discovered using invariants are indeed errors in
the EPC, but that some errors may remain undetected. As a result, we feel
that our approach can also support the designer of an EPC even if the state
space of that EPC is too complex to construct.

26

initial event

final event

Fig. 18. Reduced EPC: invariants vs. relaxed soundness.

7 Tool

The approach described in Section 5 has been implemented as an analysis plug-
in in the ProM framework [32]. This EPC verification plug-in fully supports
the approach described in Section 5 and depicted in Figure 2: It automatically
reduces the provided EPC, maps the reduced EPC onto a Petri net, constructs
the state space, and does a state space analysis. Besides showing the reduced
EPC it can also show the corresponding Petri net and state space. Possible
problem areas in the state space are highlighted to make analysis easier for
the user.

7.1 The ProM framework

As mentioned, the approach is implemented as an analysis plug-in in ProM
framework. The ProM framework provides a “plugable” framework for pro-
cess mining [33] and has been developed by the authors and other people from
Eindhoven University of Technology and many other institutes 3 . Process min-
ing aims at extracting knowledge from event logs (e.g., transaction logs in an
ERP system or audit trails in a WFM system) and is closely related to Busi-

3 Development of ProM was sponsored by the Dutch institutes NWO, STW, Beta
and EIT.

27

ness Activity Monitoring (BAM) and Business Process Intelligence (BPI). The
framework is flexible with respect to the input and output formats, and is also
open enough to allow for the easy reuse of code during the implementation
of new process mining ideas. Within the framework, several process modeling
languages are supported, e.g., Petri nets, EPCs, heuristics nets, YAWL mod-
els. The framework also allows for conversions between different formats. For
example, it is possible to load an EPC from the ARIS toolset, translate it to
a Petri net for analysis purposes, and then convert the Petri net to a YAWL
model that can be loaded into the YAWL workflow engine for enactment. In
this context it is interesting to mention the multi-phase mining plug-in [34].
This plug-in can discover EPCs based on event logs without any explicit pro-
cess information (i.e., on the basis of “raw data”). The resulting EPC models
can be loaded in the ARIS toolset. Moreover, the logs and intermediate results
can be exchanged with the ARIS Process Performance Monitor (ARIS PPM).
Although the initial focus of the ProM framework was on process mining (in
particular process discovery, i.e., constructing process models based on event
logs), over time several analysis plug-ins have been developed. For example,
the main part of the functionality of Woflan [16] has been embedded into a
ProM analysis plug-in.

The ProM framework and related plug-ins (including the EPC verification
plug-in) can be downloaded from www.processmining.org.

7.2 A real-life example

To show the functionality of the EPC verification plug-in we use a real-life
example. The process is from the Trade Department of a large Dutch bank.
(We cannot disclose the name of the bank for reasons of confidentiality.) We
applied our approach and tool to several processes within this bank, includ-
ing the trade execution process. First, we imported the EPC into the ProM
framework using another plug-in: the ARIS graph format import plug-in, and
we selected the trade support process. Figure 19 shows the result. Next, we
started the EPC verification plug-in from the “analysis” menu in the menu
bar. The left-hand side of Figure 20 shows the result.

The plug-in informed us that there was only one initial event. Therefore, we
selected as possible initial event sets the set containing only this initial event,
and continued. Behind the scenes, the plug-in now mapped the EPC onto a
marked Petri net, constructed the state space for that Petri net, and computed
the possible final states for that Petri net. Finally, the plug-in showed these
final states. Figure 21 shows the result.

At this point, we had to decide which final states were desired (keep) and

28

Fig. 19. The trade process imported in the ProM framework.

which were undesired (ignore). Note that the plug-in already had categorized
the final states based on the fact whether the final states included non-final
events: if a final state includes a non-final event, then the plug-in proposes to
ignore that final event, since this indicates a process that terminated while
some events have not been dealt with. We simply accepted the categorization
as proposed by the plug-in, and continued. This resulted in the following
message: “The EPC can be correct, but allows for undesired behavior”.

