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Abstract. Service orientation is a means for integrating across diverse
systems. Each resource, whether an application, system, or trading part-
ner, can be accessed as a service. The resulting architecture, often re-
ferred to as SOA, has been an important enabler for interorganizational
processes. Apart from technological issues that need to be addressed, it is
important that all parties involved in such processes agree on the “rules
of engagement”. Therefore, we propose to use a contract that specifies the
composition of the public views of all participating parties. Each party
may then implement its part of the contract such that the implemen-
tation (i.e., the private view) accords with the contract. In this paper,
we define a suitable notion of accordance inspired by the asynchronous
nature of services. Moreover, we present several transformation rules for
incrementally building a private view such that accordance with the con-
tract is guaranteed by construction. These rules include adding internal
tasks as well as the reordering of messages and are therefore much more
powerful than existing correctness-preserving transformation rules.

1 Introduction

Interorganizational cooperation is of increasing importance for enterprises to
meet the new challenges of ever faster changing business conditions. Web services
and service-oriented architectures (SOA) are rapidly emerging approaches to
reduce the complexity of integrating systems within and between organizations.
Since SOA enables dynamic binding of services at runtime, it is possible to
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design a cooperation between parties that do not know each other. However, in
practise the parties involved in a cooperation know each other. Therefore, instead
of dynamically binding services at runtime, these parties agree on a common
contract, which is the focus of this paper. This contract has the form of an agreed
upon process model, similar to [1, 2], and attempts to balance the following two
conflicting requirements. On the one hand, there is a strong need for coordination
to optimize the flow of work in and between the different organizations. On
the other hand, the organizations involved are essentially autonomous and have
the freedom to create or modify workflows at any point in time. Therefore, we
propose to use a process-oriented contract that defines “rules of engagement”
without describing the internal processes executed within each partner.

To illustrate the idea of having a process-oriented contract, we use an exam-
ple taken from [3], depicted in Fig. 1(a). The example shows a contract expressed
in terms of a Petri net [4]. The Petri net is partitioned over three parties: trav-

eler, agency, and airline. Each party has a part of the contract which can be
seen as a service. Different services are connected through interface places for
asynchronous message passing. Interface places model message buffers and are
positioned on dashed lines as shown in Fig. 1(a). As a formalism, we use open
workflow nets (oWFNs) [5] which extend the well-known concept of workflow
nets (WFNs) [6] with interface places. However, the presented concepts are not
limited to oWFNs and can be translated into other languages using message
passing as a communication paradigm.

In our example, the traveler sends a trip order to the agency (transition a). As
a result, the agency sends a flight order to the airline (transition g). The airline

receives this order and either confirms it (message confirm order) or rejects it
(message reject order). In the latter case, the rejection is forwarded to the traveler

(transition k). If the flight is confirmed, the agency sends the flight details and
an invoice to the traveler, and the airline sends a ticket to the traveler.

Figure 1(a) shows four oWFNs: N, N tr, Nag, and Nair. N tr, Nag, and Nair

specify the public view of each of the parties involved. Each of the public views
has interface places. For example, N tr has one output place and three input
places. Using these places, the public views can be merged together into the
contract. The whole Petri net shown in Fig. 1(a) can be seen as a single oWFN
N by simply ignoring the dashed lines. This oWFN has an empty interface.

After the parties agreed on such a contract, each of them needs to imple-
ment its part. A party needs to refine its part of the contract, so the resulting
implementation may deviate significantly from the public view. We refer to this
as the private view of the party. The private view may again be expressed as
an oWFN. Figure 1(b) shows an example of a private view of the traveller; that
is, oWFN N

′
tr is the implementation of Ntr. In Ntr, the traveler first receives the

invoice and then the ticket. In N
′
tr, these two messages are received concurrently.

Note that this example is a bit atypical since the implementation tends to have
much more internal tasks. Here just transition x and places p31 to p34 are added
while in more realistic scenarios there may dozens of newly added internal tasks.
Clearly, N

′
tr allows for behavior not possible in Ntr (even after abstracting from
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(a) oWFN N modeling the contract between
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Fig. 1. The running example.

the new transition x). The trace a, b, e, c, x where the ticket is received before the
invoice, for instance, is not possible in N tr but in N

′
tr. In this case, it is harmless

that N
′
tr serves as implementation of N tr. However, similar changes could lead to

deadlocks and other problems. On this account, a comprehensive set of transfor-
mation rules for deriving a private view, which is correct by construction, from
a public view would be very helpful for service designers.

