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Abstract. Business process models play an important role for the man-
agement, design, and improvement of process organizations and process-
aware information systems. Despite the extensive application of pro-
cess modeling in practice, there are hardly empirical results available
on quality aspects of process models. This paper aims to advance the
understanding of this matter by analyzing the connection between for-
mal errors (such as deadlocks) and a set of metrics that capture various
structural and behavioral aspects of a process model. In particular, we
discuss the theoretical connection between errors and metrics, and pro-
vide a comprehensive validation based on an extensive sample of EPC
process models from practice. Furthermore, we investigate the capability
of the metrics to predict errors in a second independent sample of models.
The high explanatory power of the metrics has considerable consequences
for the design of future modeling guidelines and modeling tools.

1 Introduction

Even though workflow and process modeling have been used extensively over the
past 30 years, we know surprisingly little about the act of modeling and which
factors contribute to a “good” process model in terms of error probability. This
observation contrasts the large body of knowledge that is available for the for-
mal analysis and verification of desirable properties, in particular for Petri nets.
While conceptual work was conducted on guidelines and quality frameworks (e.g.
[1–4]), there is clearly a need for an empirical research agenda to acquire new
insights on quality (cf. [5]) and usage aspects (cf. [6]) of process modeling.

A recent study provides evidence that larger process models from practice
tend to have more formal flaws (such as e.g. deadlocks) than smaller models [7,
8]. One obvious hypothesis related to this phenomenon would be that human
modelers loose track of the interrelations of large and complex models due to



their limited cognitive capabilities (cf. [9]), and then introduce errors that they
would not insert in a small model. Yet, there are further factors beyond simple
count metrics such as the degrees of sequentiality, concurrency, or structuredness
that need to be considered [10]. Against this background, this paper provides the
following three contributions. First, we introduce a tool-based approach for de-
tecting errors and calculating metrics for Event-driven Process Chains (EPCs),
a popular business process modeling language. Second, we utilize an extensive
sample of EPC models from practice to analyze the statistical connection be-
tween errors and metrics. Third, we calculate a logistic regression model and
validate its ability to predict errors in a second independent sample. All these
contributions relate to the formal correctness of the process model as a design ar-
tifact. Validation aspects with respect to the content of a process model, human
understandability issues, ease of use of the modeling language, and modeling
pragmatics are also closely related to quality, but they are not considered here.

The remainder of the paper is structured as follows. In Section 2 we give a
brief overview of EPCs, EPC soundness, and the kind of metrics we calculate.
In Section 3 we introduce a sample of 2003 EPCs from practice that we use
to investigate the connection between errors and metrics. Moreover, we provide
disaggregated descriptive statistics. In Section 4 we determine the correlation
between errors and metrics, and estimate a logistic regression function. This
function is validated against a second independent sample of EPCs for its ca-
pability to predict errors. Section 5 discusses our findings in the light of related
research before Section 6 concludes the paper.

2 Error Detection and Metrics Calculation for EPCs

The Event-driven Process Chain (EPC) is a business process modeling language
for representing temporal and logical dependencies of activities in a business
process (see [11]). EPCs offer function type elements to capture activities of a
process and event type elements describing pre- and post-conditions of func-
tions. Process interface type elements are used to refer to subsequent processes.
Furthermore, there are three kinds of connector types including AND (symbol
∧), OR (symbol ∨), and XOR (symbol ×) for the definition of complex rout-
ing rules. Connectors have either multiple incoming and one outgoing arc (join
connectors) or one incoming and multiple outgoing arcs (split connectors). The
informal (or intended) semantics of an EPC can be described as follows. The
AND-split activates all subsequent branches in concurrency. The XOR-split rep-
resents a choice between one of alternative branches. The OR-split triggers one,
two or up to all of multiple branches based on conditions. In both cases of the
XOR- and OR-split, the activation conditions are given in events subsequent to
the connector. The AND-join waits for all incoming branches to complete, then
it propagates control to the subsequent EPC element. The XOR-join merges al-
ternative branches. The OR-join synchronizes all active incoming branches. This
feature is called non-locality since the state of all transitive predecessor nodes
has to be considered. Regarding their routing elements, EPCs are quite similar



to BPMN [12] and YAWL [13]. Recently, EPC semantics have been formalized,
and there is tool support for the verification of EPC soundness (see [14]). In
this paper, we use EPC soundness as a correctness criterion in order to find out
whether the model has errors or not. In particular, an EPC is sound if and only
if for a set of initial markings I and a set of final markings O the following three
properties hold:

(i) For each start-arc there exists an initial marking i ∈ I where the arc (and
hence the corresponding start event) holds a positive token.

