
Int. J. Business Process Integration and Management, Vol. X, No. Y, XXXX 1

An SOA-based architecture framework

Wil M.P. van der Aalst
Department of Mathematics and Computer Science,
Eindhoven University of Technology,
P.O. Box 513, Eindhoven 5600 MB, The Netherlands
E-mail: W.M.P.v.d.Aalst@tue.nl

Michael Beisiegel

IBM,
Somers, New York, USA
E-mail: mbgl@us.ibm.com

Kees M. van Hee
Department of Mathematics and Computer Science,
Eindhoven University of Technology,
P.O. Box 513, Eindhoven 5600 MB, The Netherlands
E-mail: k.m.v.hee@tue.nl

Dieter König

IBM Böblingen Laboratory,
Schönaicher Strasse 220, Böblingen 71032, Germany
E-mail: dieterkoenig@de.ibm.com

Christian Stahl*
Department of Mathematics and Computer Science,
Eindhoven University of Technology,
P.O. Box 513, Eindhoven 5600 MB, The Netherlands
E-mail: c.stahl@tue.nl
*Corresponding author

Abstract: We present an Service-Oriented Architecture (SOA)-based architecture framework.
The architecture framework is designed to be close to industry standards, especially to the Service
ComponentArchitecture (SCA). The framework is language independent and the building blocks of
each system, activities and data, are first class citizens. We present a meta model of the architecture
framework and discuss its concepts in detail. Through the framework, concepts of an SOA such
as wiring, correlation and instantiation can be clarified.

Keywords: service-oriented architecture; SOA; architecture framework; service component
architecture; SCA

Reference to this paper should be made as follows: van der Aalst, W.M.P., Beisiegel, M.,
van Hee, K.M., König, D. and Stahl, C. (XXXX) ‘A SOA-based architecture framework’,
Int. J. Business Process Integration and Management, Vol. X, No. Y, pp.XXX–XXX.

Biographical notes: Wil M.P. van der Aalst is a Full Professor of Information Systems at
the Technische Universiteit Eindhoven (TU/e) having a position in both the Department of
Mathematics and Computer Science and the Department of Technology Management. He is
also an Adjunct Professor at Queensland University of Technology (QUT) working within the
BPM group. His research interests include workflow management, process mining, Petri nets,
business process management, process modelling and process analysis. He has published more
than 60 journal papers, 10 books (as author or editor), 150 refereed conference publications and
20 book chapters. He has been a co-chair of many conferences and is an Editor/Member of the
Editorial Board of several journals.

Copyright © XXXX Inderscience Enterprises Ltd.

2 W.M.P. van der Aalst et al.

Michael Beisiegel is a Distinguished Engineer with IBM Software Group’s Strategy and
Technology division in Somers, NY. He is responsible for the Service Component Architecture
(SCA) programming model development. He has worked on systems management products for
z/OS, VisualAge for Smalltalk CICS and IMS Connection, VisualAge for Java Enterprise Access
Builder (EAB), Common Connector Framework (CCF) for Component Broker and WebSphere,
WebSphere Studio Application Developer Integration Edition, WebSphere Process Server SCA
runtime. He was IBM’s expert on the J2EE Connector Architecture JSR that is modelled after
CCF. Currently, he is working with the Open SOA collaboration (http://www.osoa.org) on
the standardisation of SCA. He joined IBM in 1989 and began working for the 390 software
development organisations at the IBM Laboratory in Böblingen, Germany. Later, he took an
assignment (1998–2000) working on Java-based integration tools and connector technology at
the IBM Toronto Laboratory in Canada. He joined IBM, US in 2000. He received a Masters
(Dipl. Ing.) in Electrical Engineering from the University of Kaiserslautern, Germany.

Kees M. van Hee received a PhD in Operations Research from the Technische Universiteit
Eindhoven (TU/e). From 1994 till 2004, he was Managing Partner of Bakkenist Management
Consultants and Deloitte Consultancy. During 1991–1992, he was a Visiting Professor at the
University of Waterloo, Ontario. From 1984 till 1994 and again since 2004, he is Professor
of Computer Science at TU/e. He published papers and books on the following topics:
Markov decision processes, Applications of queuing theory, Decision support systems, Formal
specification methods and tools, Petri nets, Database systems and Workflow management systems.

Dieter König is a Senior Technical Staff Member with IBM Software Group’s laboratory in
Böblingen and Architect for workflow products. He joined the laboratory in 1988. He has worked
on Resource Measurement Facility for z/OS, WebSphere MQ Workflow and WebSphere Process
Server. He is a Member of the OASIS WS-BPEL Technical Committee, which is working on
an industry standard-based on the Specification of the Web Services Business Process Execution
Language (WS-BPEL). He has published many papers and has given talks at conferences about
Web services and workflow technology and is co-author of two books about web services.
He received a Masters (Dipl. inform.) in Computer Science from the University of Bonn, Germany.

Christian Stahl studied Computer Science at Humboldt-Universität zu Berlin, Germany.
He received a Masters in 2004. Since then, he is working as a Research Assistant in the group
of Wolfgang Reisig in Berlin, and since 2006, also in the group of Kees M. van Hee and
Wil M.P. van der Aalst in Eindhoven. His research interests include process modelling, process
analysis, formal methods, in particular Petri nets and model checking.

1 Introduction

The concept of modularisation can be used to master
the complexity of large (software) systems. Modules have
different names like ‘function’, ‘class’ or ‘component’.
The principle of compositionality is one of the most desirable
requirements for modular systems: a collection of modules
that are properly connected to each other should behave as
one module itself. Often, we require more: if we have verified
that all modules of a system satisfy some property and they
are connected properly, then the system as a whole should
satisfy the same property. In the rest of this paper, we will
use the term component for a module.

At a high level, a system is described by its components
and their relationships. Such a description is the architecture
of a system. There are several languages to define components
and to glue them together. There are also different
architectural styles. In this paper, we concentrate on a
style based on the Service-Oriented Architecture (SOA)
(High et al., 2005). SOA can be seen as one of the key
technologies to enable flexibility and reduce complexity
in software systems. Today, SOA is a set of ideas for
architectural design and there are some proposals for SOA
frameworks, including a concrete architectural language: the
Service Component Architecture (SCA) (Beisiegel et al.,
2007) and software tools to design systems in the SOA style.

In this paper, we present an SOA-based architecture
framework by means of a meta model and discuss its concepts
in detail. The architecture framework consists of three models
each representing a particular view.

The component model presents an abstract view on the
components of the system and shows which components
interact with each other by message exchange.

Every component contains a process, which is a set of
activities. The process model provides a view on these
activities and their relation to the data entities. An activity
can access data entities that are located within and outside
its component by using the concepts of method call and
message exchange, respectively. We further show that our
process model is generic and thus it can be specialised
by process models such as WS-BPEL (Alves et al., 2007)
or Petri nets.

The data model is a view on data entities and their
relationships. The architecture framework allows for internal
relationships between data entities (i.e. within a component)
and external relationships between data entities (i.e. across
the borders of components). These two different relationships
introduce hierarchy in the data model.

