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Abstract. The degree of flexibility of workflow management systems heavily
influences the way business processes are executed. Constraint-based models are
considered to be more flexible than traditional models because of their semantics:
everything that does not violate constraints is allowed. Although constraint-based
models are flexible, changes to process definitions might be needed to comply
with evolving business domains and exceptional situations. Flexibility can be
increased by run-time support for dynamic changes – transferring instances to
a new model – and ad-hoc changes – changing the process definition for one
instance. In this paper we propose a general framework for a constraint-based
process modeling language and its implementation. Our approach supports both
ad-hoc and dynamic change, and the transfer of instances can be done easier than
in traditional approaches.

1 Introduction

When supporting business processes there is a difficult trade-off to be made. On the one
hand, there is a desire to control processes and to avoid incorrect or undesirable exe-
cutions of these processes. On the other hand, workers want flexible processes that do
not constrain them in their actions. This apparent paradox has limited the application of
workflow management systems thus far since, as indicated by many authors, workflow
management systems are too restrictive and have problems concerning dealing with
change [3].

Many approaches to resolve the paradox have been proposed. Some of them try to
avoid change, e.g. by generating implicit alternative paths [6, 8], or by differing the se-
lection of the desired behavior [7]. Others allow for changing the model for a single
instance and/or changing a process model while migrating all instances [9, 11, 19, 23].
The migration of process instances from one model to another introduces many interest-
ing problems [3,9,19,23]. For example, the “dynamic change bug” originally described
in [11] shows that it may be impossible to put the process instance into a suitable state
of the new model without skipping or repeatedly executing tasks.

In this paper we propose a solution that has some features of both approaches: we
try to avoid the need for change and at the same time we provide full support for all



kinds of change. To avoid the need for change we address the following problem: Tra-
ditional workflow languages force or stimulate the designer to over-specify things. For
example, it is possible to model all kinds of choices in today’s systems. It is, however,
not possible to simply state that two activities should never occur together. Instead, the
user is forced to provide a detailed strategy to implement this simple requirement, e.g.
by introducing a decision task and deciding when and by whom this task is executed.
We believe that replacing the imperative approach with a declarative one is essential for
making workflow management more flexible. Therefore, we consider here a framework
where workflows are defined by constraint models.

Avoiding over-specification makes processes more flexible (more execution paths
are allowed) and allows avoiding costly changes. Change is sometimes still unavoid-
able because of exceptions (e.g., an important customer has a special request which
requires the violation of a business rule) or changed circumstances (e.g., a new law en-
forcing to reverse the order of two activities). This paper explores what change means in
the context of constraint-based languages. Here it is interesting to see whether similar
problems as reported in [3, 11, 19] occur. Surprisingly, it turns out that both ad-hoc and
evolutionary changes are rather easy to support. This explains the subtitle of this paper:
“Change Made Easy”.

The results we report here show that it is possible both (1) to avoid the need for
unnecessary changes and restrictions (using a more declarative style) and (2) to provide
support for changes at the instance level (ad-hoc change) and at the type level (evolu-
tionary change). Moreover, it is also possible to easily differentiate between mandatory
and optional constraints. A user is forbidden to violate a mandatory constraint or to
change a model so that a mandatory constraint becomes violated. For optional con-
straints a warning is generated and the user may choose to violate it or not. Note that in
each case model checking techniques can give good diagnostic information that helps
the user to understand potential problems.

Our framework is supported by the ConDec language [16]. ConDec is a graphical
declarative process modeling language supported by the Declare tool, which also sup-
ports related languages such as DecSerFlow [4]. The Declare workflow management
system is open in the sense that it can support multiple constraint-based languages and
each of the languages is extendible and can be changed without changing the engine.
This is achieved by a flexible mechanism mapping graphical constraints onto LTL (Lin-
ear Temporal Logic) [14]. Note that the semantics are expressed in a temporal logic but
the end user only sees the graphical notation when modeling. The Declare system fully
supports the approach presented in this paper and the software can be downloaded from
http://is.tm.tue.nl/staff/mpesic/declare.htm.

The remainder of the paper is organized as follows. The general framework of con-
straint modeling and changes are presented in Section 2. In Section 3 we describe Con-
Dec, an implementation of a constraint modeling language, based on the general frame-
work. ConDec is supported by the Declare tool. The support of change in ConDec is
described in Section 4. Section 5 discusses related work, and finally Section 6 concludes
the paper and gives directions for future work.