(ii) For every marking reachable from an initial state i ∈ I, there exists a firing
sequence leading from this marking to a final marking o ∈ O.

(iii) The final markings o ∈ O are the only markings reachable from a marking
i ∈ I such that there is no node that can fire.

We use two complementary tools to check whether an EPC is sound (has no
errors) or unsound (has errors): firstly, xoEPC that implements a fast, but not
complete reduction rule approach, secondly, a ProM plug-in [15] that calculates
the reachability graph which is complete, but not very performative [16]. Both
tools can be coupled using the EPML interchange format [17].

Beyond verification of EPC soundness, xoEPC also calculates a set of process
model metrics. We briefly describe them in the following list including their
hypothetical connection with errors. The formulas for calculating the different
metrics are given and extensively discussed in [16, Chap.5].4 Furthermore, this
reference mentions related work for each of the metrics.

Size SN refers to the number of nodes of the process model graph. An increase
in SN should imply an increase in error probability (+). Count metrics of
different node types are written as e.g. SC for connectors.

Diameter diam gives the length of the longest path from a start node to an
end node in the process model. It is presumably positively connected with
error probability (+).

Density ∆ relates the number of arcs to the maximum number of arcs between
all nodes. We presume a positive connection (+).

Coefficient of Connectivity CNC gives the ratio of arcs to nodes (+).
Average Connector Degree dC gives the number of nodes a connector is in

average connected to (+).
Maximum Connector Degree d̂C captures the maximum degree over all con-

nectors (+).
Separability Π gives the ratio of the number of cut-vertices to the number of

nodes. An increase in Π should imply a decrease in error probability (–).
Sequentiality Ξ is the number of arcs between none-connector nodes divided

by the overall number of arcs (–).
Structuredness Φ of the process graph is one minus the number of nodes in

the EPC reduced with structured reduction rules divided by the number of
nodes in the original EPC (–).

4 This reference is also available online at http://wi.wu-wien.ac.at/home/mendling/
publications/Mendling%20Doctoral%20thesis.pdf



Depth Λ captures how deep nodes are nested between splits and joins (+).
Connector Mismatch MM gives the sum of mismatches for each connector

type. The mismatch is the absolute sum of all input arcs minus output arcs
over all connectors of a connector type (+).

Connector Heterogeneity CH gives the type entropy of the connectors (+).
Control Flow Complexity CFC sums up all choice of a process based on the

number of splits of each type and its number of outgoing arcs (+).
Cyclicity CY C relates nodes on cycles to all nodes (+).
Token Splits TS sums up all concurrent threads that can be activated by

AND- and OR-splits in the process (+).

Figure 1 illustrates for an example EPC taken from [18] which nodes and
arcs contribute to the more elaborate metrics. Since the different count metrics,
in particular for size, can be easily read from the model, we focus on those that
need to be calculated from the process graph, i.e. separability, sequentiality,
structuredness, depth, cyclicity, and diameter.

The separability ratio Π depends on the identification of cut vertices (i.e.
articulation points), i.e. those nodes whose deletion breaks up the graph in two
or more disconnected components. Figure 1 displays articulation points with a
letter A written next to the top left-hand side of the node. For example, if the
function “record loan request” is deleted, the start event is no longer connected
with the rest of the process model. There are eleven articulation points in total
yielding a separability ratio of 11/(27 − 2) = 0.440. Note that start and end
events do not belong to the set of articulation points, since their deletion does
not increase the number of separate components.