Besides these three views, the architecture framework also
covers important concepts such as component instantiation
and message correlation (i.e. deliver messages to their correct
component instance).

An SOA-based architecture framework 3

To enable the verification of systems on the level of
the architecture, we collect a number of constraints for
the architecture framework and specify them using the
Object Constraint Language (OCL) (Object Management
Group, 2003). These constraints can be implemented and
automatically checked during the system design.

Our architecture framework should be close to industrial
standards, especially SCA. Therefore, we compare the
concepts of our architecture framework with those of SCA
and show that it extends SCA.

The outline of this paper is as follows. In Section 2, we
sketch the practice of component-based software systems.
We also introduce software architectures, in particular, the
SOA. Our main contribution, the architecture framework
including component, process and data model, is presented
in Section 3. In Section 4, we compare our proposed
framework with SCA. Finally, Section 5 summarises this
paper, discusses related work and describes how our work
will be continued.

2 Context

2.1 The Component-based world

The idea to use components in software development was
already published by McIlroy (1968). In that paper, McIlroy
presented his idea of mass-produced software components.
Even though much progress has been booked since then,
today there is still no universally accepted definition of
what a component is. Most cited is the definition of
Szyperski (1998):

“A component is a unit of composition
with contractually specified interfaces and
explicit context dependencies only. A software
component can be deployed independently and
is subject to composition by third parties.”

As there is no consensus about what a component is, there
is also no agreement on the granularity of components.
A component can be small grained like a graphical object
in a user interface or coarse grained like a debtors register in
an Enterprise Resource Planning (ERP) system.

Components can be classified based on their
functionality: There are application-specific and generic
components. An SAP component is an example of an
application-specific component whereas a workflow engine
is a generic component. Another classification of components
is based on the configuration of their parameters. In a
predefined component, the version is hard-coded and the
parameters are selected from an option list. An inventory
control rule like FIFO or LIFO would be an example.
In contrast, the parameters in a programmable component
are database schemes, process models or business rules.

Components may specify non-functional properties.
Non-functional properties are also named Quality of Service
(QoS). Examples are response time and the usage of
resources.

A component may have relevance from a business
perspective (which is the primary focus of SOA) or from
an IT perspective (as in traditional software systems).

A system that is developed by composing components is
a component-based system. Component-based systems will
evolve in an organic way. There may never be a total renewal
or an upgrade of the overall system. Instead, components
will be replaced periodically by better ones, for example,
because the performance was not good enough anymore.
Adding new functionality to the system will also be realised
by either adding new components or replacing components
by better ones. This will reduce the total cost of ownership
of component-based systems.

Customers will use component-based systems, because
component-based design has two major benefits when
the component-based system fulfils the compositionality
principle. Firstly, it structures the design and the development
of systems and thus reduces the amount of effort needed
to verify and maintain systems. Secondly, the reuse of
components reduces the development effort and thus time
and costs (Bouyssounouse and Sifakis, 2005).

In the component-based world, the architecture is of
crucial importance. Firstly, the architecture can be used as a
blue print for the development of a component. For example,
a component can be seen as a black-box (i.e. only the interface
is visible) or as a white-box (i.e. the internal details of
the component are visible, too). As the architecture supports
such different views on a component, it may help to develop
software in a more structured way. Secondly, an architecture
facilitates the work distribution in the software development
process: if the interfaces are specified, different components
can be developed independent of each other.

2.2 Architecture frameworks

Let us now shift our focus from components and
component-based systems to software architectures. We start
with a definition of software architecture in general and
introduce then the SOA.

2.2.1 Software architectures

Just like for the term ‘component’, everyone knows roughly
what a software architecture is, but there is also no
universally accepted definition. A modern definition of
software architecture is the one of Bass et al. (2003):

“The software architecture of a program or
computing system is the structure or structures
of the system, which comprise software
elements, the externally visible properties of
those elements and the relationships among
them.”

Referring to this definition, an architecture shows the
elements of the system. In case of a component-based system,
it shows the components and their relationships. We restrict
us to ‘the structure of the system’ and we define this as a
set of views. A view is a model of a part or an aspect of a
system. Views should be consistent; that is, no view should
contradict another view on the system. Furthermore, views
should also be complete. That means, every property of the
system should be modelled by at least one view.

Based on these facts, we elaborate the definition of
a software architecture to the following which is used
throughout this paper:

4 W.M.P. van der Aalst et al.

“An architecture of a system is a set of
descriptions that present different views of
the system. These views should be consistent
and complete. Each view models a set
of components of the system, one or
more functions of each component, and the
relationships between these components.”

For example, a view could show a data model
of some components and the inheritance relationship
between the components. A specification to organise
and develop a software architecture in a specific style
is an architecture framework. Some examples for
software architecture frameworks are UML, CORBA, Koala
(Ommering et al., 2000), SENSORIA Reference Modelling
Language (Fiadeiro et al., 2006) and SCA (Beisiegel et al.,
2007) to name a few. Later, in Section 4.1, we will give a
short introduction to SCA.

2.2.2 Service-oriented architecture

One of today’s most popular architecture frameworks is
a SOA. SOA is seen as one of the key technologies to
enable flexibility and reduce complexity in software systems
(High et al., 2005). It follows the paradigm to explicitly
separate an implementation from its interface. Such an
interface is well-defined; that is, it is based on standards
such as the Web Service Description Language (WSDL)
(Christensen et al., 2001). Implementation and interface
together form a component. In a SOA, a component is
referred to a service, but we prefer to use the term
component. Components are independent of applications and
the computing platforms on which they run. Components
in a SOA can be connected without having knowledge
of their technical details; they are loosely coupled. To
connect components during runtime, SOA supports dynamic
binding. For the message exchange between components,
standardised communication protocols are used. Further, all
the standards, which are used in a SOA, are extensible,
meaning they are not limited to current standards and
technologies.

SOA distinguishes three different roles of components:
component provider, component consumer and component
registry. It postulates a general protocol for interaction.
A component provider registers at the component registry
by submitting information about how to interact with
its component. The component registry manages such
information about all registered component providers and
allows a component consumer to find an adequate component
provider. Then, the component of the provider and the
component of the consumer may bind and start interaction.

A component has two kinds of interfaces. Buy interfaces
specify which services are required by the component.
Sell interfaces specify which services are provided by the
component. So, in terms of the component roles, in a SOA,
a component plays the consumer’s role at the buy interfaces,
and at the sell interfaces, it plays the provider’s role.

3 A SOA-based architecture framework

In this section, we present a meta model of our architecture
framework. We introduce its concepts including the

three views, component model, process model and data
model.

3.1 Component model

Figure 1 shows the complete meta model of our architecture
framework. In the following, we concentrate on the
component model; that is, we have a detailed look at the
concepts of components, the interface concept and the wiring
of components.

The basic concept of the architecture framework is
a component. We distinguish atomic components and
composite components. An atomic component consists of a
process, which is a set of activities (c is the name of the
relationship between the entities ‘atomic component’ and
‘process’ and k between ‘process’ and ‘activity’ in Figure 1),
zero or one composite data entities (relationship a) and
methods (relationship b). A composite component, however,
describes a hierarchical relationship between components.
It is a container for components; that is, it may contain
atomic components and other composite components
(relationship h).

