
newYAWL: Specifying a Work�ow Reference

Language using Coloured Petri Nets?

Nick Russell1, Arthur H.M. ter Hofstede2 and Wil M.P. van der Aalst1,2

1Eindhoven University of Technology,
PO Box 513, 5600MB, Eindhoven, The Netherlands

{n.c.russell,w.m.p.v.d.aalst}@tue.nl
2Queensland University of Technology,
PO Box 2434, QLD, 4001, Australia

a.terhofstede@qut.edu.au

Abstract. newYAWL is a business process modelling language founded on
the work�ow patterns. It radically extends the YAWL o�ering to provide
holistic support for the control-�ow, data and resource perspectives and al-
lows business processes to be captured in su�cient detail that they can be
directly enacted. In order to ensure that business processes are executed in
a deterministic way, newYAWL is based on formal foundations. This pa-
per describes the approach taken to specifying the operational semantics for
newYAWL based on Coloured Petri Nets. It discusses the development of the
semantic model for newYAWL, which was undertaken using CPN Tools, and
the experiences associated with developing a complete operational design for
an o�ering of this scale using formal techniques.

1 Introduction

Over recent years the concept of the business process has garnered increasing in-
terest as organisations seek to better understand what they do and how they can
do it more e�ciently. Business processes are increasingly viewed as corporate assets
which companies must manage and maintain if they are to continue to operate ef-
fectively. In response to the rising demand for �exible means of automating parts
of (or even entire) business processes, the �eld of work�ow technology underwent
explosive growth during the 1980s and 1990s as organisations sought con�gurable
forms of process support.

As with many early stage technologies, individual work�ow o�erings provided a
distinct approach to modelling the processes that they sought to automate, thus obvi-
ating any potential for standardising the representation and enactment of processes
or integrating processes based on distinct o�erings. Attempts by industry bodies
such as the Work�ow Management Coalition (WfMC) (e.g. [Wor95]) to resolve this
impasse have only been marginally successful in establishing broadly adopted mod-
elling formalisms. Consequently the majority of guidance in this area has come from

? This research is conducted in the context of the Patterns for Process-Aware Informa-
tion Systems (P4PAIS) project which is supported by the Netherlands Organisation for
Scienti�c Research (NWO). It is also receives partial support from the Australian Re-
search Council under the Discovery Grant Expressiveness Comparison and Interchange
Facilitation between Business Process Execution Languages.

one of two sources: (1) individual work�ow o�erings or models, such as MOBILE,
WIDE and XPDL 2.0, that support a comprehensive range of concepts that gener-
alise well to other work�ow initiatives and (2) the enterprise modelling �eld, which
includes techniques such as the Zachmann framework, EKD, IDEF, CIMOSA and
ARIS, that seek to characterise the range of concepts that are relevant to modelling
an organisation and its constituent processes and provide integrated approaches to
capturing this information. Whilst there is general agreement across most of these of-
ferings that a comprehensive business process model should include consideration of
(at least) the control-�ow, data and resource (or organisational) aspects of a business
process, there is a wide variation in the range of concepts that individual techniques
support for each perspective. Moreover, none of the popular modelling notations are
based on a formalised model, thus leaving open the potential for ambiguity when
capturing and enacting a business process.

An alternate approach to identifying the range of constructs that should be sup-
ported in a business process modelling language can be pursued which is based on
patterns. By de�nition, patterns identify meaningful constructs that exist in a given
problem domain. The Work�ow Patterns Initiative1 has established a catalogue of
patterns that are relevant to the domain of business process modelling and enact-
ment through a comprehensive evaluation of work�ow and case handling systems,
business process modelling and execution languages and web service composition
standards. Proposed by van der Aalst et. al [AHKB03] in an e�ort to characterise
the desirable properties of work�ow languages, this research initially focussed on
the control-�ow perspective and identi�ed 20 patterns which described �generic, re-
curring constructs� [RZ96]. The ubiquity of the patterns was soon recognised and
catalogues of patterns have also been developed for the data [RHEA05] and resource
[RAHE05] perspectives.

In this paper we propose newYAWL, a comprehensive work�ow reference lan-
guage based on formal foundations. newYAWL is founded on the work�ow pat-
terns ensuring that it recognises current practice in the process technology �eld
and supports the capture and enactment of a wide range of work�ow constructs
in a deterministic way. The formalisation of newYAWL is based on Coloured Petri
Nets [Jen97] thus providing a precise de�nition of the operational semantics of the
newYAWL language that can be directly executed. The complete formalisation of a
comprehensive work�ow language encompassing multiple perspectives is a complex
activity as demonstrated by the resultant size of the semantic model for newYAWL
which incorporates 55 distinct pages of CPN diagrams and encompasses 480 places,
138 transitions and in excess of 1500 lines of ML code. Nevertheless, the development
of the semantic model e�ectively demonstrates that with the correct speci�cation
tools, it is possible to formally de�ne languages of this scale.

The paper proceeds as follows: Section 2 introduces the various constructs that
make up the newYAWL work�ow language. Section 3 describes the content of the
newYAWL business process language and the manner in which it is captured and
operationalised. Section 4 overviews related work. Section 5 discusses the experiences
associated with the formalisation of newYAWL and concludes the paper.

1 Further details on the work�ow patterns, including detailed de�nitions, product evalu-
ations, animations, vendor feedback and an assessment of their overall impact can be
found at www.workflowpatterns.com.

2 newYAWL: A patterns-based work�ow language

The work�ow patterns triggered the development of YAWL [AH05] � an acronym
for Yet Another Work�ow Language. Unlike other e�orts in the BPM area, YAWL
sought to provide a comprehensive modelling language for business processes based
on formal foundations. The content of the YAWL language is an adaptation of Petri
Nets informed by the work�ow patterns. One of its major aims was to show that
a relatively small set of constructs could be used to directly support most of the
work�ow patterns identi�ed. It also sought to illustrate that they could coexist
within a common framework. In order to validate that the language was capable of
direct enactment, the YAWL System2 was developed, which serves as a reference
implementation of the language. Over time, the YAWL language and the YAWL
System have increasingly become synonymous and have garnered widespread interest
from both practitioners and the academic community alike3.

Initial versions of the YAWL System focussed on the control-�ow perspective and
provided a complete implementation of 19 of the original 20 patterns. Subsequent re-
leases incorporated limited support for selected data and resource patterns, however
this e�ort was hampered by the lack of a complete formal description of the pat-
terns in these perspectives. Moreover, a recent review [RHAM06] of the control-�ow
perspective identi�ed 23 additional patterns which illustrate a number of commonly
used control-�ow constructs, many of which YAWL is unable to provide direct sup-
port for, including the partial join, transient and persistent triggers, iteration and
recursion.