In earlier work, we proposed to use projection inheritance for WFNs [7, 8]
for relating the actual realization of a contract to the contract itself in [1, 2]. It
was proven that if private and public view are related by projection inheritance,
then a party can execute its private view and no other party is effected by this
change. Moreover, we defined inheritance-preserving transformation rules that
guarantee correctness by construction; that is, the public view is extended into a
correct private view by iteratively applying the rules. Unfortunately, N

′
tr and Ntr

are not related by projection inheritance. This illustrates that the inheritance
notion defined is too restrictive, since it excludes private views that obviously
do not jeopardize the overall correctness of the interorganizational workflow.

To address the problem, we present a more liberal notion of equivalence:
accordance [9]. Accordance is weaker than projection inheritance. The basic idea
is that an oWFN N2 accords with an oWFN N1 if there is no interorganizational
workflow where the replacement of N1 by N2 can cause any problems (provided
that the means of communication is asynchronous). For example, N

′
tr accords
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with N tr. In case public and private view are given, the technique presented in
[9] can be used for automatically checking accordance using operating guidelines.

The core contribution of this paper is a comprehensive set of accordance
preserving transformation rules. They can be used to incrementally transform
the public view of a party into a private one while guaranteeing that the overall
process will terminate properly. These new rules are highly relevant because there
are many situations where projection inheritance is too strong and accordance
is a more suitable notion.

The paper is structured as follows. Section 2 defines oWFNs, contracts, and
our accordance criterion. In Sect. 3, we present transformation rules to imple-
ment a private view which is correct by construction. A case study in Sect. 4
demonstrates the applicability and the value of these transformation rules.

2 Formalizing Contracts

The notions of a contract, public/private views, the accordance criterion, and
transformation rules will be formalized using open workflow nets (oWFNs) [5].
Therefore, this section starts by introducing oWFNs. For more details on the
formalization of these concepts we refer to a technical report [9].

We use the usual definition of a (place/transition) Petri net N = (P, T, F )
with a set of places P , a set of transitions T , and a flow relation F ⊆ (P×T )∪(T×
P ) representing the arcs (see [4], for instance). We also use the standard notation
to denote the preset and postset of places and transitions: •x = {y | (y, x) ∈ F}
and x• = {y | (x, y) ∈ F}.

Definition 1 (Open workflow net). An open workflow net is a Petri net
N = (P, T, F ) together with

– an interface defined as a set I ⊆ P of input places such that •p = ∅ for any
p ∈ I and a set O ⊆ P of output places such that p• = ∅ for any p ∈ O and
I ∩ O = ∅,

– a distinguished initial marking m0, and a set Ω of final markings such
that no transition of N is enabled in any m ∈ Ω. We further require that
m ∈ Ω ∪ {m0} implies m(p) = 0 for all p ∈ I ∪O; that is, in the initial and
the final markings, the interface places are not marked.

We use indices to distinguish the constituents of different oWFNs (e.g., Ij

refers to the set of input places of oWFN Nj). In order to assign a reasonable
meaning to final markings, we restrict our approach to such oWFNs where a
marking in Ω does not enable any transition.

As an example, the whole process shown in Fig. 1(a) represents an oWFN
with I = O = ∅, m0 = [p1, p6, p13], and we define Ω = {[p5, p12, p16]}. The part
of the traveller, N tr, in Fig. 1(a) is an oWFN with interface: I = {flight details,

invoice, reject trip, ticket} and O = {trip order}.
The behavior of an oWFN is defined using standard Petri net semantics [4];

that is, a transition is enabled if each place of its preset holds at least a token.
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An enabled transition t can fire in a marking m by consuming tokens from the
preset places and producing tokens for the postset places, yielding a marking m′

(denoted m
t
−→ m′).

For composing oWFNs, we assume that all constituents (except the inter-
faces) are pairwise disjoint. This requirement can be easily achieved by renaming.
In contrast, the interfaces often intentionally overlap. For a reasonable concept
of composition of oWFNs it is, however, convenient to require that all commu-
nication is bilateral; that is, every interface place p ∈ I ∪ O has only one party
that sends into p and one party that receives from p. For a third party C, a com-
munication taking place inside the composition of parties A and B is internal
matter. These considerations lead to the following definition of composition.