The sequentiality ratio Ξ is calculated by relating the number of sequence
arcs, i.e. arcs that connect functions and events, to the total number of arcs.
Figure 1 highlights sequence arcs with an s label. There are ten sequence arcs
and 29 arcs altogether which results in a sequentiality ratio of 10/29 = 0.345.
The degree of structuredness Φ relates the size of a reduced process model to the
size of the original one. Figure 1 shows those elements with a cross on the left-
hand side that are eliminated by reduction of trivial constructs. Other structured
reduction rules are not applicable. Since 15 elements are deleted by reduction,
the structuredness ratio is 1−15/27 = 0.556. The in-depth and out-depth is also
indicated for each node in Figure 1. The depth of a node is then the minimum of
in-depth and out-depth. Several nodes have a depth of 1, which is a maximum,
and therefore also the depth of the overall process. The cyclicity is based on the
relation between number of nodes on a cycle and nodes in total. Figure 1 shows
nodes on a cycle with a letter C written to the left-hand side bottom. There
are seven such nodes yielding a cyclicity ratio of 7/27 = 0.259. Finally, Figure 1
connects those 14 nodes that are on the diameter with a bold line.

3 Empirical Distribution of Errors and Metrics

As input to our analysis we use a sample of EPC business process models that
are available in the XML interchange format of ARIS Toolset of IDS Scheer
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AG. The sample includes four collections of EPCs with a total of 2003 process
models. All EPCs of the four groups were developed by practitioners.

1. SAP Reference Model: The first collection of EPCs is the SAP Reference
Model. The development of the SAP reference model started in 1992 and first
models were presented at CEBIT’93 [19, p.VII]. We use the SAP reference
model in its version from 2000 that includes 604 non-trivial EPCs.

2. Service Model: The second collection of EPCs stems from a German process
reengineering project in the service sector. The project was carried out in
the late 1990s. The models of this project include 381 non-trivial EPCs.

3. Finance Model: The third model collection contains EPCs of a process doc-
umentation project in the Austrian financial industry. It includes 935 EPCs.

4. Consulting Model: The fourth collection covers in total 83 EPCs from three
different consulting companies.

As a first step, the set of ARIS XML files is read and processed by xoEPC
to generate information on errors and values for all the metrics. Furthermore,
each EPC is then checked by the help of the reachability analysis plug-in for
ProM. The results of this analysis are added to an analysis table. We use the
software package for the statistical analysis of this table. In particular we present
descriptive statistics disaggregated by group and error in Sections 3.1 and 3.2.

3.1 Descriptive Statistics Disaggregated by Group

In this section we characterize the overall EPC sample and its four sub-groups
by the help of mean values µ and standard deviation σ for each metric. Several
of the disaggregated mean values are quite close to each other, but in particu-
lar the Finance Model shows a striking differences: it has the highest mean in
structuredness and sequentiality. Figures 2 and 3 illustrates the distribution of
both these metrics as box plots disaggregated by group. In this type of diagram
invented by Tukey [20] the median is depicted as a horizontal line in a box that
represents the interval between lower and upper quartile, i.e. the EPCs ranked by
the metric from 25% to 75%. The upper and lower wicks define a one and a half
multiple of the respective quartile. Values outside these two intervals are drawn
as individual points and are considered to be outliers. From this observation
on structuredness and sequentiality we might conclude that the Finance Model
contains the more structured EPCs and thus might have less error models.

There is some evidence for such a hypothesis when we look at the number
of errors in each of the four groups. Table 1 gives a respective overview. It
can be seen that there are 2003 EPCs in the overall sample and 215 of them
have at least one error. Accordingly, there is an overall error ratio of 10.7%.
154 of the 215 errors were found by xoEPC. 156 EPCs could not be reduced
completely and were analyzed with ProM. This analysis revealed that 115 of the
unreduced EPCs still had errors. Please note that there are EPCs for which both
xoEPC and ProM found errors. Therefore, the number of EPCs with errors is
less than the sum of EPCs with xoEPC and ProM errors. The comparison of the