At this point in time, the process owner at the bank informed us that two of
the kept proposed final states were in fact undesired. As a result, we moved
these two states to the undesired list. This immediately lead to the following
message: “The EPC contains structural errors”.

As a result, the identified problem parts were highlighted in ProM. These
highlighted parts are shown in Figure 22. From this information, we deduced
that the EPC contained a problem w.r.t. synchronization and choice: Two
parallel branches were started, but from one of these branches it was possible
to jump back and to start both branches again. As a result, the other branch
could be started over and over again.

Thus, using the EPC verification plug-in, we were able to identify the problem
areas, and from that we were able to conclude that the model contained errors

29

Fig. 20. The trade process after starting the EPC verification plug-in.

that should be corrected. Using this information, we could correct the trade
execution EPC. As a result of this test on their trade execution process, the
process owners of the EPC decided to start using the plug-in by themselves
in the future.

After presenting our verification approach and the EPC verification plug-in,
we now focus on the verification of the reference models present in SAP R/3
and ARIS for MySAP.

8 Verification of the SAP reference models

The application of the verification approach presented in Section 5 is based
on a basic assumption: It assumes that the designer of a model has a good
understanding of the actual business process that was modeled, and that he
knows which combinations of events may actually initiate the process in real
life. Typically, reference models are used by consultants that do indeed have
a good understanding of the process under consideration. Besides, they know
under what circumstances processes can start, and which outcomes of the
execution are desired and which are not. Therefore, our approach seems to be
well suited for the verification of the SAP reference models. Before presenting

30

(a)
(b)

(c)

Fig. 21. The trade process with its undesired (a) and desired (b) final states and
the verification result (c).

the verification of the SAP reference models we first provide some background
information on reference models in general and the SAP reference models in
particular.

8.1 SAP R/3 Reference models

Reference models [35–43] are generic conceptual models that formalize rec-
ommended practices for a certain domain [37,38]. Reference models accelerate
the modeling process by providing a repository of potentially relevant business
processes and structures. With the increased popularity of business modeling,
a wide and quite heterogeneous range of purposes can motivate the use and de-
velopment of reference models. These purposes include software development,
software selection, configuration of enterprise systems, workflow management,
documentation and improvement of business processes, education, user train-
ing, auditing, certification, benchmarking, and knowledge management [40].

Literature (e.g., [39,40]) suggests that we can distinguish two types of reference
models: industry models and application models. Industry reference models
are generally higher level models and they aim to streamline the design of

31

(a)

(b)

(c)

Fig. 22. The trade process with updated undesired (a) and desired (b) final states,
the new verification result (c) and highlighted part of the process.

enterprise-individual (particular) models by providing a generic solution. Ap-
plication reference models describe the structure and functionality of business
applications including enterprise systems. In these cases, a reference model can
be interpreted as a structured semi-formal description of a particular appli-
cation. This application can then be seen as an existing off-the-shelf-solution
that supports the functionality and structure described in the reference model.

Rosemann and Van der Aalst explain in [40] that application reference models
tend to be more complex than industry reference models. They explain that
the SAP reference model is one of the most comprehensive models [36]. Its data
model includes more than 4000 entity types and the reference process mod-
els cover more than 1000 business processes and inter-organizational business
scenarios. EPCs have been used for the design of the reference process mod-
els in the ARIS for MySAP database that we consider in this paper. EPCs
also became the core modelling language in the Architecture of Integrated
Information Systems (ARIS) [41].

In the ARIS for MySAP reference database, there are hundreds of EPCs that
can be used in many different situations, from “asset accounting” to “pro-
curement” and “treasury”. Since we cannot discuss all these models here, we
first focus on one of the modules that can be considered to be a representative

32

subset of all reference models, namely “procurement”. This is a set of some
40 EPCs, all in the area of procurement. They describe processes for

(1) internal procurement,

(2) pipeline processing,

(3) procurement of materials and external services,

(4) procurement on a consignment basis,

(5) procurement via subcontracting,

(6) return deliveries, and

(7) source administration.