Definition 2 (Composition of oWFNs). Let N1, . . . , Nk be oWFNs with
pairwise disjoint constituents, except for the interfaces. N1, . . . , Nk are com-
posable if, for all i ∈ {1, . . . , k},

– p ∈ Ii implies that there is no j 6= i such that p ∈ Ij and there is at most
one j such that p ∈ Oj, and

– p ∈ Oi implies that there is no j 6= i such that p ∈ Oj and there is at most
one j such that p ∈ Ij.

For markings m1 ∈ N1, . . . ,mk ∈ Nk which do not mark interface places,
their composition m = m1 ⊕ · · · ⊕ mk is defined by m(p) = mi(p) if p ∈ Pi.

If N1, . . . , Nk are composable, the composition N = N1 ⊕ · · · ⊕ Nk is the
oWFN with the following constituents: P = P1 ∪ · · ·∪Pk. T = T1 ∪ · · ·∪Tk. F =
F1∪· · ·∪Fk. I = (I1∪· · ·∪Ik)\(O1∪· · ·∪Ok). O = (O1∪· · ·∪Ok)\(I1∪· · ·∪Ik).
m0 = m01

⊕ · · · ⊕ m0k
, Ω = {m1 ⊕ · · · ⊕ mk | m1 ∈ Ω1, . . . ,mk ∈ Ωk}.

Clearly, the three oWFNs N tr, Nag, and Nair in Fig. 1(a) are composable.

Any subset of a set of composable oWFNs is composable as well. Further-
more, we have N1 ⊕ N2 ⊕ N3 = (N1 ⊕ N2) ⊕ N3 = N1 ⊕ (N2 ⊕ N3), and
N1 ⊕N2 = N2 ⊕N1; that is, the composition of oWFNs is associative and com-
mutative. Thus, composition of a set of oWFNs can be broken into single steps
without affecting the final result.

For the oWFN depicted in Fig. 1(a) it is easy to check that the final marking
is always reachable. This means that it is always possible to terminate properly.
This property is formalized in the following definition.

Definition 3 (Weak termination). An oWFN weakly terminates if, from
every marking reachable from the initial marking, a final marking can be reached.

For composable oWFNs whose composition is weakly terminating, we intro-
duce the term strategy.

Definition 4 (Strategy). An oWFN N is a strategy for an oWFN N ′ if N ⊕
N ′ is weakly terminating. Strat(N) denotes the set of all strategies for N .
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Note that Strat(N) may correspond to a large (in fact infinite) set of oWFNs;
that is, it is the set of all potential partners of N . N tr in Fig. 1(a) and N

′
tr in

Fig.1(b) are two examples of strategies for the oWFN Nag ⊕ Nair.
Basically, we see a contract as an oWFN with empty interface where every

activity is assigned to one of the involved parties. We impose only one restriction:
If a place is accessed by more than one party, it should act as a directed bilateral
communication place. In the following, |X| denotes the cardinality of a set X.

Definition 5 (Contract). Let A be a set representing the parties involved in a
contract. Then, a contract [N, r] consists of an oWFN N = (P, T, F, I,O,m0, Ω)
with an empty interface (I = O = ∅) (the overall process) and a mapping r ∈
T → A (the partitioning) such that, for all places p ∈ P , |{r(t) | t ∈ •p}| ≤ 1
and |{r(t) | t ∈ p•}| ≤ 1. For technical purposes, we further require that N has
only one final marking, Ω = {mf}.

The oWFN shown in Fig. 1(a) is an example of a contract involving A =
{traveler, agency, airline}. The dashed lines in the figure show the partitioning of
transitions over the parties involved in the contract; r(a) = traveler, r(f) = agency

and r(m) = airline, for instance.
A contract can be cut into parts, each representing the agreed share of a

single party. In accordance with terminology of service-oriented computing [10],
we consider the contribution of a party as a service. Correspondingly, the agreed
version (specification) of the service is called public view while an actual local
implementation is called private view of the service.

Definition 6 (Public view). Let [N, r] be a contract with N = (P, T, F, I,O,

m0, Ω), Ω = {mf}, and r ∈ T → A, and let A ∈ A be a party. The public
view of A’s share in the contract is the oWFN NA where PA = {p ∈ P | ∃t ∈
•p∪p• : r(t) = A}, TA = {t ∈ T | r(t) = A}, FA = F ∩ ((PA ×TA)∪ (TA ×PA)),
IA = {p ∈ PA | ∃t ∈ •p : r(t) 6= A}, OA = {p ∈ PA | ∃t ∈ p• : r(t) 6= A}, m0A

=
m0|PA

(i.e., the restriction of m0 to the places in PA), and ΩA = {mf |PA
}.