Fig. 2. Box plot for structuredness dis-
aggregated by group (1=SAP, 2=Service,
3=Finance, and 4=Consulting)

Fig. 3. Box plot for sequentiality disag-
gregated by group (1=SAP, 2=Service,
3=Finance, and 4=Consulting)

Table 1. Errors in the sample models

Parameter Complete SAP Ref. Services Finance Consulting
Sample Model Model Model Models

xoEPC errors 154 90 28 26 10
Unreduced EPCs 156 103 18 17 18
ProM error EPCs 115 75 16 7 17

EPCs with errors 215 126 37 31 21
EPCs in total 2003 604 381 935 83

Error ratio 10.7% 20.9% 9.7% 3.3% 25.3%

groups shows that the error ratio is quite different. In the previous paragraph
we hypothesized that the finance model group might have less errors since its
models are more structured. This suggests that metrics could be able to explain
the low error ratio of only 3.3 %. We search further evidence in the next section.

3.2 Descriptive Statistics Disaggregated by hasErrors

In this section we discuss the distribution of the different metrics disaggregated
by the variable hasErrors. Table 2 shows that there are quite large differences
in the mean values of the sub-samples with and without errors. It is interest-
ing to note that the error mean µe is higher than the non-error mean µn for
most metrics where we assumed a positive connection with error probability in
Section 2 and smaller for those metrics with a presumably negative connection.
The only case where this does not hold is the density metric; it seems that it
more accurately works as a counter-indicator for size than as an indicator for
the density of connections in the model. The two columns on the right hand side
of Table 2 might provide the basis for proposing potential error thresholds. The
first of these columns gives a double σn deviation upwards from the non-error
mean µn. Given a normal distribution only 2.5% of the population can be ex-



Table 2. Mean and Standard Deviation of the sample models disaggregated by error

Parameter Complete Sample Non-Error EPCs Error EPCs 2 σ dev. up 2 σ dev. down
µ σ µn σn µe σe µn + 2σn µn − 2σn

SN 20.71 16.84 18.04 13.48 42.97 24.08 44.99 ≈ µe

SE 10.47 8.66 9.06 6.69 22.17 13.19 22.45 ≈ µe

SF 5.98 4.94 5.67 4.65 8.53 6.33 14.97
SC 4.27 5.01 3.30 3.47 12.26 7.89 10.24 < µe

SA 21.11 18.87 18.14 15.20 45.79 26.78 48.54 ≈ µe

diam 11.45 8.21 10.63 7.71 18.25 9.01 26.06
∆ 0.09 0.07 0.09 0.07 0.03 0.02 0.23
CNC 0.96 0.13 0.95 0.13 1.05 0.08 1.21

dC 3.56 2.40 2.80 1.66 3.57 0.68 6.11

d̂C 2.88 1.60 3.31 2.28 5.64 2.41 7.87
Sep. Π 0.56 0.27 0.59 0.27 0.35 0.13 0.06
Seq. Ξ 0.46 0.31 0.49 0.30 0.18 0.14 -0.12
Strct. Φ 0.88 0.11 0.90 0.09 0.70 0.16 0.72 > µe

Depth Λ 0.70 0.74 0.61 0.69 1.45 0.73 1.98
MM 3.31 4.55 2.54 3.45 9.71 6.92 9.44 < µe

CH 0.28 0.35 0.22 0.32 0.75 0.19 0.85
CFC 382.62 8849.48 202.19 6306.23 1883.17 19950.26 12814.64
CY C 0.01 0.08 0.01 0.06 0.07 0.17 0.12
TS 1.82 3.53 1.28 2.46 6.26 6.62 6.20 < µe

pected to have a metric value greater than this. The comparison of this value to
the mean µe of the error EPCs gives an idea how good the two subparts of the
sample can be separated by the metric. In several cases the mean µe is outside
the double σn interval around µn. The box plots in Figures 4 and 5 illustrate
the different distributions. It can be seen that correct EPCs tend to have much
higher structuredness values and lower connector heterogeneity values. The next
section investigates this observation with inferential statistics.