In an e�ort to manage the conceptual shortcomings of YAWL with respect to the
range of work�ow patterns that have now been identi�ed, a substantial revision of the
language is proposed � termed newYAWL � which aims to support the broadest
range of the work�ow patterns in the control-�ow, data and resource perspectives.
newYAWL provides a comprehensive formal description of the work�ow patterns,
which to date have only partially been formalised. It has a complete abstract syntax
which identi�es the characteristics of each of the language elements. Associated with
this is an executable, semantic model for newYAWL � presented in the form of a
Coloured Petri Net � which de�nes the runtime semantics of each of the language
constructs. The following sections provide an overview of the features of newYAWL
in the control-�ow, data and resource perspectives.

2.1 Control-�ow perspective

Figure 1 identi�es the complete set of language elements which comprise the control-
�ow perspective of newYAWL. All of the language elements in YAWL have been
retained and perform the same functions. A more detailed discussion of YAWL can
be found in [AH05]. Several new constructs have been added based on the full range
of work�ow patterns that have now been identi�ed. These are:

2 See http://www.yawl-system.com for further details of the YAWL System and to down-
load the latest version of the software.

3 Hereafter in this paper, we refer to the collective group of YAWL o�erings developed
to date � both the YAWL language as de�ned in [AH05] and also more recent YAWL
System implementations of the language based on the original de�nition (up to and
including release Beta 8.1) � as YAWL.

NEW CONSTRUCTS

Persistent trigger task

Transient trigger task

Completion region

Blocking region

EXISTING CONSTRUCTS

Disablement arc

#

#

Composite task

Multiple instances of
an atomic task

Multiple instances of
a composite task

Atomic taskCondition

Input condition

Output condition

AND−join task

XOR−join task

OR−join task

AND−split task

XOR−split task

OR−split task

Thread split task

Thread merge task

Partial−join task

Repetitive task (while/repeat)

Cancellation region

Fig. 1. newYAWL symbology

� the Thread split and Thread merge constructs, which allow the thread of control
to be split into multiple concurrent threads or several distinct threads to be
merged into a single thread of control respectively. The number of threads being
created/merged is speci�ed for the construct in the design-time model. Figure
2(a) illustrates these constructs. After the make box task, twelve threads of
control are created ensuring that the �ll bottle task runs 12 times before the
pack box task can run (merging these threads before it commences);

� the Partial join (also known as the m-out-of-n join) allows a series of incoming
branches to be merged such that the thread of control is passed to the subsequent
branch when m of the incoming n branches are enabled. In Figure 2(b), the
cancel booking task has a 1-out-of-3 join associated with it. If any of the incoming
branches are enabled, then the cancel booking task is enabled (and any preceding
tasks that are still executing in the associated cancellation region are withdrawn);

� the Structured loop (which supports while, repeat and combination loops) allows
a task (or a sequence of tasks in the form of a subprocess) to execute repeatedly
based on conditional tests at the beginning and/or end of each iteration. The
loop is structured in form and it has a single entry and exit point. Figure 2(c)
illustrates a repeat loop for the check backup task which executes repeatedly
until all backups have been veri�ed (i.e. it is a post-tested repeat loop);

1 box = 12 bottles

call for
papers

deadline

prepare
proc’gs

paper
accept

book
flight

car
book

hotel
book

issue
tickets

cancel
booking

file

car

flight
booked

flight
failure

hotel

hotel
failure

booked

booked

failure
car

fill
#

bottle

#
make

box
pack

box

(c)

(b)

(a)

(d)

initiate

review
backup

backup
check

report

issue
review

test
full

recov’ry

Fig. 2. Examples of newYAWL control-�ow constructs

� the Completion region supports the forced completion of tasks which it encom-
passes. In Figure 2(c) the test full recovery task is forcibly completed once (all
iterations of) the check backup task has �nished. This allows the issue review

report task to be immediately enabled;
� Persistent triggers and Transient triggers support the enablement of a task being
contingent on a trigger being received from the operating environment. They
are durable or transient in form respectively. Figure 2(d) illustrates a persistent
trigger (assumedly associated with some form of alarm) which allows the deadline
task to be enabled when it is received. As this trigger is durable in form, it is
retained for future use if it is received before the thread of control arrives at the
deadline task;

� the Disablement arc allows a dynamic multiple instance task to be prevented
from creating further instances but allows for each of the currently executing
instances to complete normally. Figure 2(d) has a disablement arc associated
with the deadline task which prevents any further papers from being accepted
once it has completed.

2.2 Data perspective

Whilst the control-�ow perspective has received considerable focus in many work�ow
initiatives, the data perspective is often only minimally supported with issues such
as persistence, concurrency management and complex data manipulation often being
outsourced to third party products. In an e�ort to characterise the required range
of data facilities in a work�ow language, newYAWL incorporates a series of features
derived from the data patterns. These include:

� Support for a variety of distinct scopes to which data elements can be bound.
This allows the visibility and use of data elements to be restricted. The range
of data scopes recognised include: global (available to all elements of all process
instances), folder (available to the elements of process instances to which the
folder is currently assigned), case (available to all elements in a given process
instance), block (available to all elements of a speci�c process or subprocess de�-
nition for a given process instance), scope (available to a subset of the elements in
a speci�c top-level process or subprocess de�nition for a given process instance),
task (available to a given instance of a task) and multiple-instance (available to
a speci�c instance of a multiple instance task);

� Formal parameters for specifying how data elements are transferred between
process constructs (e.g. block to task, composite task to subprocess decomposi-
tion, block to multiple instance task). These parameters take a function-based
approach to data transfer, thus providing the ability to support inline format-
ting of data elements and setting of default values. Parameters can be associated
with tasks, blocks and processes;

� Link conditions for specifying conditions on outgoing arcs from OR-splits and
XOR-splits that allow the determination of whether these branches should be
activated;

� Preconditions and postconditions for tasks and processes. They are evaluated
at the enablement or completion of the task or process with which they are
associated. Unless they evaluate to true, the task or process instance with which
they are associated cannot commence or complete execution; and

� Locks which allows tasks to specify data elements that they require exclusive
access to (within a given process instance) in order to commence. Once these
data elements are available, the associated task instance retains a lock on them
until it has completed execution preventing any other task instances from using
them concurrently. The lock is relinquished once the task instance completes.