2 Constraint Models

Constraint models are suitable for supporting flexible processes that allow many differ-
ent executions. Most theoretical process modeling languages, such as Petri Nets [17],
process algebras [15] and more applied business languages like BPMN, UML and
EPCs [20] define direct causal relationships between activities in process models. Op-
posed to this, constraint-based languages are of a less procedural nature and use a more
declarative style. Using constraints, the behavior is restricted. Unlike procedural lan-
guages constraints may be non-local, e.g., “eventually A is followed by B” and negative,
e.g., “either A or B can occur but not both”.

Activities and constraints on activities are the key elements of a constraint-based
model. We distinguish the universe of all activities A and the universe of all constraints
C. A∗ denotes the set of all sequences over A. We say that c is a constraint over A⊆A,
if it does not mention any activity a /∈ A. A constraint is a boolean expression that
evaluates to true or false for every trace σ ∈A∗. If a constraint c evaluates to true for a
trace σ ∈A∗, then we say that σ satisfies c, denoted as σ � c, otherwise we denote it as
σ 2 c. In Section 3 we will show that such constraints can be expressed graphically and
be mapped onto LTL.

Example 1 (Constraint). Let A = {curse,pray} be a set of two activities and c =“Every
curse activity is eventually followed by a pray activity” be a constraint over A. Then
〈curse〉 2 c, 〈pray,pray〉 � c, 〈curse,curse,pray〉 � c and 〈curse,pray,curse〉 2 c.

2.1 Preliminaries

First we introduce sequence concatenation (a), function overriding (⊕) and reduction
(	), which are used in the remainder of the framework. Sequences can be concatenated
into a new sequence.

Definition 1 (Sequence concatenation a). Let σ,γ be sequences over A with σ =
a1,a2,a3, . . . ,an(∀ai ∈ A) and γ = b1,b2,b3, . . . ,bn(∀bi ∈ A). Then σaγ = a1,a2,a3,
. . . ,an,b1,b2,b3, . . . ,bn.

We use function overriding to add and remap elements of a function domain and we
use function reduction to remove elements from a function domain. When a function f
is undefined for an element a, we denote this as f (a) =⊥.

Definition 2 (Function overriding ⊕). Let f : A→ B. Then f ⊕ (a,b) : A∪ {a} →
B∪{b} such that ( f ⊕ (a,b))(a) = b and ∀x ∈ A\{a} : ( f ⊕ (a,b))(x) = f (x).

Definition 3 (Function reduction 	). Let f : A→ B, a ∈ A, b ∈ B. Then f 	 (a,b) :
A\{a}→ B\{b} such that ( f 	 (a,b))(a) =⊥ and ∀x ∈ A\{a} : ( f 	 (a,b))(x) = f (x).

2.2 Constraint Workflows

Constraints define the boundaries within which activities can be executed. Besides ac-
tivities and constraints on these activities, the constraint model also includes a mapping
that defines whether constraints are optional (may be violated) or mandatory (may never
be violated).



Definition 4 (Constraint Model cm). A constraint model cm is defined as a triple cm =
(A,C,ctype), where

– A⊆A is a set of activities in the model;
– C ⊆ C is a set of constraints where every element c ∈ C is a constraint over A;
– ctype : C → {mandatory,optional} is a function that defines whether constraints

are mandatory or optional.

We use UCM to denote the universe of all constraint models.

For convenience, we define an operation to remove optional constraints from a con-
straint model.

Definition 5 (Mandatory version of cm). Let cm = (A,C,ctype) be a constraint model,
then mand(A,C, ctype) = (A,C′,c′type), where C′ = {c ∈ C | ctype(c) = mandatory} and
c′type : C′→
{mandatory}.

A constraint workflow contains several running instances, each related to a con-
straint model and a sequence of actions performed by the instance up to the current
moment. The framework we develop here, should support changes of the constraint
model by redefining restrictions on the behavior at run time. Moreover, we want to be
able to change a constraint model for a cluster of instances, which could be e.g., all
instances related to the handling of complaints at an insurance department. For this
purpose, we introduce the notion of constraint model identifiers. This identifier is then
mapped to one of the constraint models from the universe. Instances, in their turn, are
mapped to a constraint model identifier.

Definition 6 (Constraint Workflow wf ). A workflow specification based on constraint
models is defined by the tuple wf = (Pid,cmid,Pmap,CMmap, trace), where

– Pid is a set of process identifiers (instances);
– cmid is a set of constraint model identifiers;
– Pmap : Pid→ cmid is a function that maps instances to model identifiers;
– CMmap : cmid→ UCM is a function that maps model identifiers to constraint mod-

els;
– trace : Pid→A∗ is a function that maps instances to execution traces.