After considering the “procurement” module we discuss some more general
observations based on an analysis of the other top-level reference models in
the ARIS for MySAP database.

8.2 Procurement module

As indicated in the previous subsection, we focus on the procurement module
of the ARIS for MySAP reference model database, since it can be seen as a
representative subset of all reference models. The procurement module con-
tains several sub-modules and we analyzed all the models from these modules
using the approach presented in Section 5. Surprisingly, already in the first
model (Internal Procurement) there were structural errors. In Figure 23, we
show a screenshot of the EPC verification plug-in while analyzing the Inter-
nal Procurement EPC. It clearly shows that an AND-split is later joined by
an XOR-join. Recall Figure 17, where we have shown that this is incorrectly
modeled. As a result, if this model would not be repaired, payments could be
made for goods that were never received. Obviously, this is not desirable. In
this case, the problem can easily be repaired. If the XOR-join at the bottom is
changed into an AND-join, the model is correct: The EPC cannot be reduced
to the trivial EPC but the corresponding WF-net is sound.

The results of our analysis of the whole procurement module are presented
in Table 1, which contains three columns. The first column shows the name
of the module. The second contains the verification result. We use “I” for
incorrect models (i.e., the corresponding Petri net is not relaxed sound), “S”
for syntactically correct models (i.e., soundness can be decided by just applying
the reduction rules) , and “C” for semantically correct ones (i.e., sound or
relaxed sound). The final column gives short explanation of the error found.

In addition, we applied the analysis using transition invariants. From which,
we again were able to conclude that the processes “Internal Procurement” and
“Procurement via Subcontracting” were incorrect, i.e., the use of invariants
(rather than constructing the state space) also allowed us to find errors. This

33

Fig. 23. Fragment of the “Internal Procurement” EPC showing a structural error.

strengthens our belief that examples as shown in Figure 18 are rare, and that,
in general, the technique with transition invariants is applicable in practice.
Using this technique, we were also able to conclude that an OR-join in the
“Outline Purchase Agreements” (from the Module “Source Administration”)
could be replaced by an AND-join without changing the allowed behaviour of
the process.

8.3 Further analysis of the SAP reference models

From the previous section it seems that we can conclude that most errors
are made in the higher level models. Using this as a guide, we tried to find
problems in the entire set of reference models. In fact, in the high level models,
it is not hard to find these mistakes. These high level models are usually more
complex then the lower level models (i.e. they contain more functions, events
and connectors). Therefore, errors are more likely to be introduced there.
Instead of giving a detailed list of all the errors we have found, we would
like to mention three observations that we made during this guided model
selection.

34

Table 1
Results for the procurement module

Module name Result Implication of the problem

Internal Procurement I Payments can be done for goods never received.
↪→ Goods Receipt C
↪→ Invoice Verification C
↪→ Purchase Requisition C
↪→ Purchasing C
↪→ Warehouse stores C

Pipeline Processing C
↪→ Invoice Verification C
↪→ Pipeline Withdrawal C

Materials and External Services I An invoice can be paid for ordered goods (not services)
that have not yet been delivered.

↪→ Goods Receipt C
↪→ Invoice Verification C
↪→ Purchase Requisition C
↪→ Purchasing C
↪→ Service Entry Sheet C
↪→ Transportation C
↪→ Warehouse/Stores C

Procurement on a Consignment basis C
↪→ Goods Receipt C
↪→ Invoice Verification C
↪→ Purchase Requisition C
↪→ Purchasing C
↪→ Warehouse/Stores C

Procurement via Subcontracting I An invoice that is received twice will be paid twice.
↪→ Goods Receipt C
↪→ Invoice Verification C
↪→ Provision of Components C
↪→ Purchase Requisition C
↪→ Purchasing C
↪→ Transportation C
↪→ Warehouse/Stores S When materials are simultaneously placed into the

stock and removed from it, erroneous behavior occurs.
Operational procedures should avoid this.