Fig. 4. Box plot for structuredness disag-
gregated by error

Fig. 5. Box plot for connector heterogene-
ity disaggregated by error



4 Inferential Statistics

4.1 Correlation Analysis

This section approaches the connection between error probability and metrics
with a correlation analysis. We use the Spearman rank correlation coefficient for
ordinal data. As a confirmation of the previous observation all variables have the
expected direction of influence besides the density metric. Table 3 presents the
Spearman correlation between hasErrors and the metrics ordered by strength of
correlation. It can be seen that several correlations are quite considerable with
absolute values between 0.30 and 0.50. The significance of all correlations is good
with 99% confidence.

Table 3. Spearman correlation between hasError and metrics ordered by absolute
correlation

hasError hasError
cHeterogeneity 0.46 Sequentiality -0.35

C 0.43 Depth 0.34
MM 0.42 MaxCDegree 0.33
CFC 0.39 CYC 0.30

A 0.38 diameter 0.30
tokenSplit 0.38 Separability -0.29

N 0.38 CNC 0.28
E 0.38 AvCDegree 0.23

Density -0.37 F 0.19
Structuredness -0.36

The ability of a metric to separate error from non-error models by ranking
is illustrated in Figures 6 and 7. For Figure 6 all models are ranked accord-
ing to their size. A point (x, y) in the graph relates a size x to the relative
frequency of error models in a subset of models that have at least size x, i.e.
y = |{ |errorEPCs|

|allEPCs| | SN (EPC) > x}|. It can be seen that the relative frequency
of error EPCs increases by increasing the minimum number of nodes. In partic-
ular, the relative frequency of error EPCs is higher than 50% for all EPCs of at
least 48 nodes. In Figure 6 all models are ranked according to their structured-
ness and (x, y) relates the structuredness x to the subset of models that have
at most structuredness x. Here, the graph decreases and drops below 50% at a
structuredness value of 0.80. Similar observations can be made for some of the
other metrics, too. The values could be used as candidate thresholds. Altogether
the relative frequency of error models above 50% is reached if

number of nodes SN > 48 number of arcs SA > 62
number of connectors SC > 8 token splits TS > 7
number of events SE > 22 connector mismatch MM > 9
number of functions SF > 40 structuredness Φ < 0.8
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4.2 Logistic Regression Estimation

This section provides an introduction to logistic regression analysis and presents
the result of its application for estimating the prediction model for error prob-
ability based on metrics. Logistic regression is a statistical model to estimate
the probability of binary choices. It is perfectly suited to deal with dependent
variables such as hasErrors with its range error and no error. The idea of bi-
nary choice models is to describe the probability of a binary event by its odds,
i.e., the ratio of event probability divided by non-event probability. In the lo-
gistic regression (or logit) model the odds are defined as logit(pi) = ln( pi

1−pi
) =

β0 + β1x1,i + . . . + βkxk,i for k input variables and i observations, i.e. i EPCs in
our context. From this follows that

pi =
eβ0+β1x1,i+...+βkxk,i

1 + eβ0+β1x1,i+...+βkxk,i

The relationship between input and dependent variables is represented by an
S-shaped curve of the logistic function that converges to 0 for −∞ and to 1 for
∞. The cut value of 0.5 defines whether event or non-event is predicted. Exp(B)
gives the multiplicative change of the odds if the input variable is increased by
one unit, i.e. Exp(B) > 1 increases and Exp(B) < 1 decreases error probability.
The actual value Exp(B) cannot be interpreted in isolation since its impact de-
pends upon the position on the non-linear curve [21, p.791]. The significance of a
logistic regression model is assessed by the help of two statistics. First, the Hos-
mer & Lemeshow Test should be greater than 5% to indicate a good fit based on
the difference between observed and predicted frequencies. Second, Nagelkerke’s
R2 ranging from 0 to 1 serves as a coefficient of determination indicating which
fraction of the variability is explained. Furthermore, each estimated coefficient of
the logit model is tested using the Wald statistic for being significantly different
from zero. The significance should be less than 5%. We calculate the logistic re-
gression model based on a stepwise introduction of those variables that provide
the greatest increase in likelihood. For more on logistic regression see [22].