We use UWF to denote the universe of all constraint workflows wf .

Figure 1 depicts a mapping from instances of Pid to model identifiers in cmid and
a mapping from these model identifiers to constraint models in UCM . CMmap(cmid)
results in a constraint model cm. Note that not all constraint models in the universe
UCM need to have a related model identifier in cmid. Also observe that different pro-
cess instances can be mapped onto the same constraint model identifier, i.e., the same
constraint model. Even different constraint model identifiers might be mapped onto the
same constraint model, which reflects situations in which the same constraint model is
used in different contexts (e.g., two companies can develop two identical models).

Satisfaction of constraint sets depends on the execution trace.



Fig. 1. Mappings

Definition 7 (Satisfaction of constraint sets). Let C be a set of constraints and σ∈A∗

then σ � C ⇐⇒ ∀c ∈C : σ � c and σ 2 C ⇐⇒ ∃c ∈C : σ 2 c.

The purpose of constraints is, however, to define conditions that should hold on
the completed traces of instances. During execution we can only evaluate prefixes of
those traces, and a constraint violation on a prefix does not necessarily imply that the
constraint will be violated on the completed trace. Therefore, we introduce an evalu-
ation function that determines whether a constraint model cm is satisfied, violated or
temporarily violated, i.e., although the trace currently violates the constraints, the con-
straints can still become satisfied in the future.

Definition 8 (Evaluation eval). Let cm =∈ UCM be a constraint model where cm =
(A,C,ctype) and σ ∈A∗ be a trace. Then the evaluation function eval is defined as

eval(σ,(A,C,ctype)) =





satisfied if σ � C;
temporarily violated if (σ 2C)∧ (∃γ ∈ A∗ : σaγ � C);
violated otherwise.

Example 2. (Satisfaction) Consider again constraint c, with c =“Every curse activity
is eventually followed by a pray activity”. Suppose trace σ = 〈curse,curse〉 at some
moment during execution. Obviously σ 2 c, but σ can be a prefix of a trace that could
satisfy c during execution. For example 〈curse,curse,pray〉 � c.

When an instance executes actions, the trace of that instance is updated.

Definition 9 (Execution exec). Let wf ∈ UWF be a constraint workflow where wf =
(Pid,cmid,Pmap,CMmap, trace). Let pid ∈ Pid, CMmap(Pmap(pid)) = cm,
cm = (A,C,ctype) and a ∈ A. Then the execution function exec is defined as

exec(wf ,a,pid) = (Pid,cmid,Pmap,CMmap, trace⊕ (pid, trace(pid)a〈a〉)).

Furthermore we call an execution:

– normal if no constraint is violated: eval(trace(pid)a〈a〉,cm) 6= violated;
– deviating if only optional constraints are violated: eval(trace(pid)a〈a〉,cm) =

violated ∧ eval(trace(pid)a〈a〉,mand(cm)) 6= violated;
– invalid otherwise.



If an instance is closed, the instance will be removed, together with its trace. Unlike
in procedural language where an instance is closed automatically when some closing
state is reached, instances of constraint-based models can have multiple states at which
the instance could be closed. Therefore, many strategies can be used to close an instance
of a constraint-based model. One example of a closing strategy would be to allow users
to explicitly choose when to close an instance and to allow only “normal” closings.

Definition 10 (Closing an instance close). Let wf =∈ UWF be a constraint workflow
where wf = (Pid,cmid,Pmap,CMmap, trace). Let pid ∈ Pid, Pmap(pid) = cmid and
CMmap(cmid) = cm. Then closing instance close is defined as

close(wf ,pid) = (Pid
′,cmid,Pmap′,CMmap, trace′),

where
Pid
′ = Pid\{pid}, Pmap′ = Pmap	 (pid,cmid) and trace′ = trace	 (pid, trace(pid)).

We call closing of an instance:

– normal if all constraints are satisfied: eval(trace(pid),cm) = satisfied;
– deviating if all mandatory constraints, but not all optional constraints are satisfied:

eval(trace(pid),cm) 6= satisfied∧ eval(trace(pid),mand(cm)) = satisfied;
– invalid otherwise.

Operations We can easily add an instance to a workflow by extending the instance set
and adding an empty trace for this instance to the trace mapping.