Each component has one or more interfaces (sometimes
called port) with its environment (relationship g).
An interface is either a buy or a sell interface and consists of
a set of operations (relationship f). An operation describes a
message exchange between two participants. However, it can
be used by any number of components. An operation follows
a given operation type (relationship u) which describes
a message exchange pattern between the participants.
We distinguish the four operation types presented in the
WSDL 1.1 specification (Christensen et al., 2001): one-way,
request-response, solicit-response and notification.
In general, an operation type consists of zero or one
input and/or zero or one output messages and an optional
fault message. Each message has a message type.
As can be seen from Figure 1, the operation type of
one-way and notification has an input and an output
message, respectively. Operation types solicit-response and
request-response define an input message, an output message
and optionally a fault message. Both operation types differ
in their message order. In case of a solicit-response, the
component first sends a message and then receives a
message whereas in case of a request-response it is the
other way around. In practice, operation types one-way
and request-response are predominantly used and
solicit-response and notification are less relevant.

An activity may exchange messages through one or more
operations (relationship j) with other components. It may
also access some of the (atomic) data entities of its atomic
component by means of method calls (relationship call).
These method calls may change the value of the data entities.
A more detailed look at processes and data entities is
presented in Sections 3.2 and 3.3, respectively.

Besides wrapping components (relationship h), a
composite component also defines one or more wires
(relationship i). In general, a wire connects interfaces of
components. More precisely, a wire connects two operations
depicted by relationships d and e. These two operations have
either the same operation type or they have complementing
operation types, for example, one-way and notification.

An SOA-based architecture framework 5

Figure 1 Meta model of the proposed architecture framework in UML notation

componentinterfaceoperation

operation

type

wire

vertical

wire

horizontal

wire

composite

component

atomic

component

activity

0..1

*

1
1

1**

1

11* *

*

1

*

message type

fault out

0..1 1

* *

one-way
solicit-

response
notification

request-

response

in

1

*
in

1

*
out

1

*
fault

0..1

*
in

1

*
out

1

*

d

f g

i

b

j

u

h

1..

process

1

*
*

1

k

a

*

1

e

composite

data entity

atomic

data entity

data

relationship

1

*

attributetype

message **

*
*

1

1

*1

0..1

f

n

o
p

q

rs

1

1
*
*

reference

data entity

source

data entity
1* t

internal data

relationship

external data

relationship

method

1

*

c

case

activity

base

activity

start

activity

base

method

case

method

case

entity

base

entity

* *** *11 call

call

call
access

access ** *

0..1

sphere

1
l

*

*

m
logic

buy

interface

sell

interface

Wiring two operations with the same operation type can
be seen as a reference. The operation of a component is
propagated to the enclosing composite component. Such a
wire is therefore called a vertical wire. It always connects
an operation of a component by its direct parent operation.
In contrast, wiring two operations with complementing
operation types shows the connection of two components.
We call such a wire a horizontal wire. A wire represents
only an abstract view on the communication of a component.
It only shows the invocation dependencies of a component
and there can be any number of calls along a wire. Figure 2
illustrates the different wires.

Figure 2 Component model of a bank transfer: component
transfer contains two components processing
(receives the customer’s bank transfer) and calculator
(calculates the bank transfer)

i3i1

transfer
processing

w1

i2

calculator

i4
w2

Note: It defines a vertical wire w1 and a horizontal wire w2 depicted by a

solid line. Interfaces i1,…,i4 are depicted by a dashed frame. A box

visualises an operation. Its operation type is depicted by one or two

arcs inside the box. Interface i1 and i2 have an operation with

operation type one-way, i3 request-response and i4 solicit-response.

Interface i3 is a buy interface. All other interfaces are sell interfaces.

Most of the information about wiring operations cannot
be derived from the meta model in Figure 1. Later, in
Section 3.4, we will therefore define the wiring characteristics
using OCL.

3.2 Process model

Let us now shift our attention from components to processes.
First of all, we clarify the relation between process and
data entities and we introduce the two concepts an activity
can access to a data entity. Subsequently, the concept of
instantiation is explained. Instantiation makes it necessary
to deliver a message to a concrete component instance.
Therefore, we develop a concept of message correlation.
Finally, we introduce with WS-BPEL and Petri nets two
specialisations of our process model.

3.2.1 Activities and data entities

A process contains a set of activities (relationship k in
Figure 1). Every activity consists of zero or more method
calls and some additional logic (relationships call and m,
respectively). Methods are used to read and write the value of
data elements. Logic controls the method calls and evaluates
their return values. Logic can be specified by functions and
their signatures. The construction of the logic is the work
of programmers after the software architect has designed
the architecture.

The sphere of an activity is defined as the set of data entities
this activity can access using a method call (relationship
sphere). Clearly, the sphere only contains data entities that
are defined in the same atomic component as the activity.
In our architecture framework, method calls are restricted to
activities. As a consequence, no data entity can have access
to another data entity. Methods and activities are defined in
the same component and activities can only call methods
which are defined in that component. A method can be used
by several activities. Therefore, it is defined at the
component level.

6 W.M.P. van der Aalst et al.

The architecture framework also supports a second
mechanism which is mainly used to access data outside an
atomic component. Instead of calling a method directly, an
activity sends a message to an operation (relationship j) that
passes it to another activity which contains the respective data
entity in its sphere.

3.2.2 Instantiation

One of the most important concepts of an architecture
framework is instantiation. In our architecture framework,
components can be instantiated multiple times (not shown
in Figure 1). For the purpose of instantiation, atomic
components distinguish between case activities and case
entities on the one hand and base activities and base entities
on the other hand (cf. Figure 1). The set of case and
base activities is also called case process and base process,
respectively. To understand the difference between case and
base, we need to consider the lifecycle of a component.

Once an (atomic) component is initialised, its base process
and its base entities are initialised, too. This initialisation can
be seen as the instantiation of the base process. Afterwards,
the component can be instantiated. To create a case; that
is, a new instance, a start activity (cf. Figure 1) is used.
We distinguish two possibilities to create a case, depending
on the start activity being a base or a case activity. A base
start activity can create any number of cases. Every case
is identified by a case id. A case start activity, in contrast,
needs to be triggered by the component’s environment.
For this purpose, an atomic component has to be invoked
via its interface. A message is received by the start activity,
which then creates a case. A process may have more than one
start activity, but no process may have both a base and a case
start activity. This fact will be specified with the help of an
OCL constraint in Section 3.4. The instantiation implies the
creation of case activities and case entities which belong to
exactly one case. Their lifecycle is restricted to its respective
case. When a case has been finished, it can be destroyed.
The lifecycle of base activities and base entities, in contrast,
only ends once the component is deactivated.

Base activities and entities are independent of a specific
case. A base activity may create cases and may access
base entities within its sphere. A case activity, however,
may access case and base entities as shown in Figure 1.
It may also trigger base activities. In contrast, a base activity
can neither access case entities nor trigger case activities.
On this account, a base entity can be seen as a configuration
parameter. Base activities, however, are typically used for
monitoring and configuration of a component.