Before calculating a multivariate logistic regression model for error probabil-
ity we carry out two preparatory analyses. First, we check collinearity, then we



determine which variables are included in the regression model. Furthermore,
we excluded 29 EPCs from the analysis that were not syntactically correct.
Collinearity describes the phenomenon that at least one of the independent vari-
ables can be represented as a linear combination of other variables. The absence
of collinearity is not a hard criterion for the applicability of logistic regression,
but it is desirable. Since the tolerance test indicated collinearity problems, we
had to dropped all count metrics apart from SN since they were highly cor-
related. This resulted in a reduced variable set with no collinearity problems.
Furthermore, we calculated univariate models with and without a constant in
order to check whether all inputs were significantly different from zero. As a
conclusion from this analysis we drop the constant and the control flow com-
plexity CFC for the multivariate analysis. First, the constant is not significantly
different from zero (Wald statistic of 0.872 and 0.117) in the separability and
the sequentiality model which suggests that it is not necessary. Second, the CFC
metric is not significantly different from zero (Wald statistic of 0.531 and 0.382)
in both models with and without constant. All other metrics stay in the set of
input variables from the multivariate logistic regression model.

The final model was calculated in nine steps and it includes seven variables.
It is interesting to note that again the hypothetical impact direction of the
included metrics is confirmed. All variables have an excellent Wald statistic value
of better than 0.001 indicating that they are significantly different from zero.
Furthermore, the Hosmer & Lemeshow test is greater than 0.05 which is also a
good value. Finally, the Nagelkerke R2 has an excellent value of 0.901 indicating
a high degree of explanation. Based on the regression results we can derive a
classification function p(EPC) for EPCs. It predicts that the EPC has errors if
the result is greater than 0.5. Otherwise it predicts that there are no errors in
the EPC. It is calculated by the help of the metrics coefficient of connectivity
CNC, connector mismatch MM , cyclicity CY C, separability Π, structuredness
Φ, connector heterogeneity CH, and the diameter. It is

p(EPC) =
elogit(EPC)

1 + elogit(EPC)

with

logit(EPC) = +4.008 CNC
+0.094 MM
+3.409 CY C
−2.338 Π
−9.957 Φ
+3.003 CH
+0.064 diameter

It is easy to calculate an error prediction for an EPC based on this function. For
the sample this function yields the following classification:



– 1724 EPCs are correctly predicted to have no errors,
– 155 EPCs are correctly predicted to have errors,
– 58 EPCs are predicted to have no errors, but actually had, and
– 37 EPCs are predicted to have errors, but actually had none.

Altogether 1879 EPCs have the correct prediction. The overall percentage is
95.2%, that is 6% better than the naive model that always predicts no error
(89.2%). Furthermore, there are 213 EPCs with errors in the reduced sample.
155 of them are correctly predicted, i.e. 72.7%. Finally, the prediction function
gives a clue about the relative importance of the different metrics. Structured-
ness appears to be the most important parameter since its absolute value is
three times as high as the second. Then, the coefficient of connectivity, cyclicity,
separability, and connector heterogeneity seem to be of comparable importance.
Finally, connector mismatch and the diameter might be of minor importance.

In the following section we analyze how good the regression function is able
to forecast errors in a sample of EPCs that was not included in the estimation.

4.3 Logistic Regression Validation

In this section we utilize the estimated function to predict errors in EPCs from
a holdout sample. This step is of paramount importance for establishing the
criterion validity of the measurements, i.e. their pragmatic value (cf. e.g. [23]).
For testing the performance of the prediction function we gathered a sample
from popular German EPC business process modeling textbooks. The sample
includes 112 models from the following books in alphabetical order:

– Becker and Schütte [24]. This book discusses information systems in the
retail sector with a special focus on conceptual modeling. In particular it
covers 65 EPC models that we include in the holdout sample.