2.3 Resource perspective

The resource perspective in newYAWL provides a variety of means of controlling and
optimising the way in which work is distributed to users and the manner in which
it is progressed through to ultimate completion. For each task, a speci�c interaction
strategy can be speci�ed which precisely describes the way in which the work item
will be communicated to the user, how their commitment to executing it will be
established and how the time of its commencement will be determined. Similarly,
a detailed routing strategy can be de�ned which determines the range of potential
users that can undertake the work item. The routing strategy can nominate the
potential users in a variety of ways � they can be directly speci�ed by name, in
terms of roles that they perform or the decision as to possible users can be deferred to
runtime. There is also provision for determining the range of potential users based on
capabilities that individual users possess, the organisational structure in which the
process operates or the results of preceding execution history. The routing strategy
can be further re�ned through the use of constraints that restrict the potential user
population. Indicative constraints may include: retain familiar (i.e. route to a user
that undertook a previous work item), four eyes principle (i.e. route to a di�erent
user than one who undertook a previous work item), random allocation (route to a
user at random from the range of potential users), round robin allocation (route to a

user from the potential population on an equitable basis such that all users receive
the same number of work items over time) and shortest queue allocation (route the
work item to the user with the shortest work queue).

newYAWL also supports two advanced operating modes that are designed to
expedite the throughput of work by imposing a de�ned protocol on the way in
which the user interacts with the system and work items are allocated to them.
These modes are: piled execution where all work items corresponding to a given task
are routed to the same user and chained execution where subsequent work items in
a process instance are routed to the same user once they have completed a preceding
work item. Finally, there is also provision for specifying a range of user privileges,
both at process and individual task level, that restrict or augment the range of
interactions that they can have with the process engine when they are undertaking
work items.

3 Mapping newYAWL to Coloured Petri Nets

The language design for newYAWL is made up of two distinct components: (1) an
abstract syntax that characterises the various constructs of which the language is
comprised and the relationships between them, hence facilitating the capture of a
newYAWL business process model from static perspective, and (2) a semantic model

which describes the enactment of a newYAWL business process model.

− tasks, conditions
− flow relation

− pre/postconditions etc.
− arc conditions
− joins, splits

new

− task interaction strategy

Work distribution model

− task routing
− constraints
− privileges

var− parameters

Data passing model

− task

− process
− subprocess

1:1

n:1

1:1

1:n
1:n

newYAWL specification

− global objects
− nets, scopes, tasks etc.

− variables
− decomposition hierarchy

− organisational structure
− users
− roles

− capabilities
− groups
− jobs

Organisational model

YAWL net

− net definition

Fig. 3. Schema de�nition comprising the newYAWL abstract syntax

The newYAWL abstract syntax is composed of �ve distinct schemas that capture
various aspects of a business process model. Each of these schemas is speci�ed on
a set-theoretic basis. Figure 3 summarises the content captured by each of the in-
dividual schemas and the relationships between them. Each process captured using
the newYAWL abstract syntax has a single instance of the newYAWL speci�cation
associated with it. This de�nes elements that are common to all of the schemas
and also captures the decomposition hierarchy. Each newYAWL speci�cation is as-
sociated with an instance of the organisational model that describes which users
are available to undertake tasks that comprise the process and the organisational
context in which they operate.

A newYAWL process can be made up of a series of distinct subprocesses (where
each subprocess speci�es the manner in which a composite task is implemented)
together with the top-level process. For each of these (sub)processes, there is an
instance of the newYAWL net which describes the structure of the (sub)process in
detail in terms of the tasks that it comprises and the sequence in which they occur.
Associated with each newYAWL net is a data passing model which de�nes the way in
which data is passed between elements in the process in terms of formal parameters
operating between these elements. There is also a work distribution model that
de�nes how each task will be routed to users for execution, any constraints associated
with this activity and privileges that speci�c users may have assigned to them.
The collective group of schemas for a speci�c process model is termed a complete

newYAWL speci�cation.

select

start

abort

management
intervention

process
start request

suspension
resumption

route manual
allocation

completion
process process

deallocation

exit
work item

start work
item instance

complete work

reject reoffer route manual
offers

reallocation
reject

reallocation
route process manual

immediate start

reject offer

state oriented
reallocation

process
distribution

failure

autonomous
completion

route allocationroute offers

work item
routing

autonomous
initiation

process
selection
request

logonandlogoff complete

skipsuspend

deallocate halt instance

stateless
reallocate

manipulate
worklist allocate

reallocate
stateful

delegate

complete
work item

fail
work item

cancel
work item

interrupt
processing

end casestart caseadd
work item

process

management
data

work item
distribution

immediate
route

start
manual

distribution

route
delegation

route reoffers

terminate block
item instance &

p:40 t:4 p:11 t:4 p:12 t:1 p:10 t:1 p:8 t:1

p:12 t:3

p:15 t:3

p:6 t:3 p:7 t:4

p:7 t:2p:7 t:1

p:5 t:1 p:2 t:1 p:2 t:1

p:4 t:1

p:4 t:1 p:12 t:3

p:12 t:3

p:5 t:1p:3 t:1

p:2 t:1 p:7 t:6 p:2 t:1

p:5 t:1
start

immediate

p:13 t:9 p:39 t:33

p:20 t:2 p:8 t:1 p:7 t:2

p:4 t:2

p:5 t:3

p:4 t:1

p:4 t:1

p:4 t:1 p:3 t:1

p:10 t:1

p:4 t:1

p:4 t:1

p:5 t:1 p:11 t:1

p:5 t:1

p:3 t:1

p:2 t:1

p:8 t:1

p:3 t:1

p:4 t:1

p:5 t:2

p:6 t:1

p:21 t:1 p:3 t:1

p:2 t:1

p:2 t:1

worklist
handler

(see Figure 8)
p:25 t:15

workenter
work item

(see Figure 6)
p:17 t:1

p:22 t:9

execution
(see Figure 5)

(see Figure 7)
distribution

Fig. 4. newYAWL CPN model hierarchy (top-level in Figure 4)

The semantics of newYAWL are de�ned in terms of a series of interrelated
Coloured Petri Nets developed using the CPN Tools environment. This approach
to formalising the language o�ers the dual bene�ts of establishing a precise de�ni-
tion of the operation of each of the constructs which comprise newYAWL and also
providing a means by which an instance of a newYAWL speci�cation can be directly
executed. There are 55 distinct CPNs which make up the semantic model. These are
illustrated in Figure 4 along with the relationships between them. An indication of
the complexity of individual nets is illustrated by the p and t values included for
each of them which indicate the number of places and transitions that they contain.
It is not possible to discuss the operation of all of these nets in the con�nes of this
paper, however several of them (indicated by the shaded boxes and cross-references)
are discussed in further detail in subsequent sections. A comprehensive description
of the 55 CPNs which comprise the semantic model together with details of how it
is initialised in order to facilitate the execution of a given newYAWL process model
can be found in [RHEA07].