3.2.3 Message correlation

In a component interaction, several cases of the components
may be involved. With it, the problem arises how a message
can be delivered to the correct case of a component.
Therefore, our architecture framework provides the concept
of message correlation, which is known from WS-BPEL, for
instance. Every case is identified by its case id. In WS-BPEL,
a case id is called correlation property. Typical examples
of correlation properties are customer numbers, order ids
and invoice numbers. A message can be delivered to the
correct case if the case id can be either determined from

the content of the message or it is an explicit part of the
message. We restrict ourselves to interaction between case
processes. The differences, when base processes are also
involved in the interaction, are subject of (van der Aalst
et al., 2007). Before we introduce our concept of message
correlation, we present possible scenarios of component
interaction to demonstrate the requirements of message
correlation.

In an interaction between two components S and R, there
is one component, say S, that starts the interaction. There are
two possibilities for S to start the interaction with R. S can
either create a case of R or it can find a case of R. A case
can be found if S has a reference (i.e. the case id) to a case
of R (e.g. from a third party) or vice versa. Another possibility
to find a case of R is to decide from the message content
whether there exists a case of R that can handle the request.
This criterion either specifies requirements of S that have to
be fulfiled by R or it contains information that have to fulfil
the requirements of at least one case of R. Obviously, if S

sends a criterion, there might be no matching case in R or
there are several cases that can handle the request sent by S.
If several cases match, one case has to be chosen, for example
non-deterministically.

Now, we define the term correlation. Correlation
of a case c is firstly the set of cases to which c

knows their respective case id and secondly the set of
components to which c sent its case id. A correlation
of all cases spans a graph where each node is a case.
This graph has two kinds of directed arcs: reference
arcs and send arcs. Let c1 and c2 be two cases.
A reference arc is drawn from case c1 to case c2 if c1 knows
the case id of c2. A send arc, in contrast, is drawn from
case c1 to case c2 if c1 sent its case id to component C2 and
the message was delivered to c2. In the latter case, c1 has
only knowledge about component C2 and not about case c2.
We call the resulting graph a correlation set.

In our concept of message correlation, we formalise a
message format by a six tuple that consists of the sender’s
address, the receiver’s address, the sender’s case id, the
receiver’s case id, the correlation information (i.e. the
criterion used to decide whether a message matches a case)
and finally, the message content. Addresses and message
content are mandatory whereas case ids and correlation
information are optional.

3.2.4 Example process models

Our proposed architecture framework in Figure 1 is highly
generic and thus it is easy to fit in specific language proposals.
In the following, we demonstrate that we can easily link
two example process models, WS-BPEL and Petri nets, into
our architecture framework. These example process models
specialise the process model in Figure 1.

The Web Services Business Process Execution Language
(WS-BPEL) (Alves et al., 2007) is a widely used language
for describing the behaviour of business processes based on
web services. For the specification of a business process,
WS-BPEL provides activities and distinguishes between
basic and structured activities. A basic activity can
communicate with other WS-BPEL processes by message
exchange, for instance. A structured activity defines a causal

An SOA-based architecture framework 7

order on the basic activities and can be nested in another
structured activity. For the sake of simplicity, we restrict
our view on WS-BPEL to activities and do not go into
the details of WS-BPEL’s advanced concepts like fault and
compensation handling.

The meta model in UML notation for this restricted
part of WS-BPEL is depicted in Figure 3 (activities
throw, rethrow, compensate, compensateScope, validate
and extensionActivity are not shown in Figure 3). The
relation between entities activity and structured activity
is most relevant for our architecture: Every WS-BPEL
activity can be contained in a structured activity and
every structured activity can contain one or more activities.
Entity ‘activity’ in Figure 1 coincides with a WS-BPEL
activity. Thus, WS-BPEL can be easily linked into
our framework. This is shown by connecting entity
‘activity’ with the already known entities ‘process’ and
‘atomic component’ (cf. Figure 1). A ‘data entity’
(not shown in Figure 3) corresponds to a WS-BPEL
variable. If WS-BPEL is used for describing the process
model for a component, then this process also implicitly
describes the data model through its WS-BPEL variable
definitions. WS-BPEL does not distinguish base and case;
that is, WS-BPEL activities, variables and also WS-BPEL’s
advanced concepts like fault and compensation handling
always belong to exactly one case (i.e. to a process instance).
The concept of start activities is also supported in WS-BPEL.
Activities ‘receive’and ‘pick’can be used to create an instance
of a BPEL process if the attribute createInstance is set to yes.
In our framework, every activity can be a start activity. So,
we have to add this fact by a constraint. Our concept of logic
can be mapped to WS-BPEL, too. It is possible to specify
XPath expressions in WS-BPEL and there exists extensions
of WS-BPEL that allow, for instance, the integration of Java
code into the WS-BPEL code (Blow et al., 2004).

Figure 3 Meta model for WS-BPEL activities

activity

basic

activity

structured

activity

pick

while if

scopesequence flowreceive invoke reply assign

wait emptyexit

*
0..1

1..

1
e

*

atomic

component

process

1

1
c

1 l

m

0..1
start

activity

logic

repeatUntil forEach

The formalism of Petri nets has been proven to be an adequate
model for business processes (e.g. van der Aalst, 1998).
A Petri net (see e.g. (Reisig, 1985) for a formal definition) is a
bipartite graph. It consists of two different nodes, places and
transitions and (directed) arcs. An arc connects either a place
and a transition (input arc) or a transition and a place (output
arc). Places can contain (black) tokens which represent a
data value. We consider Coloured Petri Nets (CPNs) (Jensen,

1992), an extension of usual Petri nets. In a CPN, tokens
have a value (i.e. a colour). That way, ‘real’ data values can
be modelled.

The Petri net meta model in UML notation is presented
in Figure 4. In the meta model, input arcs and output arcs
are distinguished. Like WS-BPEL, Petri nets can be easily
linked into our architecture framework. Entity Petri net and
entity transition coincide with entities ‘process’and ‘activity’
in Figure 1, respectively. A start activity can also be modelled
by a Petri net transition. More precisely, the transition
has to generate a new case id. Entity ‘logic’ in Figure 1
coincides with entity label. A label is either a transition guard
(i.e. a Boolean expression) or an (arc) inscription. A data
element can be modelled by a place and the data value by a
token on this place. If we think of a Petri net as a model for the
base and the case process, different cases can be expressed by
different colours, where each colour represents exactly one
case id, for instance.

Figure 4 Meta model for Petri nets

activity

= transition

1

k

*

atomic

component

process

= Petri net

1

1
c

place arc

input arc output arc

1 1 1 1

source

source

target

target

1

l

0..1
start

activity

1

1

**

logic

= label
m

mm

aa

bb

guard inscription

*

1

3.3 Data model

Many architects consider only the information architecture
of a system (i.e. the database schema) when they use the
term architecture. The information architecture is actually
a data model. It is a view on data entities and their
relationships. The information architecture is very important,
because it facilitates the structuring and organising of data
entities. Often, architects start the system design with
the development of the information architecture. In the
following, we introduce the general concepts of the data
model, in particular, its hierarchy concept.