Return Deliveries C
↪→ Invoice Verification C
↪→ Outbound Shipments C
↪→ Quality Notification C
↪→ Shipping C
↪→ Warehouse C

Source Administration C
↪→ Outline Purchase Agreements C Redundant objects are present.
↪→ RFQ/Quotation C

8.3.1 Mixed process

The first observation is that the errors are not always simple mistakes like
an XOR connector that should be AND connector. Surprisingly, some models
have logical errors that transcend the level of a single connector and indicate
that the process is fundamentally flawed. When making a process model, it is
important to be absolutely clear what the process is about once it is instan-
tiated (i.e., what is the definition of the “case” being handled in the EPC).
It is important not to mix different processes into one diagram. A nice illus-
tration of this problem is shown in Figure 24. This EPC is taken from the
“Recruitment” module. The left-hand side of the process is about a vacant
position that is created by event “Need to recruit has arisen”. The right-hand

35

On hold
notification

is transmitted

Personnel
selection

Rejection
and application

documents
transmitted
to applicant

Job advertisement
required

by employee
responsible

Enterprise
receives

application

Confirmation
of receipt

is transmitted
to applicant

Applicant
is being

processed

Issuance
of recruitment

request

Application
referred

back
to HR

department

Applicant
must

be hired

Applicant
is rejected

Advertising

Applicant
pool

administration

Receipt
of application

Applicant
pool
must

be updated

Recruitment
request

is in
process

Applicant
is rejected

Recruitment
request

is complete

Need
to recruit

has arisen

Job advertisement
is determined

Need
for services
has arisen

Applicant
is on
hold

This event represents the opening of a
position (“Need to recruit has arisen”)

This event represents a single application
(“Enterprise receives application”)

Problem 1: one position needs to be
synchronized with multiple applications.
The AND-join cannot cope with this.

Problem 2: The process always
loops back. This creates another
deadlock (same AND-join).

Fig. 24. The “Recruitment” EPC with fundamental flaws.

side however, is about individual applications. This part is triggered by the
event “Enterprise receives application”. Note that there may be many applica-
tions for a single position. This makes it unclear whether the process is about
filling the vacant position or about dealing with the applications. This leads
to all kinds of problems. Figure 24 highlights two of these problems. The first
problem is that most applications (all except the first one) deadlock because
of the AND-join connector that requires a position for each application. The
second problem is of a similar nature. Looping back will create a deadlock at
the same location. The only way to resolve this problem is to split the EPC
in two separate EPCs: one for the vacant position and one for dealing with
applications.

8.3.2 Inconsistent models

The second observation is that often one particular initial event is applied
in several (sub)models. Take, for example, the event “Deliveries need to be
planned”. This event occurs in 15 different EPCs! Every time it occurs, it is
joined with the event “Delivery is relevant for shipment”. However, in some
models this is done via an XOR-join, and in some models via an AND-join. In
Figure 25, we show these two events, used in the “Consignment Processing”
module, where they are joined by an XOR-join. However, in Figure 26, we show

36

Fig. 25. Fragment of an EPC in the
“Consignment Processing” module.

Fig. 26. Fragment of an EPC in the
“Transport” module.

the same two events in an AND-join configuration. Since these two events are
always followed by something that refers to transportation, it seems that they
should always appear in an AND-join configuration. However, only a designer
with deep knowledge of the process that is modeled can decide if that is the
case.