3.1 Overview of the semantic model

The semantic model logically divides into two main parts: (1) the control-�ow and
data sections and (2) the work distribution, organisational model and resource
management sections. These roughly correspond to the newYAWL speci�cation,
newYAWL net and Data passing model, and the Organisational model and Work
distribution model illustrated in Figure 3 respectively, which in turn seek to capture
the majority of control-�ow, data and resource patterns.

Figure 5, which is the topmost net in the semantic model, provides a useful sum-
mary of the major components and their interrelationship. The various aspects of
control-�ow, data management and work distribution information from the static
newYAWL speci�cation are encoded into the CPN model as tokens in individual
places. The top level view of the lifecycle of a process instance is indicated by the
transitions in this diagram connected by the thick black line. First a new process
instance is started, then there are a succession of enter→start→complete →exit

transitions which �re as individual task instances are enabled, the work items as-
sociated with them are started and completed and the task instances are �nalised
before triggering subsequent tasks in the process model. Each atomic work item
needs to be distributed to a suitable resource for execution, an act which occurs via
the work distribution transition. This cycle repeats until the last task instance in
the process is completed. At this point, the process instance is terminated via the
end case transition. There is provision for data interchange between the process
instance and the environment via the data management transition. Finally where a
process model supports task concurrency via multiple work item instances, there is
provision for the dynamic addition of work items via the add transition.

The major data items shared between the activities which facilitate the process
execution lifecycle are shown as shared places in this diagram. Not surprisingly, this
includes both static elements which describe characteristics of individual processes
such as the �ow relation, task details, variable declarations, parameter mappings,
preconditions, postconditions, scope mappings and the hierarchy of processes and
subprocesses which make up an overall process model, all of which remain unchanged
during the execution of particular instances of the process. It also includes dynamic

elements which describe how an individual process instance is being enacted at any
given time. These elements are commonly known as the state of a process instance
and include items such as the current marking of the place in the �ow relation,
variable instances and their associated values, locks which restrict concurrent access
to data elements, details of subprocesses currently being enacted, folder mappings
(identifying shared data folders assigned to a process instance) and the current
execution state of individual work items (e.g. enabled, started or completed).

There is relatively tight coupling between the places and transitions in Figure 5,
illustrating the close integration that is necessary between the various aspects of the
control-�ow and data perspectives in order to enact a process model. The coupling
between these places and the work distribution transition however is much looser.
There are no static aspects of the process that are shared with other transitions in
the model (i.e. the transitions underpinning work distribution) and other than
the places which serve to communicate work items being distributed to resources
for execution (and being started, completed or cancelled), the variable instances

place is the only aspect of dynamic data that is shared with the work distribution

end
case

end-case

start
case

start-case

work distribution

work-distribution

data
management

data-management

add

add-work-item

complete and
terminate block

complete-work-item-instance-and-terminate-block

start

start-work-item-instance

exit

exit-work-item

enter

enter-work-item

postconditions

iPost

PostConds

preconditions

iPre

PreConds

parameter
mappings

iPM

Params

scope
mappings

iSM

ScopeMaps

folder
mappings

[]

FolderMaps

newcase
identity

iNewCase

ProcessIDxCID

assigned
folders

iFA

FolderAssigns

wi to be
cancelled

WI

wi completed
by resource

[]

WIs

started
work items

[]

UWIs

active
nets

[]

SubProcs

process
hierarchy

iWH

Map

flow
relation

iFR

FlowRel

process
state

[]

Marking

assign wi
to resource

[]

WIs

variable
instances

[]

VarInsts

variable
declarations

iVD

VarDecls

lock
register

[]

LOCKS

task
details

iVarDet

TaskDetails

mi_e

[]

WIs

mi_a

[]

WCTINTs

mi_c

[]

WIs

exec

[]

WIs

enter-work-item exit-work-item

start-work-item-instance complete-work-item-instance-and-terminate-block

add-work-item

data-management

work-distribution

start-case

end-case

Fig. 5. Overview of the newYAWL semantic model

subprocess. The following sections focus on the two main parts of the newYAWL
semantic model: (1) control-�ow and data handling and (2) work distribution.

3.2 Control-�ow and data handling

The actions comprising the control-�ow and data handling processes are extremely
complex both in terms of the range of concepts that they involve and the interrela-
tionship between them. It is not possible to describe all aspects of these processes in
the con�nes of this paper hence in this section we focus on one speci�c aspect of the
overall work item lifecycle: task instance enablement and work item creation. Task
instance enablement is the �rst step in work item execution. It is depicted by the
enter transition in Figure 6. The �rst step in determining whether a task instance
can be enabled is to examine the marking of the input places to the task. There are
four possible scenarios:

� If the task has no joins associated with it, then the input condition to the task
simply needs to contain a token;

� If the task has an AND-join associated with it, each input condition needs to
contain a token with the same ProcessID×CID combination, where these two
attributes uniquely identify a process and process instance (or case) respectively;

� If the task has an XOR-join associated with it, one of the input conditions needs
to contain a token; and

� If the task has an OR-join associated with it, one (or more) of the input con-
ditions needs to contain a token and a determination needs to be made as to
whether in any future possible state of the process instance, the currently marked
input conditions can retain at least one token and another input condition can
also receive a token. If this can occur, the task is not enabled, otherwise it is
enabled. This issue has been subject to rigorous analysis and an algorithm has
been proposed [WEAH05] for determining exactly when an OR-join can �re.
The newYAWL semantic model implements this algorithm.