Definition 11 (Adding a process instance addPI). Let wf ∈UWF be a constraint work-
flow where wf = (Pid,cmid,Pmap, CMmap, trace). Let pid /∈ Pid, cmid ∈ cmid, then

addPI(wf ,pid,cmid) = (Pid∪{pid},cmid,Pmap⊕ (pid,cmid),CMmap, trace⊕ (pid,〈〉)).
Constraint models from the universe can be added to the workflow by adding a

constraint model identifier to the identifier set and linking the identifier to the required
constraint model.

Definition 12 (Adding a constraint model addCMI). Let wf ∈ UWF be a constraint
workflow where wf = (Pid,cmid,Pmap,CMmap, trace). Let cmid /∈ cmid, cm ∈ UCM ,
then

addCMI(wf ,cmid,cm) = (Pid,cmid ∪{cmid},Pmap,CMmap⊕ (cmid,cm), trace).

Verification Once a constraint model has been defined, we can verify whether it con-
tains dead activities and conflicts. We call an activity a dead activity, when all traces that
contain this activity violate the constraints. We say that the model contains a conflict
when there are no traces that could (eventually) satisfy the constraints.

Definition 13 (Dead activity). Let cm = (A,C,ctype) and a ∈ A. Then a is a dead ac-
tivity if ∀σ ∈A∗ : a ∈ σ⇒ σ 2 C.

Definition 14 (Conflict). Let cm = (A,C,ctype), then there is a conflict in cm if ∀σ ∈
A∗ : σ 2 C.

Note that if there is a conflict in the model, then all activities of the model are dead
activities.
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Fig. 2. Changes for constraint workflows

2.3 Change

Constraint models support both ad-hoc and evolutionary changes. Ad-hoc changes are
typically needed to handle an exceptional situation for one case. An ad-hoc change for
an instance is allowed, when the instance trace satisfies the new model. Evolutionary
changes occur when there is a change in the process itself, e.g., by new laws or business
strategies. Traces of all running instances of the corresponding process model should
be evaluated and, if possible, the instances should be transferred (remapped) to the new
model. When this is not possible, i.e., the trace violates the new constraints, we call this
a history violation.

Figure 2 depicts a constraint workflow (without the trace mapping) and is used to il-
lustrate all change types. In Figure 2(a) four instances are depicted, of which i1, i2, i3 are
instances of constraint model cm1. Instance i4 is an instance of cm4. Constraint model
cm2 has no instances yet and cm3 is not part of the constraint workflow. In the remain-
der of this section we will explain all change types, by describing changes performed
on the original workflow, depicted in Figure 2(a). Dashed lines denote a remapping of
Pmap or CMmap with respect to the original workflow.

Definition 15 (Ad-hoc change δAH ). Let wf ∈ UWF be a constraint workflow where
wf = (Pid,cmid,Pmap,CMmap, trace). Let pid ∈ Pid, cmid ∈ cmid

3,
eval(trace(pid),CMmap(cmid)) 6= violated, then

δAH(wf ,pid,cmid) = (Pid,cmid,Pmap⊕ (pid,cmid),CMmap, trace).

Figure 2(b) shows a possible ad-hoc change. Suppose we would like to perform an
ad-hoc change on instance i3. We want this instance to use constraint model cm2 instead
of cm1. If the trace of instance i3 does not violate the constraints of the new model cm2,
we can remap instance i3 to identifier 2, which maps onto model cm2.

Total evolutionary changes can only be performed when all instances satisfy the
new model. If this is the case, all instances will be transfered to the new model.

3 Note that if cmid /∈ cmid , operation addCMI could be executed first.



Definition 16 (Total evolutionary change δEtotal ). Let wf ∈UWF be a constraint work-
flow where wf = (Pid,cmid,Pmap,CMmap, trace). Let cmid ∈ cmid, cm ∈ UCM ,
∀pid ∈ Pmap−1(cmid) : eval(trace(pid), CMmap(cmid)) 6= violated, then

δEtotal (wf ,cmid,cm) = (Pid,cmid,Pmap,CMmap⊕ (cmid,cm), trace).

In Figure 2(c) we illustrate an example of a total evolutionary change. Suppose
we would like to transfer all instances of constraint model cm1 (instances mapped to
identifier 1) to cm2. When for all instances the current trace satisfies cm2, we can remap
identifier 1 to cm2.

We also define partial evolutionary change, in which only instances that satisfy the
new model are transferred to the new model. All other instances proceed their execution
according to the old model.