8.3.3 Re-use

The third observation, that shows a common problem, is the effect of re-use.
Typically, many different organizations have very similar processes. Therefore,
when building reference models, it is a good idea to use one model to create
another one. The new model is then changed in such a way that it fits the
needs of the new organization better. Figure 27 shows a screenshot of the
ARIS toolset, showing two models, namely “Q-notification with Complaint
Against Vendor” on top and “Internal Quality Notification” below. These two
models are exactly alike, except that in the top-model, a vendor’s complaint
score can be updated. Here, one of the models has been correctly re-used to
create the other. In Figure 28, two models are shown for which the re-use was
performed incorrectly. The model on the left hand side represents the handling
of a “Service Order” and on the right hand side it represents the handling of
a “Maintenance Order”. They are very similar, except that the latter does
not make a distinction between maintenance at a customer site and at an
internal site. Both models however, contain the same mistake: If services are
to be entered, the rightmost event called “Services are to be Entered” occurs.
However, when that is the case, due to the XOR-split in front of it, the function
“Overall Completion Confirmation” will never be able to execute. Solving this
problem requires a good understanding of the modelled situation since many
correct solutions are possible. Since both models have the same problem, the
process designer should have detected this while he derived the second model
from the first, thus giving him the opportunity to correct both mistakes.

37

Fig. 27. Re-use of a correct model.

Fig. 28. Re-use of an incorrect model.

38

8.3.4 Conclusion

The three observations discussed above show that based on a detailed analysis
of the EPC reference models we discovered some general problems that should
be addressed urgently. It is difficult to take the reference models seriously if
they are not 100 percent correct. Note that the reference models are supposed
to represent “best practices”. Currently, this is clearly not the case. Note that
the ARIS toolset offers the so-called “ARIS Semantic Check”. This involves
the checking of rules such as: 4

• Path begins with a start event. This rule checks whether all start objects are
of the Event type.

• Path ends with an event or function. This rule checks whether all end objects
are of the Event or Function type.

• Function or rule after a joining rule. This rule checks whether the successor
of a joining rule is of the Event or Function type.

• Event after splitting rule. This rule checks whether the successors of a split-
ting rule are of the Event type.

• No OR or XOR after a single event. This rule checks whether there is no
opening OR or XOR rule (distributor) after events.

Unfortunately, these checks are purely syntactic and will not identify any of the
errors mentioned. Therefore, ARIS clearly offers too little verification support
and the support that is offered is definitely not aiming at the semantic level.

To conclude this section we would like to mention that we could analyze all
EPCs using the approach presented in Section 5 without the use of transition
invariants, i.e., the state spaces of the models where rather small.

9 Concluding remarks

In this paper, we presented a new approach to verify EPC models using reduc-
tion techniques, state space analysis, and transition invariants. The reduction
rules do not depend on specific interpretations of the various modeling ele-
ments (e.g., the OR-join connector). Therefore, the reduced EPC can be used
for verification purposes without loosing any information relevant for the cor-
rectness of the model. Many models can be reduced to a trivial EPC, i.e., no
state-space analysis and transition invariants are needed to assess their cor-
rectness. In case the model cannot be reduced, we can either do a state-space
analysis or use transition invariants. The state-space analysis provides detailed
diagnostics, but for large and complex models this may be challenging from a

4 Note that this text is taking directly from the “Semantic Check” report generated
by ARIS.

39

computational point of view. Using transition invariants it is possible to detect
errors but, in theory, some errors may remain undetected.

The verification approach has been implemented as a plug-in in the ProM
framework and is freely available. Moreover, ProM can also exchange pro-
cess definitions with the ARIS toolset and also allows for a variety of model
transformations (e.g., from EPCs to Petri nets to YAWL models).

We have applied the verification approach to real-life process models, e.g., the
trading processes in a large Dutch bank. In this paper, we reported on the
verification of the SAP R/3 reference models. We have used the ARIS for
MySAP reference database, where hundreds of EPCs are defined that cover
different areas (from “asset accounting” and “recruitement” to “procurement”
and “treasury”). Although the “semantic check” of ARIS is unable to find er-
rors, we have been able to locate several errors. Some errors seem to be simple
mistakes like an XOR-join that should be an AND-join. However, other errors
are more serious and reveal that some models are fundamentally flawed and
that the consistency among models leaves much to be desired. These examples
show that the quality of the SAP reference models should be improved. More-
over, our detailed analysis of the SAP reference models shows the applicability
of our approach and the ProM framework.