Depending on the form of task that is being enabled (singular or multiple-instance),
one or more work items may be created for it. If the task is atomic, the work item(s)
is created in the same block as the task to which it corresponds. If the task is
composite, then the situation is slightly more complicated and two things occur: (1)
a �virtual� work item is created in the same block for each instance of the task that
will be initiated (this enables later determination of whether the composite task is
in progress or has completed) and (2) a new subprocess decomposition (or a new
block) is started for each task instance. This involves the placement of a token in the
input place to the subprocess decomposition which has a distinct subprocess CID.
Table 1 indicates the potential range of work items that may be created for a given
task instance. In order for a task to be enabled, all prerequisites associated with the
task must be satis�ed. There are �ve prerequisites for the enter transition to be
able to �re:

� The precondition associated with the task must evaluate to true;
� All data elements which are inputs to mandatory input parameters must exist
and have a de�ned value;

� All mandatory input parameters must evaluate to de�ned values;

widescs

pressmaps

fmaps

wis

rls

inpars

tds
wmap

handletaskinvars(p,c,fmaps,smaps,
sids,vdecls,ivs,wmap,t,tasktype,
ic,tn,subpids,inpars,tds)

remwti(p,t,wtis)
^^[(p,t,ic)]

ls ^^reqlock(p,c,t,rls)

ls

resourcealloc(p,c,t,ic,tn,tasktype)^^wis

wtis

remmk(cm,p,marked(cm,p,
 presett(p,t,ils),c),c)

(p,c,t,ic,tn,dynamic)::widescs

mkenters(p,c,t,ic,tn,tasktype,subpids)
 ^^mi_es

js

(ils,ols)

cm

mi_es

vdecls

ivs

enter

[activity_ready_to_enable(cm,ils,js,
 ivs,ls,rls,pres,inpars,smaps,fmaps,tds)]

input (cm,ils,js,vdecls,ivs,pres,wtis,ls,wmap,
 inpars,rls,smaps,fmaps,tds);
output (p,c,sids,t,ic,tn,tasktype,subpids);
action
(let val (p,c,sids,t) =
 pick(enter_work_item(cm,ils,js,ivs,ls,
 rls,pres,inpars,smaps,fmaps,tds))
 val ic = getnextic(p,t,wtis)
 val tasktype = gettasktype(p,t,tds)
 val tn = instancestostart(p,c,fmaps,sids,ivs,t,
 tasktype,ic,inpars,tds)
 val subpids = subproids(p,c,cm,tn)
in (p,c,sids,t,ic,tn,tasktype,subpids) end);

scope
mappings

I/O
ScopeMaps

folder
mappings

I/O

FolderMaps

required
locks

iRL

ReqLocks

parameter
mappings

I/O
Params

mi tasks

I/O
TaskDetails

process
hierarchy

I/O
Map

lock
register

I/O
LOCKS

task instance
count

[]

WTIs

joins

iJoins

Joins

flow
relation

I/O
FlowRel

process
state

I/O
Marking

preconditions

I/O
PreConds

mi_e

I/O
WIs

variable
definitions

I/O
VarDecls

mi_a

I/O
WCTINTs

variable
instances

I/O
VarInsts

assign wi
to resource

I/O
WIs

I/O

I/O

I/O

I/O

I/O

I/O

I/O

I/O

I/O

I/O I/O

I/O

I/O

I/O

Fig. 6. Enter work item transition

� All locks which are required for data elements that will be used by the work
items associated with the task must be available; and

� If the task is a multiple instance task, the multiple instance parameter when eval-
uated must yield a number of rows that is between the minimum and maximum
number of instances required for the task to be initiated.

Once these prerequisites are satis�ed, task enablement can occur. This involves:

1. Removing the tokens marking input conditions to the task corresponding to the
instance enabled. The exact number of tokens removed depends on whether there
is a join associated with the task or not and occurs as follows:

� No join: one token corresponding to the ProcessID×CID combination that
triggered the task is removed from the input condition to the task;

� AND-join: one token corresponding to the triggering ProcessID×CID com-
bination is removed from each of the input conditions to the task;

� XOR-join: one token corresponding to the triggering ProcessID×CID com-
bination is removed from one of the input conditions to the task; and

� OR-join: one token corresponding to the triggering ProcessID×CID com-
bination is removed from any of the input conditions to the task which
currently contain tokens of this form.

2. Determining which instance of the task this is. The instance identi�er (which
corresponds to the Inst attribute) must be unique for each task instance and
all work items and data elements associated with this task instance in order to

ensure that they can be uniquely identi�ed. A record is kept of the next available
instance for a task in the task instance count place.

3. Determining how many work item instances should be created. For a singular
task (i.e. an atomic or composite task), this will always be a single work item,
however for a multiple instance task (i.e. an atomic or composite multiple in-
stance task), the actual number started will be determined from the evaluation
of the multiple instance parameter which will return a composite result contain-
ing a number of rows of data. The number of rows returned indicates the number
of instances to be started. In all of these situations, individual work items are
created which share the same ProcessID, CID, TaskID and Inst values, however
the TaskNr value is unique for each work item and is in the range 1...number of

work items created ;

4. For all work items corresponding to composite tasks, distinct subprocess CIDs
need to be determined to ensure that any variables created for subprocesses are
correctly identi�ed and can be accessed by the work items for the subprocesses
that will subsequently be triggered;

5. Creating variable instances for data elements associated with the task. This
varies depending on the task type and the number of work items created for the
task:

� For atomic tasks which only have a single instance, this will involve the
creation of relevant task variables.

� For atomic multiple instance tasks, this will involve the creation of both task
variables and multiple instance variables for each task instance. The required
multiple instance variables are indicated by the output data elements listed
for the multiple instance parameter. and this set of variables is created for
each new work item.

� For composite tasks that only have a single instance, any required task vari-
ables are created in the subprocess decomposition that is instantiated for
the task. Also, there may be block and scope variables associated with the
subprocess decomposition that need to be created; and

� For composite multiple instance tasks, any required block, scope, task vari-
ables and multiple instance variables are created for each subprocess decom-
position that is initiated for the task.

6. Mapping the results of any input parameters for the task instance to the relevant
output data elements. For multiple instance parameters, this can be quite a
complex activity;

7. Recording any variable locks that are required for the execution of the task
instance;

8. For all work items corresponding to atomic tasks (other than for automatic
tasks which can be initiated without distribution to a resource), requests for
work item distribution need to be created. These are routed to the assign wi

to resource place and are subsequently dealt with by the work distribution

transition; and

9. Finally, work items with an enabled status need to be created for this task
instance and added to the mi_e place (which identi�es work items corresponding
to enabled but not yet started tasks) in accordance with the details outlined in
Table 1.

Table 1. Task instance enablement in newYAWL

Task Type Instances Initiated at Commencement

Singular Multiple Instances

Atomic Single work item created in the
same block.

Multiple work items created in the
same block, each with a distinct
TaskNr.

Composite Single �virtual� work item created in
the same block and a new
subprocess is initiated for the block
assigned as the task decomposition.

Multiple �virtual� work items
created in the same block.
Additionally a distinct subprocess is
initiated for each work item created,
each with a distinct subprocess CID
and TaskNr.