The starting point of the data model is again an atomic
component. Entity composite data entity in Figure 1 is an
ER-model. A composite data entity is a set of atomic data
entities (relationship f in Figure 1) where every atomic
data entity consists of a set of attributes (relationship p).
Relationship q shows that every attribute has a type. Atomic
data entities can be accessed by activities (relationship
sphere) or exchanged by messages (relationship r).

The data model allows for relationships between atomic
data entities. Entity data relationship illustrates this fact.
Two atomic data entities can be related (relationships

8 W.M.P. van der Aalst et al.

n and o). We distinguish between internal data relationship
and external data relationship. An internal data relationship
relates two atomic data entities within a composite data
entity. To provide a relationship between two atomic data
entities located in different composite data entities and thus
in different atomic components, the meta model distinguishes
between source data entity and reference data entity.
A reference data entity is a reference to a source data entity.
For every source data entity, there can be any number
of references (relationship t). That way, it is possible to
define a source data entity in one composite data entity
(i.e. in an atomic component) and to have references (with the
help of reference data entities) in other atomic components.
A reference data entity and its corresponding source data
entity are related by an external data relationship. These
constraints are specified in Section 3.4 using OCL.

The use of reference data entities introduces hierarchy in
the data model. We distinguish two different views on the data
model. The first and detailed view visualises the relationship
of all atomic entities in a composite entity. On one hand,
it shows the internal data relationships between atomic data
entities, that means, how entities within an atomic component
are connected. On the other hand, this view also presents the
external data relationships; that is, for each reference data
entity, its source data entity (relationship t in Figure 1) is
depicted. Relationship t shows how an atomic component
is related on the data level to other atomic components by
help of reference data entities. The second and abstract view,
however, is restricted to the external data relationship only.
This hierarchy concept is, in fact, similar to the concept of
atomic and composite components. As an example, a data
model of two atomic components is shown in Figure 5. It is
possible to have more levels of hierarchy by having a deeper
hierarchy of (composite) components.

Figure 5 Two levels of hierarchy in the data model: (a) data
model – concrete level and (b) data model – abstract
level

c’

b

d d’

b’

(a) (b)

c’

b

d d’

b’a e

f

Note: A solid frame depicts an atomic component. Inside this frame, the

composite data entity is shown. Boxes a–f depict atomic data

entities. Solid boxes and dashed boxes visualise source data entities

(e.g. b) and reference data entities (e.g. b′), respectively. Undirected

solid arcs connecting two atomic data entities model an internal data

relationship between these entities (e.g. a and b, d ′ and e). In

contrast, dashed arcs that cross the border of an atomic component

depict external data relationships and thus which reference data entity

is related to which source data entity. Examples are b and b′, d and

d ′, and also c′ with a source data entity not depicted in Figure 5(a).

The detailed view is shown in Figure 5(a). All atomic data entities

and their internal and external data relationships are visible. The

abstract view is shown in Figure 5(b). Only the three reference data

entities, the two corresponding source data entities and their external

data relationships are visible.

Now, we have a look at the relation between internal and
external data relationship on one hand and method call and
message exchange on the other hand. This is also a relation
between data model and process model. From the details
given in Section 3.2, it is known that activities can change
the value of data elements by method call. An activity has,
however, only access to a restricted set of data elements,
namely, to the data elements within its sphere (cf. relationship
sphere in Figure 1). In the data model, a method call is
reflected by an internal data relationship between two atomic
data entities. External data relationships, in contrast, reflect
message exchange between activities. This is defined by an
OCL constraint in Section 3.4.

3.4 Constraints

The meta model in Figure 1 is in some sense quite general,
because specific constraints cannot be expressed in UML.
Therefore, it is possible to create errors during the design
of the system. However, constraints of UML models can be
specified using the OCL (Object Management Group, 2003).
They can be implemented in a Computer-Aided Software
Engineering (CASE) tool which can be used to check the
system at design time. Thus, the architect can be prevented
from creating such errors.

In the following, we present several constraints that
help to formalise concepts like wiring or the relationships
between entities. Due to the page limit, we only specify
one constraint as an OCL invariant and describe all other
constraints informally. For a complete overview of all these
constraints specified in OCL, we refer to van der Aalst et al.
(2007). OCL keywords are depicted in bold font. For the
parameters used, we refer to the relationships in Figure 1.

1 Two atomic data entities, which are related by an
external data relation, are located in different atomic
components and one of them is a source data entity
and the other one its reference data entity:

context x: external data relationship inv:

x.n.f �= x.o.f and

((x.n.oclIsTypeOf (reference data entity) and

x.o.oclIsTypeOf (source data entity) and x.n.t = x.o)

or (x.n.oclIsTypeOf (source data entity) and
x.o.oclIsTypeOf (reference data entity) and
x.o.t = x.n))

The keyword inv means that this OCL expression is
an OCL invariant. This invariant is introduced for the
context of an ‘external data relationship’. Informally
spoken, it specifies that an external data relationship
between two data entities only exists if these entities
are located in different composite data entities and thus
in different atomic components. Furthermore, one of the
entities has to be a source data entity and the other
entity, one of its reference data entities. The second line
of this invariant specifies that both atomic data entities
are located in different composite data entities.
The remaining lines specify a disjunction. Either x.n is
a reference data entity and x.o is a source data entity
(lines three and four) or vice versa (lines five and six).
To check the type of an atomic data entity, we use OCL’s

An SOA-based architecture framework 9

oclIsTypeOf operator. x.n.t = x.o then specifies that
the reference data entity x.n has to be a reference of the
source data entity x.o.

2 Two atomic data entities which are related by
an internal data relation are located in the same
atomic component.

3 External data relationship means message exchange.

4 There is no process having a base start activity and
a case start activity.

5 A horizontal wire connects two components within an
enclosing component.

6 A vertical wire connects a component with its
enclosing component.

7 A vertical wire connects two operations with the same
operation type.

8 A horizontal wire connects two operations with
matching operation types.

In conclusion, these constraints can be merely seen as
examples. Once they are implemented, they can be
automatically checked during the design phase of the system.
At this level of design, it is faster and cheaper to fix errors
than in later design phases. Nevertheless, constraints are not
sufficient to guarantee the correctness of systems.

4 Comparing the architecture framework
with SCA

4.1 Introduction to SCA

The SCA (Beisiegel et al., 2007) provides a model for the
composition of services, the creation of service components
and the reuse of existing applications within service
compositions. Service components can be implemented in
different programming languages and accessed via different
protocols, including web services, asynchronous messages
or synchronous remote procedure calls.

The following paragraphs describe the SCA component
model. SCA components use a simple interface contract to
describe their partner relationships.

The most important construct of SCA is the component
consisting of

1 services (i.e. business functions offered to other
components)

2 references (i.e. dependencies on business functions
needed from other components)

3 properties (i.e. values that influence the component
implementation)

4 implementation (i.e. concrete realisation of the
provided services).

SCA provides the concept of a component type defining
the configurable aspects (or points of variability) of an
implementation. A component is a configured instance of
an implementation.