– Scheer [25]. This textbook is an introduction to the ARIS framework and
uses reference models for production companies to illustrate it. From this
book we includes 27 EPC reference models in the holdout sample.

– Seidlmeier [26]. This book is an introduction to the ARIS framework. It
includes 10 EPCs that we include in the holdout sample.

– Staud [27]. This book focuses on business process modeling and in particular
EPCs. We included 13 EPCs from this book in the holdout sample.

All EPCs of the holdout sample were checked for errors first with xoEPC
and afterwards with the ProM plug-in. Altogether there are 25 of the 113 models
that have errors, i.e. 21.43%. Based on the metrics generated by xoEPC we can
easily apply the prediction function. The result of this calculation is summarized
in the classification table in Figure 8. It can be seen that 102 of the 113 EPCs
are classified correctly, i.e. 86 models without errors are predicted to have none
and 16 with errors are predicted to have at least one. Altogether 90.27% of the
113 EPCs were predicted correctly. Please note that there is a difference in the
interpretation of this classification result and the one in Section 4.2. During the
estimation of the logistic regression the sample is known and used to tune the



Classification Table
 Predicted

            hasErrors Percentage 
Observed 0 1 Correct
hasErrors 0 86 2 97,73%

1 9 16 64,00%
Overall Percentage 90,27%
The cut value is ,500
113 cases included

Fig. 8. Classification table for EPCs from the holdout sample

coefficients. Here, we use this function to classify an independent sample. Based
on the De Moivre-Laplace theorem, we are able to calculate a confidence interval
for the accuracy of the prediction function. With a confidence value of 95% it
yields an accuracy interval from 81.15% to 96.77%, i.e. the prediction can be
expected to be correct in at least 81.15% of the cases with a 95% confidence.
This result strongly supports the validity of the function for predicting error
probability.

4.4 Implications of the Findings

In this section we have conducted several statistical analyses related to the hy-
potheses on a connection between metrics and error probability. The results
strongly confirm the hypotheses since the mean difference between error and
non-error models, the correlation coefficients, and the regression coefficients con-
firm the hypothetical impact direction of all metrics except the density metric
(see Table 4). This metric appears to be more closely related to the inverse of
size than the relative number of arcs of an EPC.

These results have strong implications for the quality of business process
modeling:

1. The connection of the metrics with error probability provides a theoretical
and empirical basis for defining process modeling principles and guidelines.
The analysis reveals that in particular structured models are less error prone.

2. The established connection builds a foundation for a measurement-based
management approach for the process of business process modeling. Different
design alternatives can be discussed more objectively on the metric values.

3. The design of future business process modeling tools can benefit from these
findings by providing online feedback to the modeler when a certain metric
passes an error threshold.

4. It has also some implications on the level of the process modeling language.
Considering that the connector heterogeneity has an impact on error proba-
bility it might be a good idea to restrict modeling to the two connector types
AND and XOR, and use OR-connectors only in structured blocks. Further-
more, there was a strong correlation between the number of start and end
events with error probability. This fact suggests to restrict the use of multiple



Table 4. Hypothetical and empirical connection between metrics and errors

Hypothetical µe − µn Correlation Regression Direction
connection coefficient

SN + 24.93 0.38 confirmed

SE + 13.11 0.38 confirmed

SF + 2.86 0.19 confirmed

SC + 8.96 0.43 confirmed

SA + 27.64 0.38 confirmed

diam + 7.62 0.30 0.064 confirmed

∆ + -0.06 -0.37 not confirmed

CNC + 0.11 0.28 4.008 confirmed

dC + 0.76 0.23 confirmed

d̂C + 2.33 0.33 confirmed

Sep. Π - -0.24 -0.29 -2.338 confirmed

Seq. Ξ - -0.31 -0.35 confirmed

Strct. Φ - -0.20 -0.36 -9.957 confirmed

Depth Λ + 0.85 0.34 confirmed

MM + 7.18 0.42 0.094 confirmed

CH + 0.54 0.46 3.003 confirmed

CFC + 1680.99 0.39 confirmed

CY C + 0.06 0.30 3.409 confirmed

TS + 4.97 0.38 confirmed

starts and ends. Modelers seem to loose track of the allowed combinations of
these elements quite fast. In the reduced set of EPCs there are several EPCs
for which no combination of start events guarantees a proper execution.