The work distribution process in newYAWL provides an interesting contrast to the
control-�ow and data handling. Unlike the latter process which is comprised of a
limited number of transitions which must coordinate state changes involving a large
number of places with complex guard conditions, the work distribution process is
much more di�use. It involves multiple places which describe alternate states for a
work item that is currently in progress and supports a variety of distinct transitions
between these states. The work distribution process is discussed in the next section.

3.3 Work distribution

The main motivation for work�ow systems is achieving more e�ective and controlled
distribution of work. Hence the actual distribution and management of work items
are of particular importance. The process of distributing work items is summarized
by Figure 7. It comprises four main components4:

� the work item distribution transition, which handles the overall management
of work items though the distribution and execution process;

� the worklist handler, which corresponds to the user-facing client software that
advises users of work items requiring execution and manages their interactions
with the main work item distribution transition in regard to committing to
execute speci�c work items, starting and completing them;

� the management intervention transition, that provides the ability for a process
administrator to intervene in the work distribution process and manually
reassign work items to users where required; and

� the interrupt handler transition that supports the cancellation, forced com-
pletion and forced failure of work items as may be triggered by other components
of the process engine (e.g. the control-�ow process, exception handlers).

Work items that are to be distributed through this process are added to the work

items for distribution place. This then prompts the work item distribution

transition to determine how they should be routed for execution. This may involve
the services of the process administrator in which case they are sent to the man-
agement intervention transition or alternatively they may be sent directly to one or

4 Note that the high-level structure of the work distribution process is in�uenced by the
earlier work of Pesic and van der Aalst [PA07].

interrupt
handler

interrupt-processing

work item
distribution

work-item-distribution

management
intervention

management-intervention

worklist
handler

worklist-handler

variable
instances

I/O
VarInsts

distributed
work items

[]

WIxUsersList

fail
work item

WI

complete
work item

WI

cancel
work item

In
WI

autonomous
work item finish

WI

autonomous
work item start

WI

failed
work items

WI

piled exec
users

[]

UserTasks

chained
exec users

[]

Users

completed
work items

I/O
WIs

work items
for distribution

I/O
WIs

manual
immediate start

WI

create
immediate start

WIxUser

started

UWI

stop
execution

UWI

started
work items

I/O

UWIs

create
allocation

WIxUser

create
offers

WIxUsers

allocated
work items

[]

UWIs

offered
work items

[]

UWIs

deallocation

UWI

delegation

UWI

stateless
reallocation

UWI

stateful
reallocation

UWI

immediate
start

UWI

allocation

UWI

reallocation

WIxUser

reoffer

WIxUsers

manual
allocation

WI

manual
offer

WI

resumption

UWI

suspension

UWI

start

UWI

completion

UWI

rejected

UWI

selected

UWI

selection

UWI

withdraw
offer

UWI

offer

UWI

I/O

I/O

I/O

In

I/O

worklist-handler
management-intervention

work-item-distribution interrupt-processing

Fig. 7. Top level view of the main work distribution process

more users via the worklist handler transition. The various places between these
three activities correspond to the range of requests that �ow between them. In the
situation where a work item corresponds to an automatic task, it is sent directly to
the autonomous work item start place and no further distribution activities take
place. An automatic task is considered complete when a token is inserted in the
autonomous work item finish place.

A common view of work items in progress is maintained between the work item

distribution, worklist handler and management intervention transitions via
the offered work items, allocated work items and started work items places.
There is also shared information about users in advanced operating modes that is
recorded in the piled exec users and chained exec users places. Although there
is signi�cant provision for shared information about the state of work items, the de-
termination of when a work item is actually complete rests with the work item

distribution transition and when this occurs, it inserts a token in the completed

uwi

allocate

allocate

manipulate
worklist

manipulate-worklist

abort

abort

stateless
reallocate

stateless-reallocate

stateful
reallocate

stateful-reallocate

immediate
start

immediate-start

halt
instance

halt-instance

deallocate

deallocate

delegate

delegate

skip

skip

suspend

suspend

start
work item

start

complete
 work item

complete

logon and off

logonandoff

select
work item

select

piled exec
users

I/O
UserTasks

chained
exec users

I/O
Users

started
work items

I/O

UWIs

allocated
work items

I/O
UWIs

offered
work items

I/O
UWIs

started

In
UWI

stop
execution

In
UWI

stateless
reallocate

Out
UWI

stateful
reallocate

Out
UWI

delegate

Out
UWI

deallocate

Out
UWI

immediate
start

In
UWI

resume

Out
UWI

suspend

Out
UWI

start

Out
UWI

allocation

In
UWI

allocation
requested

[]

UWIs

in progress

[]

UWIs

logged on
users

User

withdraw
offer

In
UWI

offer

In
UWI

select

Out
UWI

selected

In
UWI

complete

Out
UWI

rejected

In
UWI

In

Out

In

Out

In

In

In

Out

Out

Out

In

Out

Out

Out

Out

In

In

I/O I/O I/O I/O I/O

select

logonandoff

complete

start

suspend

skip

delegate

deallocate

halt-instance

immediate-start

stateful-reallocate

stateless-reallocate

abort

manipulate-worklist

allocate

Fig. 8. Worklist handler process

work items place. Similarly, work item failures are noti�ed via the failed work

items place. The only exception to these arrangements are for work items that are
subject to some form of interrupt (e.g. an exception being detected and handled).
The interrupt handler transition is responsible for managing these occurrences
on the basis of cancellation, forced completion and failure requests received in the
cancel work item, complete work item and fail work item places respectively.
All of the activities in the work distribution process are illustrated by substitu-
tion transitions indicating that each of them are de�ned in terms of signi�cantly
more complex subprocesses. It is not possible to present each of them in this pa-
per, hence we focus on one of the more signi�cant: the worklist handler process.
The worklist handler is illustrated in Figure 8 and describes how the user-facing
process interface (typically a worklist handler software client) operates and interacts
with the work item distribution process. As previously, the main path through
this process is indicated by the thick black arcs. There are various transitions that
make up the process, these correspond to actions that individual users can request

in order to alter the current state of a work item to more closely re�ect their cur-
rent handling of it. These actions may simply be requests to start or complete it
or they may be �detour� requests to reroute it to other users e.g. via delegation

or deallocation. The manner in which these requests operate is illustrated by the
shared places in Figure 7.