An SCA component may be implemented using traditional
programming languages like C++ or Java, scripting

languages like PHP or JavaScript, declarative languages like
XQuery or SQL, or as a business process using WS-BPEL.

The SCA Assembly Model describes how components can
be assembled into composites, containing the aggregated
components, services, references and properties. Composites
can be viewed as an implementation of a higher-level
component and can be nested. Composites also contain wires.
The source of a wire may be a component reference or a
composite service. The target of a wire may be a component
service or a composite reference. Figure 6 illustrates an
example SCA composite. Note that the wires (as in Figure 1)
describe a dependency relationship and not control flow.

Figure 6 An example SCA composite (for colours see online
version)

An SCA system represents the configuration of an SCA
run-time environment. It represents a region of configuration
and control and defines the scope of what can be connected
via SCA wires. In general, an SCA run-time environment is
distributed and heterogeneous. It has a logical system level
composite of running components that are implemented by
simple implementations or composites.

In SCA, services and references can be associated with
bindings and policies.

References use bindings to describe the mechanism used
to call a service and services use bindings to describe the
access mechanism that clients have to use in order to call the
service. Examples for bindings are a web service, a stateless
session EJB, a database stored procedure or an EIS service
binding.

A policy is a declaration of a specific set of behaviours,
and applies to the implementation of a component
or to an interaction with a component. Policies may
be aggregated into profiles. Examples for policies are
WS-ReliableMessaging orWS-Addressing policies associated
with web service bindings, or a conversation policy
associated with JMS bindings.

The interface model is extensible such that detailed partner
interaction semantics could be captured as well, for example,
by using concepts like WS-BPEL Abstract Processes. SCA
components may be stateless or stateful; however, SCA does
not provide an explicit data model describing data managed
by a component.

4.2 Comparison to the architecture framework

To compare SCA with our architecture framework, we first of
all present in Table 1 a comparison of the terms used. Then,
we step into the details of both the frameworks.

10 W.M.P. van der Aalst et al.

Table 1 Comparing the terms of SCA and the architecture
framework

SCA Framework as depicted in Figure 1

Component Atomic component

Composite Composite component

System Outmost composite component

Implementation Process implementation like
WS-BPEL, Petri nets

Service Sell interface

Reference Buy interface

Property Base entity

Wire Wire

The component concepts in both frameworks are very similar.
Both frameworks support atomic and composite components,
wires and processes. In SCA, it is possible to specify
a property for a composite, whereas in our framework,
composite components do not have data entities.

In SCA, the term implementation is used for the choice
of a process technology like WS-BPEL, Java or Petri
nets. So, an SCA implementation coincides with a process
implementation in our architecture framework.

At the level of the interface, SCA is more extendable
than our interface concept which is restricted to WSDL 1.1.
However, we can also easily extend our interface concept.

Both frameworks are very general and thus support
different process models. For our framework, we showed
this in Section 3.2.4 and the process models supported by
SCA are listed in the last section.

SCA specifies bindings, QoS and policies. This is, so
far, not integrated in our framework. As our meta model in
Figure 1 is general, we could easily add an entity for each
of the three concepts. The semantics had to be defined by
adding relationships and additional OCL constraints.

Finally, our architecture framework has a data model.
SCA, in contrast, has no data model yet. It only supports
the configuration of components with the help of properties.
In our framework, we use base activities for the configuration
of components (cf. Section 3.2.2).

To summarise, both frameworks are very similar, in
particular in the component and process model. However,
SCA does not support a data model yet, which is in
our opinion, a very important model as we mentioned in
Section 3.3.

5 Related work and outlook

In this paper, we addressed our efforts in developing
an architecture framework for SOA. We introduced the
architecture framework by means of a meta model that
focused on three different views on software systems:
a component view, a process view and a data view.
The proposed architecture framework also covers other
important concepts such as instantiation and message
correlation.

We aim at formally verifying systems on the level of
the architecture. For this purpose, we collected a number
of constraints for our architecture framework and specified

them using the OCL. These constraints can be implemented
and checked by a CASE tool. That way, architects have
tool support during the system design. In (van der Aalst
et al., 2007), we also presented rules to translate the
architecture framework into CPNs. On the level of CPNs,
formal verification techniques can be applied.

The presented architecture framework is required to be
language independent and close to industry standards, in
particular to SCA. We have shown that our architecture
framework extends SCA, since SCA does not provide an
explicit data model yet.

Another architectural framework which has been inspired
by SCA is the SENSORIA Reference Modelling Language
(SRML). SRML presents a formal model for components and
their composition. The process model specifies the language
of interaction of the process but there is no data model so
far. Axenath et al. (this special issue) present a meta model
for business processes modelling (AMFIBIA) which captures
the aspects, control flow, data and organisation. As in our
approach, these aspects can be modelled independently of
each other and it is possible to integrate them later on.
A component model is missing so far, but the approach
is extensible. To summarise, the main contribution of our
framework, the integration of the component, the data
and the process views, is neither provided by SRML and
AMFIBIA nor by state-of-the-art architecture frameworks
such as CORBA, UML and Koala.

In ongoing research, we want to extend the architecture
framework, for example with the concept of inheritance
which allows the reuse of parts of the system. Inheritance
is one of the most important concepts in object-oriented
programming and should therefore be adapted on the level
of architecture frameworks. We also want to spend more
effort on the verification of the architecture and as a
long-term objective on the development of tools for the design
and management of component-based systems.

References

Alves, A. et al. (2007) Web Services Business Process Execution
Language Version 2.0, OASIS Standard, 11 April 2007, OASIS.

Axenath, B., Kindler, E., Rubin, V. (this special issue) ‘AMFIBIA: a
meta-model for integrating business process modelling aspects’,
Int. J. Business Process Integration and Management.

Bass, L., Clements, P. and Kazman, R. (2003) ‘Software
Architecture in Practice’, 2nd edition, Addison Wesley
Professional.

Beisiegel, M., et al. (2007) Service Component
Architecture – Assembly Model Specification, SCA Version 1.00,
15 March 2007, IBM, SAP et al.

Blow, M., Goland, Y., Kloppmann, M., Leymann, F., Pfau, G.,
Roller, D. and Rowley, M. (2004) BPELJ: BPEL for Java,
Whitepaper, BEA, IBM.

Bouyssounouse, B. and Sifakis, J. (Ed). (2005) ‘Embedded Systems
Design – The ARTIST Roadmap for Research and Development,
Vol. 3436 of Lecture Notes in Computer Science, Heidelberg:
Springer Berlin.

Christensen, E., Curbera, F., Meredith, G. and Weeravarana, S.
(2001) Web Service Discription Language (WSDL) 1.1., W3C
Note 15 March 2001, Ariba, International Business Machines

An SOA-based architecture framework 11

Corporation, Microsoft.

Fiadeiro, J.L., Lopes, A. and Bocchi, L. (2006) ‘A formal approach
to service component architecture’, in M. Bravetti, M. Núñez
and G. Zavattaro (Eds). Web Services and Formal Methods
(WS-FM 2006), Proceedings, Vol. 4184 of Lecture Notes in
Computer Science, pp.193–213, Springer-Verlag.