References

[1] G. Keller and T. Teufel. SAP R/3 Process Oriented Implementation. Addison-
Wesley, Reading MA, 1998.

[2] W.M.P. van der Aalst and K.M. van Hee. Workflow Management: Models,
Methods, and Systems. MIT press, Cambridge, MA, 2002.

[3] F. Leymann and D. Roller. Production Workflow: Concepts and Techniques.
Prentice-Hall PTR, Upper Saddle River, New Jersey, USA, 1999.

[4] G. Keller, M. Nüttgens, and A.W. Scheer. Semantische Processmodellierung
auf der Grundlage Ereignisgesteuerter Processketten (EPK). Veröffentlichungen
des Instituts für Wirtschaftsinformatik, Heft 89 (in German), University of
Saarland, Saarbrücken, 1992.

[5] A.W. Scheer. Business Process Engineering, Reference Models for Industrial
Enterprises. Springer-Verlag, Berlin, 1994.

[6] W.M.P. van der Aalst. Workflow Verification: Finding Control-Flow Errors
using Petri-net-based Techniques. In W.M.P. van der Aalst, J. Desel, and
A. Oberweis, editors, Business Process Management: Models, Techniques, and
Empirical Studies, volume 1806 of Lecture Notes in Computer Science, pages
161–183. Springer-Verlag, Berlin, 2000.

40

[7] J. Dehnert and P. Rittgen. Relaxed Soundness of Business Processes. In
K.R. Dittrich, A. Geppert, and M.C. Norrie, editors, Proceedings of the
13th International Conference on Advanced Information Systems Engineering
(CAiSE’01), volume 2068 of Lecture Notes in Computer Science, pages 157–
170. Springer-Verlag, Berlin, 2001.

[8] J. Dehnert and W.M.P. van der Aalst. Bridging the Gap Between Business
Models and Workflow Specifications. International Journal of Cooperative
Information Systems, 13(3):289–332, 2004.

[9] J. Desel and J. Esparza. Free Choice Petri Nets, volume 40 of Cambridge Tracts
in Theoretical Computer Science. Cambridge University Press, Cambridge, UK,
1995.

[10] T. Murata. Petri Nets: Properties, Analysis and Applications. Proceedings of
the IEEE, 77(4):541–580, April 1989.

[11] M. Silva, E. Teruel, and J.M. Colom. Linear Algebraic and Linear Programming
Techniques for the Analysis of Place/Transition Net Systems. In W. Reisig and
G. Rozenberg, editors, Lectures on Petri Nets I: Basic Models, volume 1491
of Lecture Notes in Computer Science, pages 309–373. Springer-Verlag, Berlin,
1998.

[12] W. Sadiq and M.E. Orlowska. Modeling and verification of workflow graphs.
Technical Report No. 386, Department of Computer Science, The University of
Queensland, Australia, 1996.

[13] W. Reisig and G. Rozenberg, editors. Lectures on Petri Nets I: Basic Models,
volume 1491 of Lecture Notes in Computer Science. Springer-Verlag, Berlin,
1998.

[14] W.M.P. van der Aalst and A.H.M. ter Hofstede. Verification of Workflow Task
Structures: A Petri-net-based Approach. Information Systems, 25(1):43–69,
2000.

[15] K. van Hee, N. Sidorova, and M. Voorhoeve. Soundness and Separability of
Workflow Nets in the Stepwise Refinement Approach. In W.M.P. van der Aalst
and E. Best, editors, Application and Theory of Petri Nets 2003, volume 2679
of Lecture Notes in Computer Science, pages 335–354. Springer-Verlag, Berlin,
2003.