4 Related work

There have been numerous papers advocating approaches to work�ow and business
process modelling based on Petri Nets (cf. [Aal98],[EN93],[AAH98],[MR03]), how-
ever these tend to either focus on a single aspect of the domain (e.g. the control-�ow
perspective) or they are based on a relatively simplistic language. There have also
been attempts to provide formal semantics using Petri Nets for many of the more
widely used approaches to business process modelling including EPCs [Aal99], UML
2.0 Activity Diagrams [SH05] and BPMN [DDO07], although in each case arriving at
a complete semantics has been hampered by inherent ambiguities in the informal de-
scriptions for each of the formalisms. There has been minimal work on formalisation
of the other work�ow perspectives, one exception is [PA07] which investigates mech-
anisms for work distribution in work�ows and presents CPN models for a number
of the work�ow resource patterns.

Historically, the modelling and enactment of processes have often been treated
distinctly and it is not unusual for separate design and runtime models to be utilised
by systems. Approaches to managing the potential disparities between these models
have included the derivation of executable process descriptions from design-time
models [DNLS+02] and the direct animation of design-time models for requirements
validation [MLO+07]. The latter of these approaches which uses a strategy based
on Coloured Petri Nets [Jen97] and CPN Tools [JKW07] as an enablement vehicle
is one of a number of initiatives that have successfully used the CPN Tools o�ering
as a means of executing various design-time modelling formalisms including Protos
models [GAJVV06], Sequence diagrams [RF06] and task descriptions [JLA06].

5 Experiences and conclusions

The newYAWL semantic model5 incorporates 55 distinct pages of CPN diagrams
and encompasses 480 places, 138 transitions and in excess of 1500 lines of ML code.
It took approximately six months to develop. The size of the model gives an in-
dication of the relative complexity of formally specifying a comprehensive business
process modelling language such as newYAWL. Indeed, it is only with the aid of an
interactive modelling environment such as CPN Tools that developing a formalisa-
tion of this scale actually becomes viable. One of the major advantages of pursuing
this approach to software development is that it provides a design that is executable.
This allows fundamental design decisions to be evaluated and tested much earlier
than would ordinarily be the case during the development process. Where subopti-
mal design decisions are revealed, the cost of rectifying them is signi�cantly less than
it would be later in the development lifecycle. There is also the opportunity to test
alternate solutions to design issues with minimal overhead before a �nal decision is

5 This model is available at www.yawl-system.com/newYAWL.

settled on. A particular bene�t a�orded by this approach to formalisation is that
the CPN hierarchy established during the design process provides an excellent basis
on which to make subsequent architectural and development decisions.

The original motivations for this research initiative were twofold: (1) to establish
a fully formalised business process modelling language based on the synthesis of the
work�ow patterns and (2) to demonstrate that the language was not only suitable
for conceptual modelling of business processes but that it also contained su�cient
detail for candidate models to be directly enacted. newYAWL achieves both of these
objectives and directly supports 118 of the 126 work�ow patterns that have been
identi�ed. It is interesting to note however that whilst the development of a model of
this scale o�ers some extremely bene�cial insights into the overall problem domain
and provides a software design that can be readily utilised as the basis for subsequent
programming activities, it also has its limitations. Perhaps the most signi�cant of
these is that the scale and complexity of the model obviates any serious attempts
at veri�cation. Even on a relatively capable machine (P4 1.6Ghz, 512Mb RAM),
the model takes over 8 minutes to load. Moreover the potentially in�nite range of
business process models that the semantic model can encode, rules out the use of
techniques such as state space analysis. This raises the question as to how models
of this scale can be comprehensively tested and veri�ed.

Notwithstanding these considerations however, the development of the semantic

model delivered some salient insights into areas of newYAWL that needed further

consideration during the formalisation activity. These included:

� recognition of the fact that at runtime the completion region construct can only
bring a�ected work items to the point at which they should complete. It cannot
force the completion to occur;

� recognition that when a self-cancelling task completes: (1) it should process the
cancellation of itself last of all in order to prevent the situation where it cancels
itself before all other cancellations have been completed and (2) it needs to
establish whether it is cancelling itself before it can make the decision to put
tokens in any relevant output places associated with the task;

� introduction of a consistent approach for handling the evaluation of any functions
associated with a newYAWL speci�cation e.g. for outgoing links in a XOR-split,
pre/postconditions, pre/post tests for iterative tasks etc. This issue was ulti-
mately addressed by mapping any necessary function calls to ML functions and
establishing a standard approach to encoding the invocation of these functions
and the passing of any necessary parameters and the return of associated results;

� adoption of a standard strategy for characterising parameters to functions in
order to ensure that they could be passed in a uniform way to the associated
ML functions that evaluated them;

� the establishment of a coherence protocol to ensure that reallocation of work
items to alternate resources either by users or the process administrator are
handled in a consistent manner in order to ensure that potential race conditions
arising during reallocation do not result in the process engine, process adminis-
trator or the initiating user having di�ering views of the current state of work
item allocations; and

� recognition that the current approach to privilege speci�cation for users and
tasks (where privileges need to be individually speci�ed) is likely to be intractable
for any large scale implementation of newYAWL.

There were also some learnings in regard to the CPN Tools o�ering during the course

of this research. Whilst extremely powerful, there are several aspects of the CPN Tools

environment that would bene�t from the inclusion of additional capabilities. In partic-
ular, the ability to incrementally wind back the execution state of a given execution
would be useful, as would the ability to save an execution state for later execution
and analysis. The interaction facilities for the CPN model are particularly e�ective,
however there are less features provided for tracing and altering the execution of
ML code segments that form part of a CPN model. The inclusion of features such
as these in future CPN Tools releases would be extremely bene�cial.

The newYAWL semantic model will serve as the design blueprint for the next
major version of the open-source YAWL System o�ering. This is currently being
developed by the BPM Group at QUT.

References

[AAH98] N.R. Adam, V. Atluri, and W.K. Huang. Modeling and analysis of work�ows
using Petri nets. Journal of Intelligent Information Systems, 10(2):131�158,
1998.

[Aal98] W.M.P. van der Aalst. The application of Petri nets to work�ow management.
Journal of Circuits, Systems and Computers, 8(1):21�66, 1998.

[Aal99] W.M.P. van der Aalst. Formalization and veri�cation of event-driven process
chains. Information and Software Technology, 41(10):639�650, 1999.

[AH05] W.M.P. van der Aalst and A.H.M. ter Hofstede. YAWL: Yet another work�ow
language. Information Systems, 30(4):245�275, 2005.

[AHKB03] W.M.P. van der Aalst, A.H.M. ter Hofstede, B. Kiepuszewski, and A.P. Barros.
Work�ow patterns. Distributed and Parallel Databases, 14(3):5�51, 2003.