Definition 17 (Partial evolutionary change δEpartial ). Let wf ∈ UWF be a constraint
workflow where wf = (Pid,cmid,Pmap,CMmap, trace). Let cm1 ∈ cmid, cm2 ∈ cmid,
then

δEpartial (wf ,cm1,cm2) = (Pid,cmid,Pmap′,CMmap, trace),

where Pmap′ : Pid→ cmid, such that

Pmap′(pid) =

{
cm2 ,∀pid ∈ SatPid
Pmap(pid) ,∀pid ∈ Pid\SatPid.

and
SatPid =

{
pid ∈ Pid | Pmap(pid) = cm1∧ eval

(
trace(pid),CMmap(cm2)

)
6= violated

}
.

An example of partial evolutionary change is given in Figure 2(d). Again, suppose
we would like to transfer instances of constraint model cm1 (instances mapped to iden-
tifier 1) to cm2. Then all instances that satisfy cm2 are remapped to an identifier that
is related to cm2. Note that for instance i1 it is not possible to migrate. Therefore, it
remains an instance of cm1.

Change in imperative models is hindered by the fact that an equivalent new state
must be found in the new model, which is not always possible [11]. For declarative
models it is straightforward to transfer instances. Instances for which the current trace
satisfies the constraints of the new model, are mapped onto the new model. Hence the
“dynamic change bug” described in [11] does not apply. In the next section we will
present an implementation based on this framework.

3 ConDec & Declare

In this section we briefly introduce ConDec [16], a constraint-based process modeling
language, based on the framework we presented in Section 2. ConDec is supported by
the Declare tool, see Section 3.2.
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[] ( A -> <> B )

Fig. 3. Constraint template “response” and two “response” constraints

3.1 ConDec

ConDec uses an open set of constraint templates for the definition of relationships be-
tween activities. Each template has (1) a name, (2) a graphical representation and (3)
semantics given by a Linear Temporal Logic (LTL) formula on finite traces [13]. LTL
is a temporal logic that, in addition to classical logical operators, uses several temporal
operators: always (2), eventually (3), until (t) and next time (©) [14]. LTL formulas
can be added to the language by means of constraint templates. Constraint templates
are parameterized graphical representations of LTL formulas. Templates can easily be
added, removed and changed in ConDec.

Figure 3 shows a constraint template and its application to two models. For the
sake of clarity, we have also added the corresponding LTL formulas to the picture. The
template depicted in Figure 3(a) is the response template and it is defined as a single
line with special symbols between some activities “A” and “B”, i.e., “A” and “B” are
parameters of the template. The semantics of the template are given by the formula
2(A→ 3B): every execution of activity “A” should eventually be followed by at least
one execution of activity “B”. The response template can be used to create response
constraints in various ConDec process models, by replacing template parameters with
activities from the model. Figures 3(b) and 3(c) show parts of two ConDec models, each
containing a response constraint between two activities.

Defining templates in this way enables adding various types of relations between
activities in ConDec. More than twenty LTL-based constraint templates are described
in [5]. The great benefit of constraint templates is that LTL formulas are hidden from the
users, therefore they do not have to be LTL experts in order to understand underlying
formulas.

Process Modeling in ConDec ConDec models are suitable for supporting flexible pro-
cesses with many deviations during the execution. As an example, consider the process
for a car rental shop. The model of the car rental process is given in Figure 4. Initially,
the client gets registered (activity “register client data”). The client will be charged (ac-
tivity “charge”) for the rental and (if applicable) all damage he caused. The “charge”
activity will occur at least once, but the moment of charging is not fixed. If during
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Fig. 4. Activities and constraints in car rental example

the rental period a problem is identified (activity “identify problem”), then car will be
checked (activity “check”). During the rental period the client can request repairs (ac-
tivity “request”) on which the car rental shop will repair the car if necessary (activity
“service”) and include the findings in the maintenance report of the car (activity “re-
port”) at a suitable moment. The client could request many repairs, or none at all and it
is not known in advance when requests will be made.

To model the the process of the car rental shop, we add several constraints on the
execution of the activities in the shop. Every instance must start with registering the
client (constraint “init”). The client will be charged for the rental and for all caused
damage, so he will be charged at least once (constraint “1..*”). Every repair service
on the car will only be done on request of the client, i.e., there has to be at least one
occurrence of activity “request” between each two occurrences of activity “service”.
Note that other activities may be executed in between “request” and “service”. Also,
for every service, eventually a report must be generated (constraint “response”). The
car must be checked when a problem is identified (constraint “responded existence”).
However, in case of a car with a long period without checks, employees can decide to
schedule check even if no serious problems were identified. At most one check will be
performed during rental (constraint “0..1”).