For a set A = {A1, . . . , Ak} of parties and a contract [N, r], it is easy to see
that NA1

⊕ · · · ⊕NAk
= N . In this respect, the restriction that Ω contains only

one element is indeed crucial, as otherwise NA1
⊕ · · · ⊕ NAk

could have a final
marking that results from recombining final markings of different parties but
which is not a final marking of N .

Our accordance criterion is used to compare a public view and a private view
of a party’s share of a contract. The goal of the accordance notion is to preserve
weak termination (see Def. 3) of the overall process N . Formally, weak termina-
tion of N and accordance of each private view NA′

i
with the corresponding public

view NAi
should imply weak termination of N ′

A1
⊕ · · · ⊕ N ′

Ak
which obviously

models the overall process as actually implemented.
If [N, r] is a contract with A = {A1, . . . , Ak} and N is weakly terminating,

then NA1
⊕ . . .⊕NAi−1

⊕NAi+1
⊕ . . .⊕NAk

is a strategy for NAi
. For example,

N tr ⊕ Nag ⊕ Nair shown in Fig. 1(a) is weakly terminating. Therefore, N tr ⊕ Nair

is a strategy for Nag, and vice versa. These properties of the strategy concept
justify the following definition of accordance.
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Definition 7 (Accordance). An oWFN N ′ (private view) accords with an
oWFN N (public view) if it has the same interface (I ′ = I and O′ = O) and has
at least the strategies that N has; that is, Strat(N ′) ⊇ Strat(N).

For example, the private view N
′
tr accords with its public view N tr. The

following theorem shows that N tr can be substituted by N
′
tr without jeopardizing

weak termination.

Theorem 1 (Implementation of a contract [9]). Let [N, r] be a contract be-
tween parties {A1, . . . , Ak} where N is weakly terminating. If, for all
i ∈ {1, . . . , k}, N ′

Ai
(the private view of Ai) accords with NAi

(the public view
of Ai), then N ′ = N ′

A1
⊕ · · · ⊕ N ′

Ak
(the actual implementation) is weakly ter-

minating.

The proof of this theorem can be found in [9]. The result is highly relevant
for service composition since it gives each party a criterion (accordance of N ′

Ai

with NAi
) that can be locally verified for asserting a global property (weak

termination of the overall process as actually implemented). For example, any
combination of arbitrary private views N

′′
tr, N

′′
ag, and N

′′
air according with the

corresponding public view (i.e., N
′′
tr accords with N tr, N

′′
ag accords with Nag, and

N
′′
air accords with Nair) yields a weakly terminating realization of the contract

shown in Fig. 1(a).
According to Thm. 1, every party of a contract can implement its public view

and finally it has to check accordance between the private and the public view. In
the following, we present a different approach: The public view is incrementally
transformed into a private view. To this end, fragments of the public view are
incrementally replaced by other fragments until the private view is designed. In
this approach, a fragment N ′ of a party is called a pattern and will be replaced by
another fragment N ′′. We will prove that if N ′′ accords with N ′, then replacing
N ′ by N ′′ preserves weak termination of the overall contract.

First of all, we formally define an oWFN pattern N ′ of an oWFN N . There-
fore, the set of interface places of N ′ is divided into two sets: one set contains all
places that are interface places of N for communicating with other parties (i.e.,
subsets of I and O) and the other set, R ∪ S, contains all places that serve as
an interface to the rest of N . R is the set of input places from the other parts
of N , and S is the set of output places.

Definition 8 (oWFN pattern). Let N = (P, T, F, I,O,m0, Ω) be an oWFN.
An oWFN N ′ = (P ′, T ′, F ′, I ′, O′,m′

0
, Ω′) with P ′ ⊆ P , T ′ ⊆ T is an oWFN

pattern of N iff

– F ′ = F ∩ ((P ′ × T ′) ∪ (T ′ × P ′)),
– m′

0
= [ ],

– I ′ = I|P ′ ∪ R with R ⊆ P ′ \ I,
– O′ = O|P ′ ∪ S with S ⊆ P ′ \ O,
– Ω′ = {[ ]},
– for all p ∈ P ′ \ R, there is no t ∈ T \ T ′, (t, p) ∈ F ,
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– for all p ∈ P ′ \ S, there is no t ∈ T \ T ′, (p, t) ∈ F , and
– for all t ∈ T ′, there is no p ∈ P \ P ′, (p, t) ∈ F or (t, p) ∈ F .