[16] H.M.W. Verbeek, T. Basten, and W.M.P. van der Aalst. Diagnosing Workflow
Processes using Woflan. The Computer Journal, 44(4):246–279, 2001.

[17] W.M.P. van der Aalst. Formalization and Verification of Event-driven Process
Chains. Information and Software Technology, 41(10):639–650, 1999.

[18] W.M.P. van der Aalst, J. Desel, and E. Kindler. On the Semantics of EPCs: A
Vicious Circle. In M. Nüttgens and F.J. Rump, editors, Proceedings of the EPK
2002: Business Process Management using EPCs, pages 71–80, Trier, Germany,
November 2002. Gesellschaft für Informatik, Bonn.

41

[19] P. Langner, C. Schneider, and J. Wehler. Petri Net Based Certification of Event
driven Process Chains. In J. Desel and M. Silva, editors, Application and
Theory of Petri Nets 1998, volume 1420 of Lecture Notes in Computer Science,
pages 286–305. Springer-Verlag, Berlin, 1998.

[20] W. Sadiq and M.E. Orlowska. Applying Graph Reduction Techniques
for Identifying Structural Conflicts in Process Models. In M. Jarke and
A. Oberweis, editors, Proceedings of the 11th International Conference on
Advanced Information Systems Engineering (CAiSE ’99), volume 1626 of
Lecture Notes in Computer Science, pages 195–209. Springer-Verlag, Berlin,
1999.

[21] W. Sadiq and M.E. Orlowska. Analyzing Process Models using Graph Reduction
Techniques. Information Systems, 25(2):117–134, 2000.

[22] W.M.P. van der Aalst, A. Hirnschall, and H.M.W. Verbeek. An Alternative
Way to Analyze Workflow Graphs. In A. Banks-Pidduck, J. Mylopoulos, C.C.
Woo, and M.T. Ozsu, editors, Proceedings of the 14th International Conference
on Advanced Information Systems Engineering (CAiSE’02), volume 2348 of
Lecture Notes in Computer Science, pages 535–552. Springer-Verlag, Berlin,
2002.

[23] H. Lin, Z. Zhao, H. Li, and Z. Chen. A Novel Graph Reduction Algorithm
to Identify Structural Conflicts. In Proceedings of the Thirty-Fourth
Annual Hawaii International Conference on System Science (HICSS-35). IEEE
Computer Society Press, 2002.

[24] E. Kindler. On the Semantics of EPCs: A Framework for Resolving the Vicious
Circle. In J. Desel, B. Pernici, and M. Weske, editors, International Conference
on Business Process Management (BPM 2004), volume 3080 of Lecture Notes
in Computer Science, pages 82–97. Springer-Verlag, Berlin, 2004.

[25] E. Kindler. On the Semantics of EPCs: A Framework for Resolving the Vicious
Circle. Data and Knowledge Engineering, 56(1):23–40, 2006.

[26] N. Cuntz, J. Freiheit, and E. Kindler. On the Semantics of EPCs: Faster
Calculation for EPCs with Small State Spaces. In M. Nüttgens and F.J. Rump,
editors, Proceedings of Fourth Workshop on Event-Driven Process Chains (WI-
EPK 2005), pages 7–23, Hamburg, Germany, December 2005. Gesellschaft für
Informatik, Bonn.

[27] M.T. Wynn, D. Edmond, W.M.P. van der Aalst, and A.H.M. ter Hofstede.
Achieving a General, Formal and Decidable Approach to the OR-join
in Workflow using Reset nets. In G. Ciardo and P. Darondeau, editors,
Applications and Theory of Petri Nets 2005, volume 3536 of Lecture Notes
in Computer Science, pages 423–443. Springer-Verlag, Berlin, 2005.

[28] B.F. van Dongen and M.H. Jansen-Vullers. Verification of SAP reference
models. In Business Process Management 2005, volume 3649 of Lecture Notes
in Computer Science, pages 464–469. Springer-Verlag, Berlin, 2005.