High, R., Kinder, S. and Graham, S. (2005) ‘IBM’s SOA
foundation – an architectural introduction and overview’,
Technical Report 1.0, IBM.

Jensen, K. (1992) Coloured Petri Nets. Basic Concepts, Analysis
Methods and Practical Use, Vol. 1 of Monographs in Theoretical
Computer Science, Springer-Verlag.

McIlroy, M.D. (1968) ‘Mass produced software components’, in
P. Naur and B. Randell (Eds). Proceedings of NATO Software
Engineering Conference, Vol. 1, pp.138–150, Garmisch,
Germany.

Object Management Group (2003) UML2.0 Object Constraint
Language (OCL) Specification, Specification, Object
Management Group (OMG).

Ommering, R.C., van der Linden, F., Kramer, J. and Magee, J.
(2000) ‘The Koala component model for consumer electronics
software’, IEEE Computer, Vol. 33, No. 3, pp.78–85.

Reisig, W. (1985) Petri Nets, Berlin, Heidelberg, Springer-Verlag,
Tokyo, EATCS Monographs on Theoretical Computer Science
edition.

Szyperski, C. (1998) Component Software–Beyond Object-Oriented
Programming, Addison-Wesley and ACM Press.

van der Aalst, W.M.P., Beisiegel, M., van Hee, K.M., König, D.
and Stahl, C. (2007) ‘A SOA-based architecture framework’,
Computer Science Report 07/02, Technische Universiteit
Eindhoven, The Netherlands.

van der Aalst, W.M.P. (1998) ‘The application of Petri nets
to workflow management’, Journal of Circuits, Systems and
Computers, Vol. 8, No. 1, pp.21–66.

<<
 /ASCII85EncodePages false
 /AllowTransparency false
 /AutoPositionEPSFiles true
 /AutoRotatePages /All
 /Binding /Left
 /CalGrayProfile (Dot Gain 20%)
 /CalRGBProfile (sRGB IEC61966-2.1)
 /CalCMYKProfile (U.S. Web Coated \050SWOP\051 v2)
 /sRGBProfile (sRGB IEC61966-2.1)
 /CannotEmbedFontPolicy /Warning
 /CompatibilityLevel 1.4
 /CompressObjects /Tags
 /CompressPages true
 /ConvertImagesToIndexed true
 /PassThroughJPEGImages true
 /CreateJDFFile false
 /CreateJobTicket false
 /DefaultRenderingIntent /Default
 /DetectBlends true
 /ColorConversionStrategy /LeaveColorUnchanged
 /DoThumbnails false
 /EmbedAllFonts true
 /EmbedJobOptions true
 /DSCReportingLevel 0
 /EmitDSCWarnings false
 /EndPage -1
 /ImageMemory 1048576
 /LockDistillerParams false
 /MaxSubsetPct 100
 /Optimize true
 /OPM 1
 /ParseDSCComments true
 /ParseDSCCommentsForDocInfo true
 /PreserveCopyPage true
 /PreserveEPSInfo true
 /PreserveHalftoneInfo false
 /PreserveOPIComments false
 /PreserveOverprintSettings true
 /StartPage 1
 /SubsetFonts true
 /TransferFunctionInfo /Apply
 /UCRandBGInfo /Preserve
 /UsePrologue false
 /ColorSettingsFile ()
 /AlwaysEmbed [true
]
 /NeverEmbed [true
]
 /AntiAliasColorImages false
 /DownsampleColorImages true
 /ColorImageDownsampleType /Bicubic
 /ColorImageResolution 300
 /ColorImageDepth -1
 /ColorImageDownsampleThreshold 1.50000
 /EncodeColorImages true
 /ColorImageFilter /DCTEncode
 /AutoFilterColorImages true
 /ColorImageAutoFilterStrategy /JPEG
 /ColorACSImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /ColorImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /JPEG2000ColorACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /JPEG2000ColorImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /AntiAliasGrayImages false
 /DownsampleGrayImages true
 /GrayImageDownsampleType /Bicubic
 /GrayImageResolution 300
 /GrayImageDepth -1
 /GrayImageDownsampleThreshold 1.50000
 /EncodeGrayImages true
 /GrayImageFilter /DCTEncode
 /AutoFilterGrayImages true
 /GrayImageAutoFilterStrategy /JPEG
 /GrayACSImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /GrayImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /JPEG2000GrayACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /JPEG2000GrayImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /AntiAliasMonoImages false
 /DownsampleMonoImages true
 /MonoImageDownsampleType /Bicubic
 /MonoImageResolution 1200
 /MonoImageDepth -1
 /MonoImageDownsampleThreshold 1.50000
 /EncodeMonoImages true
 /MonoImageFilter /CCITTFaxEncode
 /MonoImageDict <<
 /K -1
 >>
 /AllowPSXObjects false
 /PDFX1aCheck false
 /PDFX3Check false
 /PDFXCompliantPDFOnly false
 /PDFXNoTrimBoxError true
 /PDFXTrimBoxToMediaBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXSetBleedBoxToMediaBox true
 /PDFXBleedBoxToTrimBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXOutputIntentProfile ()
 /PDFXOutputCondition ()
 /PDFXRegistryName (http://www.color.org)
 /PDFXTrapped /Unknown