5. The results have implications for the teaching of business process modeling.
On the one hand, the large number of errors suggests that practitioners
frequently have problems to understand the behavioral implications of their
design. On the other hand, the metrics are a good starting point to teach
patterns that are unlikely to result in errors.

5 Related Work

There are basically two main streams of research related to our work in the
conceptual modeling area: top-down quality frameworks and bottom-up metrics
that relate to quality aspects. For related work on Petri net verification refer to
[28] and on EPCs to [16].

One prominent top-down quality framework is the SEQUAL framework [1, 4].
It builds on semiotic theory and defines several quality aspects based on relation-
ships between a model, a body of knowledge, a domain, a modeling language,
and the activities of learning, taking action, and modeling. Its usefulness was
confirmed in an experiment [29]. The Guidelines of Modeling (GoM) [2] define
an alternative quality framework that is inspired by general accounting princi-
ples. The guidelines include the six principles of correctness, clarity, relevance,



comparability, economic efficiency, and systematic design. This framework was
operationalized for EPCs and also tested in experiments [2]. Furthermore, there
are authors (e.g. [5]) advocating a specification of a quality framework for con-
ceptual modeling in compliance with the ISO 9126 standard [30] for software
quality. A respective adaptation to business process modeling is reported in [31].
Our research complements these approaches regarding semantical correctness.
While the frameworks tend to be rather abstract, we find strong support for
operational recommendations like using structured building blocks and limiting
the number of nodes in a single process model.

Much work has been done related to bottom-up metrics that relate to quality
aspects of process models, stemming from different research and partially iso-
lated from each other (see [32–40, 10] or for an overview [16]). Several of these
contributions are theoretic without empirical validation. Most authors doing ex-
periments focus on the relationship between metrics and quality aspects: Canfora
et al. study the connection between mainly count metrics for e.g. activities or
routing elements and maintainability of software process models [38]; Cardoso
validates the correlation between control flow complexity and perceived com-
plexity [41]; and Mendling et al. use metrics to predict control flow errors such
as deadlocks in process models [8, 10]. The results of this research confirm the
negative connection between size and quality aspects. Beyond that, it extends
this stream of research with a validation of an error prediction function that was
derived by the help of an extensive sample of process models from practice.

Finally, there are some further surveys that investigate the maturity [42],
usability [43], and understandability of business process modeling languages [44].
They also relate to quality aspects of process models, but not directly to the
connection of errors and metrics.

6 Conclusions and Future Work

With this paper, we addressed the shortage of empirical insight into business
process modeling and its quality parameters in practice. In particular, we used
a collection of 2003 EPC business process models from practice, and determined
for each of the models whether they have errors or not. Furthermore, we calcu-
lated an extensive set of metrics for each model. Based on this data, we were
able to show that several metrics have a strong statistical connection with the
occurrence of errors, and that most of the metrics increase or decrease error
probability as expected. Using a logistic regression model, we could even derive
a prediction function that accurately classifies models as having errors or not
based on metrics.

These findings clearly demonstrate that errors do not occur by chance in
business process models, and that certain characteristics like structuredness are
desirable for avoiding errors. In future research we aim to conduct further ex-
periments to test the connection between the metrics and other quality aspects
of modeling like understandability and maintainability. As a result from these
experiments, we expect to define new business process modeling guidelines which



are metrics-based, which can be easily translated into operations, and which lead
to high quality business process models.
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17. Mendling, J., Nüttgens, M.: EPC Markup Language (EPML) - An XML-Based
Interchange Format for Event-Driven Process Chains (EPC). Information Systems
and e-Business Management 4 (2006) 245 – 263
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24. Becker, J., Schütte, R.: Handelsinformationssysteme. Moderne Industrie (2004)

25. Scheer, A.-W.: Wirtschaftsinformatik: Referenzmodelle für industrielle Geschäfts-
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