The next theorem states that if the public view of a party participating in a
contract has an oWFN pattern N ′ and there is another oWFN pattern N ′′ with
N ′′ accords with N ′, then we can replace N ′ by N ′′ and the modified contract
is still weakly terminating. Such transformations can be applied incrementally
and thus we can derive a private view from a public view just by transforming
the public view and the resulting private view is correct by construction.

Theorem 2 (Justification of transformation rules). Let [N, r] be a con-
tract between parties {A1, . . . , Ak} where N = NA1

⊕ · · · ⊕NAk
is weakly termi-

nating. Let N ′
p be an oWFN pattern of NAi

, 1 ≤ i ≤ k, such that there exists
Nrest with NAi

= N ′
p ⊕ Nrest . Let further N ′′

p be an arbitrary oWFN. Then, if
N ′′

p accords with N ′
p, the modified contract N ′ = NA1

⊕ · · · ⊕ NAi−1
⊕ (N ′′

p ⊕
Nrest) ⊕ NAi+1

⊕ · · · ⊕ NAk
is weakly terminating.

We omit the proof of this theorem as it is just an application of Thm. 1.

3 Derive a Private View From a Public View

In this section, we show how a party can implement its private view by using
accordance-preserving transformation rules. This idea is inspired by earlier work
on projection inheritance [1, 2, 7, 8]. Accordance is a weaker notion than projec-
tion inheritance which was illustrated already using Fig. 1 where N

′
tr accords

with N tr but N
′
tr and N tr are not related by projection inheritance. However,

we will show that projection inheritance implies accordance, and therefore, all
inheritance-preserving transformation rules presented in [8] also preserve accor-
dance. We will show these rules by reformulating them to fit into the setting
of this paper. Afterwards, we will formulate dedicated transformation rules that
allow reordering of the sending and receiving of messages still guaranteeing

3.1 Inheritance-Preserving Transformation Rules

Projection inheritance compares process models by establishing a subclass-super-
class relationship. The subclass process is indeed a subclass if it inherits partic-
ular dynamic properties of its superclass. Projection inheritance is based on
branching bisimulation [11] (to compare the processes) and abstraction (to hide
tasks) and was formalized in [8] in terms of workflow nets. The assumption is
that the subclass adds methods to the superclass such that after hiding the
additional methods both are equivalent.

Based on the notion of projection inheritance, three inheritance-preserving
transformation rules have been defined in [8]. These rules correspond to design
patterns for extending a superclass to incorporate new behavior: (1) adding
loops, (2) inserting methods in-between existing methods, and (3) putting new
methods in parallel with existing methods.
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It is easy to reformulate projection inheritance in terms of the setting of
this paper. Instead of redefining these rules formally, we exemplify the rules in
Fig. 2. Figure 2(a) represents an oWFN pattern M0 of an oWFN M . M0 contains
transitions a, b, and c. By Def. 8, there are no other connections of a, b, c, p1,
and p2 than those shown in Fig. 2(a). Ai = (•a) ∩ IM is the set of input places
of a, Ao = (a•) ∩ OM is the set of output places of a, etc. Ai, Ao, Bi, Bo, Ci, Co

do not need to be disjoint. R = (•a) \ IM and S = (c•) \ OM are (by Def. 8)
the places connecting M0 to the rest of M . Similar remarks hold for the other
three oWFN patterns M1, M2, and M3. For example, M1 is obtained by adding
transition d to M0.
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Fig. 2. Accordance-preserving transformation rules based on projection inheritance.

If one ignores the interface places and hides transition d (i.e., all executions
of d are mapped onto silent steps), then M0, M1, M2, and M3 are branching
bisimular. Thus, M0 is a superclass of M1, M2, and M3. It is easy to see that
projection inheritance implies accordance.

Theorem 3 (Projection inheritance implies accordance). Let N ′ be an
oWFN pattern and N ′′ be an arbitrary oWFN. If N ′ and N ′′ are related by
projection inheritance, then N ′′ accords with N ′ and vice versa.