[DDO07] R.M. Dijkman, M. Dumas, and C. Ouyang. Formal semantics and automated
analysis of BPMN process models. Technical Report 5969, Queensland Uni-
versity of Technology, Brisbane, Australia, 2007. http://eprints.qut.edu.

au/archive/00005969/.
[DNLS+02] E. Di Nitto, L. Lavazza, M. Schiavoni, E. Tracanella, and M. Trombetta. De-

riving executable process descriptions from UML. In ICSE '02: Proceedings
of the 24th International Conference on Software Engineering, pages 155�165,
New York, NY, USA, 2002. ACM Press.

[EN93] C.A. Ellis and G.J. Nutt. Modelling and enactment of work�ow systems. In
M. Ajmone Marsan, editor, Proceedings of the 14th International Conference on
Application and Theory of Petri Nets, volume 691 of Lecture Notes in Computer
Science, pages 1�16, Chicago, IL, USA, 1993. Springer.

[GAJVV06] F. Gottschalk, W.M.P. van der Aalst, M.H. Jansen-Vullers, and H.M.V. Ver-
beek. Protos2CPN: Using colored Petri nets for con�guring and testing busi-
ness processes. In K. Jensen, editor, Proceedings of the 7th Workshop and
Tutorial on Practical Use of Coloured Petri Nets and the CPN Tools, volume
PB-579 of Daimi Reports, pages 137�155, Aarhus, Denmark, 2006.

[Jen97] K. Jensen. Coloured Petri Nets. Basic Concepts, Analysis Methods and Prac-
tical Use. Volume 1, Basic Concepts. Monographs in Theoretical Computer
Science. Springer-Verlag, Berlin, Germany, 1997.

[JKW07] K. Jensen, L.M. Kristensen, and L. Wells. Coloured Petri nets and CPN Tools
for modelling and validation of concurrent systems. International Journal of
Software Tools for Technology Transfer, 9(3):213�254, 2007.

[JLA06] J.B. Jørgensen, K.B. Lassen, and W.M.P. van der Aalst. From task descriptions
via coloured Petri nets towards an implementation of a new electronic patient

record. In K. Jensen, editor, Proceedings of the 7th Workshop and Tutorial on
Practical Use of Coloured Petri Nets and the CPN Tools, volume PB-579 of
Daimi Reports, pages 137�155, Aarhus, Denmark, 2006.

[MLO+07] R.J. Machado, K.B. Lassen, S. Oliveira, M. Couto, and P. Pinto. Requirements
validation: Execution of UML models with CPN Tools. International Journal
on Software Tools for Technology Transfer, 9(3):353�369, 2007.

[MR03] Daniel Moldt and Heiko Rölke. Pattern based work�ow design using Ref-
erence nets. In W.M.P. van der Aalst, A.H.M. ter Hofstede, and M. Weske,
editors, Proceedings of the Business Process Management Conference 2003, vol-
ume 2678 of Lecture Notes in Computer Science, pages 246�260, Eindhoven,
The Netherlands, 2003. Springer.

[PA07] M. Pesic and W.M.P. van der Aalst. Modelling work distribution mechanisms
using colored Petri nets. International Journal on Software Tools for Technol-
ogy Transfer, 9(3):327�352, 2007.

[RAHE05] N. Russell, W.M.P. van der Aalst, A.H.M. ter Hofstede, and D. Edmond.
Work�ow resource patterns: Identi�cation, representation and tool support.
In O. Pastor and J. Falcão e Cunha, editors, Proceedings of the 17th Confer-
ence on Advanced Information Systems Engineering (CAiSE'05), volume 3520
of Lecture Notes in Computer Science, pages 216�232, Porto, Portugal, 2005.
Springer.

[RF06] O.R. Ribeiro and J.M. Fernandes. Some rules to transform sequence diagrams
into coloured Petri nets. In K. Jensen, editor, Proceedings of the 7th Workshop
and Tutorial on Practical Use of Coloured Petri Nets and the CPN Tools,
volume PB-579 of Daimi Reports, pages 137�155, Aarhus, Denmark, 2006.

[RHAM06] N. Russell, A.H.M. ter Hofstede, W.M.P. van der Aalst, and N. Mulyar. Work-
�ow control-�ow patterns: A revised view. Technical Report BPM-06-22, 2006.
http://www.BPMcenter.org.

[RHEA05] N. Russell, A.H.M. ter Hofstede, D. Edmond, and W.M.P. van der Aalst. Work-
�ow data patterns: Identi�cation, representation and tool support. In L. Del-
cambre, C. Kop, H.C. Mayr, J. Mylopoulos, and O. Pastor, editors, Proceedings
of the 24th International Conference on Conceptual Modeling (ER 2005), vol-
ume 3716 of Lecture Notes in Computer Science, pages 353�368, Klagenfurt,
Austria, 2005. Springer.

[RHEA07] N. Russell, A.H.M. ter Hofstede, D. Edmond, and W.M.P van der Aalst.
newYAWL: achieving comprehensive patterns support in work�ow for the
control-�ow, data and resource perspectives. Technical Report BPM-07-05,
2007. http://www.BPMcenter.org.

[RZ96] D. Riehle and H. Züllighoven. Understanding and using patterns in software
development. Theory and Practice of Object Systems, 2(1):3�13, 1996.

[SH05] H. Störrle and J.H. Hausmann. Towards a formal semantics of UML 2.0 activ-
ities. In P. Liggesmeyer, K. Pohl, and M. Goedicke, editors, Proceedings of the
Software Engineering 2005, Fachtagung des GI-Fachbereichs Softwaretechnik,
volume 64 of Lecture Notes in Informatics, pages 117�128, Essen, Germany,
2005. Gesellschaft fur Informatik.

[WEAH05] M.T. Wynn, D. Edmond, W.M.P. van der Aalst, and A.H.M. ter Hofstede.
Achieving a general, formal and decidable approach to the OR-join in work�ow
using Reset nets. In G. Ciardo and P. Darondeau, editors, Proceedings of the
26th International Conference on Application and Theory of Petri nets and
Other Models of Concurrency (Petri Nets 2005), volume 3536 of Lecture Notes
in Computer Science, pages 423�443, Miami, USA, 2005. Springer-Verlag.

[Wor95] Work�ow Management Coalition. Reference model � the work�ow reference
model. Technical Report WFMC-TC-1003, 19-Jan-95, 1.1, 1995. http://www.
wfmc.org/standards/docs/tc003v11.pdf.