Process Execution Execution of activities in a process instance creates a history trace
for that instance (cf. Definition 9). The history of a process instance is a chronologically
ordered list of events that occurred in the instance. During execution, the state of every
constraint (cf. Definition 8) is depicted by a color: (1) green for satisfied, (2) orange for
temporarily violated and (3) red for violated. We do not allow the execution of activities
that would permanently violate mandatory constraints (depicted by solid lines). The
user will be warned for violation of optional constraints (depicted by dashed lines),
but he is free to choose to violate optional constraints. Closing an instance is only
allowed when all mandatory constraints are satisfied. Again, warnings are given when
an instance that is closed does not satisfy all optional constraints, but the user is free to
close the instance anyway.

Constraint semantics (expressed in LTL formulas) are used for the automated ex-
ecution of ConDec models. Every constraint (LTL formula) is translated into a finite
automaton [13]. The constraint is satisfied when the automaton is in an accepting state.
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Fig. 5. Illustrative example - an instance with history 〈curse, bless, pray〉

If the automaton is not in an accepting state and an accepting state is still reachable,
the constraint is temporarily violated. The constraint is permanently violated when the
automaton is not in an accepting state and an accepting state is not reachable. Also, one
overall automaton (mandatory automaton) is generated for the conjunction of LTL for-
mulas of all mandatory constraints in the model, and it is used to decide which activities
can be executed without violating mandatory constraints (cf. Definition 9).

For illustration purposes we use a simple ConDec model with three activities
(“curse”, “pray” and “bless”) and only one constraint, as shown in Figure 5(a). The
response constraint specifies that after every execution of the activity “curse” at least
one execution of the activity “pray” has to follow (i.e., 2(curse→3(pray))).

The automaton corresponding to the constraint in the ConDec model is shown in
Figure 5(b). The automaton has two states {s0,s1}. The initial state is s0, which is also
the accepting state of the automaton 4. Executing an activity triggers a transition of the
automaton.

Let us assume that an instance of the model presented in Figure 5(a) has history
〈curse, bless, pray〉. Figure 5(c) shows how this execution history determines the states
of the automaton 5. Initially, the automaton is in its accepting state s0 (the response
constraint is satisfied). Next, activity “curse” triggers a transition to state s1. State s1 is
not an accepting state, but an accepting state (s0) is reachable from it (the response con-
straint is temporary violated). Execution of activity “bless” triggers transition “!pray”
and the automaton remains in state s1. Finally, activity “pray” transfers the automaton
to accepting state s0 (the constraint model is satisfied again).

4 Termination of instances is possible only if the automaton is in an accepting state (s0 in our
case).

5 Note that Figure 5(b) shows a simplified deterministic automata for the response formula. The
automata generated from LTL formulas are in general non-deterministic automata [13]. The
standard determinization procedure [21] can be used to build a deterministic automaton.
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Fig. 6. Errors independent from history: dead activities and conflicts

Verification of ConDec models For correct execution it is important that models do
not contain errors. Errors can be discovered in a ConDec model using the mandatory
automaton of that model. First, if there is no transition in the automaton that can be
triggered by an activity then this activity is dead (cf. Definition 13). Second, if the
automaton is empty (has no states and no transitions) then the model has a conflict (cf.
Definition 14). It is possible to detect the smallest subset of constraints that causes the
error by searching through the powerset of all mandatory constraints in the model. To
achieve this, conjunction automata for subsets of constraints are created and analyzed.
If an error is found in a subset, its supersets will be discarded during the search because
all of them will contain the same error. This kind of verification can be performed on
new models and during run-time changes (Section 4).

Activity “service” in the model given in Figure 6(a) is a dead activity due to the
combination of the response and the not-response constraints, while other constraints
in the model in Figure 4 do not contribute to this error. The response constraint ex-
presses that every time “service” is executed, “register” has to be executed afterwards
at least once. The not-response constraint specifies exactly the opposite, namely that
activity “register” cannot be executed after activity “service”. As long as activity “ser-
vice” is not executed in the model, both constraints are fulfilled. However, as soon as
activity “service” is executed for the first time, it becomes impossible to fulfill both
constraints. Therefore, we can not allow execution of activity “service” in any instance
of this model.

Figure 6(b) shows a model with a conflicting combination of constraints. There is no
possibility to satisfy: (1) the existence constraint (“1..*”) on “service”, (2) the response
constraint on “service” and “report” and (3) the not-response constraint on “service”
and “report”. Therefore, the combination of these three constraints causes a conflict.