42

[29] B.F. van Dongen, H.M.W. Verbeek, and W.M.P. van der Aalst. Verification
of EPCs: Using reduction rules and Petri nets. In Conference on Advanced
Information Systems Engineering (CAiSE 2005), volume 3520 of Lecture Notes
in Computer Science, pages 372–386. Springer-Verlag, Berlin, 2005.

[30] J.M. Colom and M. Silva. Convex geometry and semiflows in P/T nets, A
comparative study of algorithms for computation of minimal P-semiflows. In
G. Rozenberg, editor, Advances in Petri Nets 1990, volume 483 of Lecture
Notes in Computer Science, pages 79–112. Springer-Verlag, Berlin, 1990.

[31] W.M.P. van der Aalst. Verification of Workflow Nets. In P. Azéma and G. Balbo,
editors, Application and Theory of Petri Nets 1997, volume 1248 of Lecture
Notes in Computer Science, pages 407–426. Springer-Verlag, Berlin, 1997.

[32] B.F. van Dongen, A.K. Alves de Medeiros, H.M.W. Verbeek, A.J.M.M. Weijters,
and W.M.P. van der Aalst. The ProM framework: A New Era in Process Mining
Tool Support. In G. Ciardo and P. Darondeau, editors, Application and Theory
of Petri Nets 2005, volume 3536 of Lecture Notes in Computer Science, pages
444–454. Springer-Verlag, Berlin, 2005.

[33] W.M.P. van der Aalst, B.F. van Dongen, J. Herbst, L. Maruster, G. Schimm,
and A.J.M.M. Weijters. Workflow Mining: A Survey of Issues and Approaches.
Data and Knowledge Engineering, 47(2):237–267, 2003.

[34] B.F. van Dongen and W.M.P. van der Aalst. Multi-Phase Process Mining:
Building Instance Graphs. In P. Atzeni, W. Chu, H. Lu, S. Zhou, and T.W.
Ling, editors, International Conference on Conceptual Modeling (ER 2004),
volume 3288 of Lecture Notes in Computer Science, pages 362–376. Springer-
Verlag, Berlin, 2004.

[35] P. Bernus. Generalised Enterprise Reference Architecture and Methodology,
Version 1.6.3. IFIPIFAC Task Force on Architectures for Enterprise Integration,
March 1999.

[36] T. Curran and G. Keller. SAP R/3 Business Blueprint: Understanding the
Business Process Reference Model. Upper Saddle River, 1997.

[37] P. Fettke and P. Loos. Classification of Reference Models - a methodology and
its application. Information Systems and e-Business Management, 1(1):35–53,
2003.

[38] U. Frank. Conceptual Modelling as the Core of Information Systems Discipline
- Perspectives and Epistemological Challenges. In Proceedings of the America
Conference on Information Systems - AMCIS ’99, pages 695–698, Milwaukee,
1999.

[39] M. Rosemann. Application Reference Models and Building Blocks for
Management and Control (ERP Systems). In P. Bernus, L. Nemes, and
G. Schmidt, editors, Handbook on Enterprise Architecture, pages 596–616.
Springer-Verlag, Berlin, 2003.

43

[40] M. Rosemann and W.M.P. van der Aalst. A Configurable Reference Modelling
Language. QUT Technical report, FIT-TR-2003-05, Queensland University of
Technology, Brisbane, 2003. (Accepted for publication in Information Systems.).

[41] A.W. Scheer. ARIS: Business Process Modelling. Springer-Verlag, Berlin, 2000.

[42] L. Silverston. The Data Model Resource Book, Volume 1, A Library of
Universal Data Models for all Enterprises. John Wiley and Sons, New York,
revised edition, 2001.

[43] L. Silverston. The Data Model Resource Book, Volume 2, A Library of Data
Models for Specific Industries. John Wiley and Sons, New York, revised edition,
2001.

44