Theorem 3 justifies that all inheritance-preserving transformation rules can
be used to incrementally build a private view that accords with the public view
of a service. As an example, since M1 accords with M0, M2 accords with M0,
M3 accords with M0, and vice versa, M0 in Fig. 2 may be replaced by any of
the three other oWFNs M1, M2, and M3 without changing the set of strategies
of M . For technical details we refer to the technical report [9].

3.2 Accordance-Preserving Transformation Rules

The inheritance-preserving transformation rules presented in the last section are
limited in the sense that they do not allow to change the order of messages. In
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the following, we present six accordance-preserving transformation rules. Five of
these rules preserve accordance in both directions and one rule preserves accor-
dance only in one direction. Although these transformation rules are powerful,
they are not complete, meaning they do not cover all possible service implemen-
tations. Given an oWFN N , each transformation rule specifies a pattern N ′ of
N (see Def. 8) which can be replaced by another oWFN N ′′ yielding an im-
plementation of N . Theorem 2 justifies that this replacement does not violate
the overall contract. As a formal definition of all transformation rules would not
add any value to the paper and is also impossible due to the page limit, the
rules are only informally described and illustrated by help of some figures. For
the formalization of all rules including their correctness proofs we refer to the
technical report [9].

The first of the rules is depicted in Fig. 3(a) and specifies that a sequence of
sending events can be merged and the events can be sent simultaneously. Rule 1
preserves accordance in both directions. Thus, we can derive that a sequence of
sending events can also be reordered or can be sent concurrently. Reordering of
sending events and executing sending events concurrently preserve accordance
in both directions. The same holds for a sequence of receiving events. The cor-
responding rule (Rule 2) is, however, not depicted in the paper.

A generalization of the two previous rules is specified by Rule 3 (see Fig. 3(b)).
A sequence of receiving events followed by a sequence of sending events can be
executed simultaneously while preserving accordance in both directions.
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(b) Rule 3: Strat(N3) = Strat(N4).

Fig. 3. Rule 1 and Rule 3.

From Rules 1–3 we can derive that every oWFN pattern that has a transition
connected to more than one interface place can be transformed into an equivalent
oWFN pattern which has only transitions connected to a single interface place.
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In the following, without loss of generality, we therefore restrict ourselves to
patterns where each transition is connected to at most one interface place.

So far, we excluded the possibility that a sending event is followed by a
receiving event. Rule 4, depicted in Fig. 4, specifies that first sending and then
receiving a message can also be executed concurrently and vice versa. Rule 4
preserves accordance in both directions, too.

ta

tb

p

R

S

a

b

R

S

t1

ta tb

t2

b

a

=

p1 p2

p3 p4

N5

N6

Fig. 4. Rule 4: Strat(N5) = Strat(N6).

Figure 5(a) shows that first sending and then receiving cannot be reordered
in general: N7 does not accord with N5 and N5 does not accord with N7. The
oWFN depicted in Fig. 5(b) is a strategy for N5 but no strategy for N7. The
oWFN depicted in Fig. 5(c), in contrast, is a strategy for N7 but not for N5.

From this antipattern follows that first sending and then receiving (cf. N5)
cannot be transformed into an oWFN that sends and receives simultaneously,
because we could transform the latter net into N7 by applying Rule 3. Conse-
quently, first sending then receiving does not accord to sending and receiving
simultaneously and vice versa.

Rule 5 specifies how an alternative branch can be added to an oWFN pattern
N8 depicted on the left hand side of Fig. 6. The pattern N8 first receives a

and then enters either the left or the right branch. In the left (right) branch,
message b (c) is sent, and then message d (e) is received . The pattern N8 can
be transformed into N9 by adding an alternative branch. In this branch, d is
received, and then a message f is sent. Afterwards, this branch can be arbitrary;
that is, there can be any continuation (including direct continuation in S) of this
net illustrated by the frame. Rule 5 preserves accordance in one direction only.

The intuition behind the next transformation rule (Rule 6) is the possibility
to add (remove) “dead code” to (from) a service. To motivate this transformation
rule, consider a party that wants to reuse an existing service in the contract. This
service may provide functionality to other parties not involved in the current
contract. Technically, in the first step, this party makes internal all interface
places of this service that are not used, and in the second step, it looks for
transformation rules justifying the service to be a valid private view. Rule 6 is
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Fig. 5. Counterexamples.
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Fig. 6. Rule 5 (adding an alternative branch): Strat(N8) ⊆ Strat(N9).

depicted in Fig. 7. N10 receives a, then sends b, and then it can behave arbitrarily.
The oWFN pattern N11 results from adding an alternative branch to N10. This
branch can be entered if place c is marked. Afterwards, the branch may behave
arbitrarily. In the end, both branches are synchronized in S. However, c is an
example of an internal place with empty preset (it is a former interface place).
Thus, transition tc will never be enabled. Rule 6 preserves accordance in both
directions, meaning neither adding nor deleting “dead code” will change the set
of strategies for N10 and N11.