3.2 Declare Tool

We developed the Declare tool for development and enactment of declarative process
models. Declare can support various languages based on constraint templates as de-
scribed in Section 3. Specifying languages in the tool is relatively easy – languages
and constraint templates can be added, deleted, changed. Each language should include
templates specific for a certain domain. For example, the DecSerFlow language [4]
has been developed for web-service domain. This language is very similar to ConDec
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and it contains more than twenty constraint templates. Currently, Declare stores the se-
mantics of constraint templates as LTL formulas, but it is implemented in a way that
other formalization languages can be used. Templates are used in Declare to quickly
define constraints in models: a template is first selected and activities form the model
are assigned to the parameters of the template (cf. Figure 3). In this way, knowledge of
the semantics formalization language (e.g., LTL) is not necessary for the development
of models in Declare. Declare consists of three tools (see Figure 7): (1) the Designer is
used for the specification of languages (e.g. DecSerFlow, ConDec, etc.), specification of
constraint templates, development of process models; (2) the Framework is the execu-
tion engine where process instances can be launched, run-time changes can be applied
to instances, etc. and (3) the Worklist is a simple tool that each user uses to execute pro-
cess instances. Declare works together with the YAWL workflow management system
(www.yawl-system.com) [2]. On one hand, a DECLARE process can be implemented
as a sub-process of a YAWL process. On the other hand, a YAWL process can be im-
plemented as a sub-process of a DECLARE process. Therefore, it is possible to have
workflows which are partly procedural and partly declarative. In the next section we
show how Declare is extended to support changes.

4 Change in ConDec

Thanks to the usage of automata (cf. Section 3.1) it is fairly easy to change ConDec
models for already running instances. ConDec supports both ad-hoc and evolutionary
changes as defined in Section 2.3 (cf. Definitions 15, 16 and 17).

Procedure for change The procedure for changing an instance during the execution
is slightly different from the procedure for starting an instance. Figure 8 shows how
the DECLARE tool performs both procedures. When an instance of a verified con-
straint model is started, an automaton is created for the mandatory constraints and is
set to the initial state. After these steps, the instance starts executing with the constraint
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automaton in its initial state. During change, one additional step, called instance veri-
fication (cf. Definition 8), is needed to determine whether the history trace satisfies the
constraints of the new (changed) model. Instance verification could reveal history viola-
tions. A history violation is a permanent violation of mandatory constraints of the new
model. It occurs when the history (generated by the automaton for the old model) can-
not be replayed by the new automaton (for the changed model). Change is only allowed
in the absence of history violations. After change, the instance continues its execution
according to the new model. The state of the new automaton is the state that was set by
the history trace, i.e. history is “replayed” in the new model. In cases of history viola-
tion, the minimal subset of constraints causing the violation is detected using the same
technique as we used for dead activities and conflict verification.

Change operations Changes of ConDec models in the DECLARE tool can be
achieved by: (1) adding constraints, (2) removing constraints, (3) adding activities and
(4) removing activities. Using combinations of these four atomic change operations it
is also possible to change constraint types from mandatory to optional and vice versa in
running instances. For example, changing type of a constraint from optional into manda-
tory can be decomposed into two atomic actions: an optional constraint is removed and
an mandatory constraint is added to the model.

The automaton used for execution of an instance is generated based on all manda-
tory constraints in the instance model. Therefore, this automaton will change only when
adding/removing mandatory constraints. In cases of other changes (i.e., adding and re-
moving activities and optional constraints), the execution automaton will remain the
same like before the change. Due to this fact, history violations can only occur when
adding mandatory constraints to the constraint model. When an activity is added (or
removed) in the running instance, its execution automaton will remain the same, but
the users will (or will not) be able to execute the activity in the future for the running
instance (cf. Definition 9). When removing an activity involved in one or more con-
straints, one of the two strategies can be adopted: (1) the change operation is rejected
and the activity cannot be removed or (2) the activity and all related constraints are
removed from the model. Currently, the second strategy is implemented in Declare.

Figure 9(a) shows a ConDec model where a precedence constraint has been added
to the model. The precedence constraint specifies that each “bless” activity can be ex-
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ecuted only after at least one execution of activity “pray”. Figure 9(b) shows the au-
tomaton for all constraints of the ConDec model. In the automaton the “bless” activity
is only allowed after execution of the “pray” activity (state s1). Figure 9(c) shows a
history violation for trace 〈curse, bless, pray, bless〉. The violation is caused by the fact
that the automaton is unable to execute “bless” in s0. Therefore, adding the “prece-
dence” constraint is not allowed for instances with this history trace. Figure 10 shows
a screenshot of Declare reporting this history violation for the “precedence” constraint.
Note that there might be cases where a group of constraint causes a history violation.
Declare searches for the smallest subset of constraints that causes an verification error
(dead activity, conflict or history violation) by searching through the powerset of all
mandatory constraints as described in Section 3.1.