 /Description <<
 /FRA <FEFF004f007000740069006f006e00730020007000650072006d0065007400740061006e007400200064006500200063007200e900650072002000640065007300200064006f00630075006d0065006e00740073002000500044004600200064006f007400e900730020006400270075006e00650020007200e90073006f006c007500740069006f006e002000e9006c0065007600e9006500200070006f0075007200200075006e00650020007100750061006c0069007400e90020006400270069006d007000720065007300730069006f006e00200061006d00e9006c0069006f007200e90065002e00200049006c002000650073007400200070006f0073007300690062006c0065002000640027006f00750076007200690072002000630065007300200064006f00630075006d0065006e007400730020005000440046002000640061006e00730020004100630072006f0062006100740020006500740020005200650061006400650072002c002000760065007200730069006f006e002000200035002e00300020006f007500200075006c007400e9007200690065007500720065002e>
 /ENU (Use these settings to create PDF documents with higher image resolution for improved printing quality. The PDF documents can be opened with Acrobat and Reader 5.0 and later.)
 /JPN <FEFF3053306e8a2d5b9a306f30019ad889e350cf5ea6753b50cf3092542b308000200050004400460020658766f830924f5c62103059308b3068304d306b4f7f75283057307e30593002537052376642306e753b8cea3092670059279650306b4fdd306430533068304c3067304d307e305930023053306e8a2d5b9a30674f5c62103057305f00200050004400460020658766f8306f0020004100630072006f0062006100740020304a30883073002000520065006100640065007200200035002e003000204ee5964d30678868793a3067304d307e30593002>
 /DEU <FEFF00560065007200770065006e00640065006e0020005300690065002000640069006500730065002000450069006e007300740065006c006c0075006e00670065006e0020007a0075006d002000450072007300740065006c006c0065006e00200076006f006e0020005000440046002d0044006f006b0075006d0065006e00740065006e0020006d00690074002000650069006e006500720020006800f60068006500720065006e002000420069006c0064006100750066006c00f600730075006e0067002c00200075006d002000650069006e0065002000760065007200620065007300730065007200740065002000420069006c0064007100750061006c0069007400e400740020007a0075002000650072007a00690065006c0065006e002e00200044006900650020005000440046002d0044006f006b0075006d0065006e007400650020006b00f6006e006e0065006e0020006d006900740020004100630072006f0062006100740020006f0064006500720020006d00690074002000640065006d002000520065006100640065007200200035002e003000200075006e00640020006800f600680065007200200067006500f600660066006e00650074002000770065007200640065006e002e>
 /PTB <FEFF005500740069006c0069007a006500200065007300740061007300200063006f006e00660069006700750072006100e700f5006500730020007000610072006100200063007200690061007200200064006f00630075006d0065006e0074006f0073002000500044004600200063006f006d00200075006d00610020007200650073006f006c007500e700e3006f00200064006500200069006d006100670065006d0020007300750070006500720069006f0072002000700061007200610020006f006200740065007200200075006d00610020007100750061006c0069006400610064006500200064006500200069006d0070007200650073007300e3006f0020006d0065006c0068006f0072002e0020004f007300200064006f00630075006d0065006e0074006f0073002000500044004600200070006f00640065006d0020007300650072002000610062006500720074006f007300200063006f006d0020006f0020004100630072006f006200610074002c002000520065006100640065007200200035002e0030002000650020007300750070006500720069006f0072002e>
 /DAN <FEFF004200720075006700200064006900730073006500200069006e0064007300740069006c006c0069006e006700650072002000740069006c0020006100740020006f0070007200650074007400650020005000440046002d0064006f006b0075006d0065006e0074006500720020006d006500640020006800f8006a006500720065002000620069006c006c00650064006f0070006c00f80073006e0069006e006700200066006f00720020006100740020006600e50020006200650064007200650020007500640073006b00720069006600740073006b00760061006c0069007400650074002e0020005000440046002d0064006f006b0075006d0065006e0074006500720020006b0061006e002000e50062006e006500730020006d006500640020004100630072006f0062006100740020006f0067002000520065006100640065007200200035002e00300020006f00670020006e0079006500720065002e>
 /NLD <FEFF004700650062007200750069006b002000640065007a006500200069006e007300740065006c006c0069006e00670065006e0020006f006d0020005000440046002d0064006f00630075006d0065006e00740065006e0020007400650020006d0061006b0065006e0020006d00650074002000650065006e00200068006f0067006500720065002000610066006200650065006c00640069006e00670073007200650073006f006c007500740069006500200076006f006f0072002000650065006e0020006200650074006500720065002000610066006400720075006b006b00770061006c00690074006500690074002e0020004400650020005000440046002d0064006f00630075006d0065006e00740065006e0020006b0075006e006e0065006e00200077006f007200640065006e002000670065006f00700065006e00640020006d006500740020004100630072006f00620061007400200065006e002000520065006100640065007200200035002e003000200065006e00200068006f006700650072002e>
 /ESP <FEFF0055007300650020006500730074006100730020006f007000630069006f006e006500730020007000610072006100200063007200650061007200200064006f00630075006d0065006e0074006f0073002000500044004600200063006f006e0020006d00610079006f00720020007200650073006f006c00750063006900f3006e00200064006500200069006d006100670065006e00200070006100720061002000610075006d0065006e0074006100720020006c0061002000630061006c006900640061006400200061006c00200069006d007000720069006d00690072002e0020004c006f007300200064006f00630075006d0065006e0074006f00730020005000440046002000730065002000700075006500640065006e00200061006200720069007200200063006f006e0020004100630072006f00620061007400200079002000520065006100640065007200200035002e003000200079002000760065007200730069006f006e0065007300200070006f00730074006500720069006f007200650073002e>
 /SUO <FEFF004e00e4006900640065006e002000610073006500740075007300740065006e0020006100760075006c006c006100200076006f0069006400610061006e0020006c0075006f006400610020005000440046002d0061007300690061006b00690072006a006f006a0061002c0020006a006f006900640065006e002000740075006c006f0073007400750073006c00610061007400750020006f006e0020006b006f0072006b006500610020006a00610020006b007500760061006e0020007400610072006b006b007500750073002000730075007500720069002e0020005000440046002d0061007300690061006b00690072006a0061007400200076006f0069006400610061006e0020006100760061007400610020004100630072006f006200610074002d0020006a00610020004100630072006f006200610074002000520065006100640065007200200035002e00300020002d006f0068006a0065006c006d0061006c006c0061002000740061006900200075007500640065006d006d0061006c006c0061002000760065007200730069006f006c006c0061002e>
 /ITA <FEFF00550073006100720065002000710075006500730074006500200069006d0070006f007300740061007a0069006f006e00690020007000650072002000630072006500610072006500200064006f00630075006d0065006e00740069002000500044004600200063006f006e00200075006e00610020007200690073006f006c0075007a0069006f006e00650020006d0061006700670069006f00720065002000700065007200200075006e00610020007100750061006c0069007400e00020006400690020007300740061006d007000610020006d00690067006c0069006f00720065002e0020004900200064006f00630075006d0065006e00740069002000500044004600200070006f00730073006f006e006f0020006500730073006500720065002000610070006500720074006900200063006f006e0020004100630072006f00620061007400200065002000520065006100640065007200200035002e003000200065002000760065007200730069006f006e006900200073007500630063006500730073006900760065002e>
 /NOR <FEFF004200720075006b00200064006900730073006500200069006e006e007300740069006c006c0069006e00670065006e0065002000740069006c002000e50020006f00700070007200650074007400650020005000440046002d0064006f006b0075006d0065006e0074006500720020006d006500640020006800f80079006500720065002000620069006c00640065006f00700070006c00f80073006e0069006e006700200066006f00720020006200650064007200650020007500740073006b00720069006600740073006b00760061006c0069007400650074002e0020005000440046002d0064006f006b0075006d0065006e00740065006e00650020006b0061006e002000e50070006e006500730020006d006500640020004100630072006f0062006100740020006f0067002000520065006100640065007200200035002e00300020006f0067002000730065006e006500720065002e>
 /SVE <FEFF0041006e007600e4006e00640020006400650020006800e4007200200069006e0073007400e4006c006c006e0069006e006700610072006e00610020006e00e40072002000640075002000760069006c006c00200073006b0061007000610020005000440046002d0064006f006b0075006d0065006e00740020006d006500640020006800f6006700720065002000620069006c0064007500700070006c00f60073006e0069006e00670020006f006300680020006400e40072006d006500640020006600e50020006200e400740074007200650020007500740073006b00720069006600740073006b00760061006c0069007400650074002e0020005000440046002d0064006f006b0075006d0065006e00740065006e0020006b0061006e002000f600700070006e006100730020006d006500640020004100630072006f0062006100740020006f00630068002000520065006100640065007200200035002e003000200065006c006c00650072002000730065006e006100720065002e>
 >>
>> setdistillerparams
<<
 /HWResolution [2400 2400]
 /PageSize [612.000 792.000]
>> setpagedevice