The six transformation rules presented in this section reflect the crucial im-
pact of the order of sending and receiving messages. The first two rules show that
sequences of sending events and sequences of receiving events can be executed
simultaneously while preserving accordance in both directions. This was our mo-
tivation to consider only oWFNs where each transition is connected to at most
one interface place. Transforming first-send-then-receive into send-and-receive-
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Fig. 7. Rule 6 (adding “dead code”): Strat(N10) = Strat(N11).

concurrently preserves accordance in both directions (Fig. 4). However, first-
send-then-receive cannot be transformed into send-and-receive-simultaneously
and vice versa. Consider first-receive-then-send next. It can be transformed into
receive-and-send-simultaneously (Fig. 3(b)) while preserving accordance in both
directions, but it cannot be transformed into receive-and-send-concurrently and
vice versa.

4 Case Study

In this section, we demonstrate how accordance-preserving transformation rules
can be applied to derive a private view of the agency from its respective public
view, taken from the running example in Fig. 1(a). On first sight, the modified

agency depicted in Fig. 8(b) and the (original) agency (depicted again in Fig. 8(a)
to ease the comparison) are not very similar. We will now show that the modified

agency was derived from the original agency by applying the transformation rules
defined in Sect. 3:

– A new transition u (newly-added transitions are depicted in dark gray) is
inserted in-between the reception of the trip order and the sending of the
flight order. This transition explicitly models the preparation of the flight
order from the trip order sent by the traveler. The addition is justified by
rule pattern M3 (cf. Fig. 2(d)) which preserves projection inheritance and
thus accordance.

– The rejection message from the airline is instantly routed to the traveler. Rule
3 justifies the merging of transition i and k to one transition, ik (transitions
created by merging transitions of the public view are depicted in light gray).

– Messages flight details and invoice can be sent simultaneously to the traveler

by transition jl. The merging of transition j and l is justified by Rule 1.
– Finally, a new branch was added to the agency, starting with transition v.

Intuitively, this branch models additional behavior that is available when the
modified agency service is running in a different environment. When priority

order is an input place for messages sent from a (modified) traveler service

13
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Fig. 8. The public view (a) and a private view (b) of the agency of Fig. 1(a).

and priority flight order is an output place for messages sent to a (modified)
airline service, the newly-added branch can be triggered by messages. Thus,
the modified agency can be reused in a different contract. However, the places
priority order and priority flight order are not exposed as interface places, and
as the place priority order is not marked, the branch is dead. Therefore, the
addition is justified by Rule 6.

As all rules applied are accordance-preserving, the modified agency (cf. Fig. 8(b))
is a correct private view of the agency (cf. Fig. 8(a)), and thus accords with the
running example contract (cf. Fig. 1(a)).

5 Conclusion

An interorganizational process couples interacting processes handled by different
parties. In this context, a contract serves as an agreement of these parties to a
public description of the overall process. Each of the parties implements its part
of the contract. These parts correspond to services and are termed “views”.
Each party has a public view (the part of the process it is responsible for) and
the private view (the process actually implemented). The notion of accordance
relates these two views and serves as a local correctness criterion. Accordance is
particularly suitable for interactions based on asynchronous message passing and
the local criterion ensures the correctness of the overall process even if parties
do not exactly behave as specified.
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In this paper, we presented six transformation rules to derive a private view
from a public view. As transformation rules preserve accordance between the
public and the private view, the private view is correct by construction. Accor-
dance guarantees that the overall process will always terminate properly; that
is, the overall process cannot run into a deadlock or livelock. We showed that
some of the rules preserve accordance in both directions while other preserve
accordance only in one direction. We discussed that the notion of accordance
generalizes the notion of projection inheritance [1, 2, 7, 8].

In ongoing work, we look for other correctness criteria than weak termination.
Moreover, we want to relate the notion of accordance to other equivalence notions
described in literature. Furthermore, an accordance check that returns which
rules have to be applied to derive one service from the other one seems to be of
practical relevance.
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