Change types The DECLARE tool supports both total and partial evolutionary change
of ConDec models. For an ad-hoc change, instance verification is only performed for
the relevant instance. In traditional languages migration of instances is complicated
and not always possible. The complexity of this operation stems from the fact that for
the current state of an instance, an appropriate state in the new model has to be found
and this is not always possible (cf. the “dynamic change bug” described in [11] and
the many problems described in [19]). In declarative languages, such as ConDec, it is
not necessary to find such a state. DECLARE only investigates the state of the new
mandatory constraint automaton for the history trace(s), to detect whether migration
is possible. For evolutionary changes, DECLARE performs instance verification on all
instances of the old constraint model. Instances that do not cause history violation are
migrated to the new model. Other instances continue execution with the old model.

5 Related Work

Many researchers have been trying to provide ways of avoiding the apparent paradox
where, on the one hand, there is the desire to control the process and to avoid incorrect
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or undesirable executions of the processes, and, on the other hand, workers want lots
of flexibly and to feel unconstrained in their actions [1, 3, 4, 6–9, 11, 16, 18, 19, 23]. It is
impossible to provide a complete overview of related work. Therefore, we refer to only
some of the most related papers in this area.

See [3] for a taxonomy of change and [12] for an introduction to the different types
of workflow processes. The case handling concept is advocated as a way to avoid re-
stricting users in their actions [6]. This is achieved by a range of mechanisms that allow
for implicit deviations that are rather harmless. In [8] completely different techniques
are used, but also the core idea is that implicit paths are generated to allow for more
flexibility. In [7] pockets of flexibility are identified that are specified/selected later in
the process, i.e., there is some form of “late binding” at run-time. Many papers look at
problems related to ad-hoc and/or evolutionary change [1,9,11,18,19,23]. The problem
of the dynamic change bug was introduced in [11]. In [1] this problem is addressed by
calculating so-called change regions based on the structure of the process. A particu-
lar correctness property is described in [23] and the problem of instance migration is
also investigated in [9]. In the context of the ADEPT system the problem of workflow
change has been investigated in detail (including data analysis) [18, 19].

It is also interesting to mention some commercial workflow management systems
in this context. Historically, InConcert of Xerox and Ensemble of FileNet were systems
among the first commercial systems to address the problem of change. Both supported
ad-hoc changes in a rather restrictive setting. Several systems have been extended with
some form of late binding. For example, the Staffware workflow system allows for the
dynamic selection of subprocesses at run-time. Probably the most flexible commercial
system is FLOWer of Pallas Athena [6]; this system supports a variety of case handling
mechanisms to enable flexibility at run-time while avoiding changes of the model.

This paper is based on the earlier work on ConDec [16] and DecSerFlow [4] where a
more declarative style of modeling is advocated. In those papers, the problem of change
is not addressed, i.e., the goal is to avoid change. Despite various approaches to declar-
ative (and constraint-based) workflow specification [10, 22], as far as we know, this
paper is the first paper that investigates the possibility of allowing ad-hoc and evolu-
tionary changes in a constraint-based language.



6 Conclusions

This paper presented a new and comprehensive approach towards supporting change
in constraint-based workflow models. This approach combines the advantages of hav-
ing a declarative style of modeling and allowing ad-hoc and evolutionary changes. On
the one hand, we try to avoid over-specification by using a declarative style of modeling
rather than the typical procedural styles used in today’s workflow management systems.
On the other hand, we acknowledge the fact that sometimes change is unavoidable and
provide extensive support for this. The results presented in this paper show that it is rel-
atively easy to support ad-hoc and evolutionary changes in constraint-based workflow
models.

In this paper, we presented a general approach and also showed a concrete appli-
cation of the ideas using the ConDec language [16]. Moreover, the whole approach
is supported by the Declare system. The reader is invited to download the tool from
http://is.tm.tue.nl/staff/mpesic/declare.htm. Declare works together with
the YAWL workflow management system [2] (www.yawl-system.com) that also al-
lows for flexibility through so-called worklets [7]. This enables developing workflows
which are partly procedural and partly declarative while using all kinds of flexibility
mechanisms. Future work will aim at experimenting with interesting mixtures of these
mechanisms, e.g., to provide guidelines on when to use particular types of flexibility.
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