
The Conceptualization of a Configurable
Multi-party Multi-message Request-Reply

Conversation

Nataliya Mulyar1, Lachlan Aldred2, and Wil M.P. van der Aalst1,2

1 Department of Technology Management, Eindhoven University of Technology
GPO Box 513, NL5600 MB Eindhoven, The Netherlands

{n.mulyar, w.m.p.v.d.aalst}@tue.nl
2 Faculty of Information Technology, Queensland University of Technology

GPO Box 2434, Brisbane QLD 4001, Australia
{l.aldred}@qut.edu.au

Abstract. Organizations, to function effectively and expand their boun-
daries, require a deep insight into both process orchestration and chore-
ography of cross-organization business processes. The set of requirements
for service interactions is significant, and has not yet been sufficiently re-
fined. Service Interaction Patterns studies by Barros et al. demonstrate
this point. However, they overlook some important aspects of service in-
teraction of bilateral and multilateral nature. Furthermore, the definition
of these patterns are not precise due to the absence of a formal semantics.
In this paper, we analyze and present a set of patterns formed around the
subset of patterns documented by Barros et al. concerned with Request-
Reply interactions, and extend these ideas to cover multiple parties and
multiple messages. We concentrate on the interaction between multiple
parties, and analyze issues of a non-guaranteed response and different
aspects of message handling. We propose one configurable, formally de-
fined, conceptual model to describe and analyze options and variants of
request-reply patterns. Furthermore, we propose a graphical notation to
depict every pattern variant, and formalize the semantics by means of
Coloured Petri Nets. In addition, we apply this pattern family to eval-
uate WS-BPEL v2.0 and check how selected pattern variants can be
operationalized in Oracle BPEL PM.

1 Introduction

It has been several years since Service-Oriented Architectures (SOAs) started
gaining enormous popularity within organizations aiming to extend their bound-
aries by integrating software applications and external services into their business
processes. To coordinate the interaction between service providers and consumers
a set of standards and technologies were proposed which contributed in evolu-
tion of the Web-services paradigm. Standards like SOAP [1], WSDL [2], UDDI
[3], etc. were proposed to interconnect independently developed web-services.
A number of standardization proposals (XLang, BPML, and WSCI) [4,5,6,7]

R. Meersman and Z. Tari et al. (Eds.): OTM 2007, Part I, LNCS 4803, pp. 735–753, 2007.
c© Springer-Verlag Berlin Heidelberg 2007

736 N. Mulyar, L. Aldred, and W.M.P. van der Aalst

were discontinued, however they have served as a basis for an ongoing standard-
ization initiative: the Business Process Execution Language for Web-Services
(BPEL4WS, BPEL, WSBPEL) [8]. The developed technologies successfully han-
dle simple interaction scenarios, however when it comes to interactions involving
large numbers of participants many issues remain open.

A business process can be defined as a set of activities executed according to a
defined set of rules in order to achieve a specific goal. When two or more organi-
zations wish to embed long-running interactions within their business processes,
the focus shifts from the inside of a process to interactions of this process with an
external environment. What aspects of service interaction have to be explicitly
modeled? How to classify a given interaction scenario? What standard supports
a desirable interaction scenario, and which system to select for the realization
of the cross-organizational interaction? Answering these questions is significant
for understanding of the requirements for service interaction.

To specify requirements in service interaction more extensively than it is done
in BPEL4WS and to assess emerging web standards, thirteen Service Interac-
tion Patterns [9] covering bilateral, multilateral, competing, atomic and causally
related interactions were identified. A systematic review of the thirteen Service
Interaction Patterns presented in [9] has revealed that the scope of the patterns
is limited to simple interaction scenarios and that they suffer from an ambigu-
ous interpretation due to their imprecise definition. In this paper, we address
these gaps by exploring additional possibilities for request-response interactions
and by providing a precise formal semantics in the form of Coloured Petri Nets
(CPNs) [10,11].

Instead of listing all patterns identified, we propose a framework that allows
for a multitude of pattern variants to be generated by configuring a conceptual
model of a generic service interaction scenario. The framework is built upon two
concepts: a pattern variant and a pattern family. Every pattern family combines
a set of pattern variants that are generated by assigning different values to every
aspect of a generic service interaction scenario. Note that the original Service In-
teraction Patterns correspond to pattern variants belonging to different pattern
families we identified. We also propose a notation which can be configured to rep-
resent different pattern variants graphically. The CPN models designed to formal-
ize the semantics of the pattern family are also configurable and can be used to
simulate the behavior of every pattern variant from the given pattern family.

We have identified five pattern families related to different aspects of message
handling in the multi-party conversation (Multi-party Multi-message Request-
Reply Conversation), publish-subscribe scenarios (Renewable subscriptions) and
correlation on the low- and high-level of abstraction (Message Correlation, Bi-
partite Message Correlation and Tripartite Message Correlation) [12]. Due to
the space limit, in this paper we describe only one pattern family Multi-party
Multi-message Request-Reply Conversation. The pattern family presented can
be used as a tool for evaluation of web services standards and tools. We imple-
ment some of the pattern variants from this family in Oracle BPEL PM and
analyze the support of different pattern variants by WS-BPEL v2.0.

The Conceptualization of a Configurable Conversation 737

The remainder of the paper is organized as follows. Section 2 gives an overview
of the related work. Section 3 presents the conceptual background and introduces
the format for describing of pattern variants. The Multi-party Multi-message
Request-Reply Conversation pattern family is described in Sec. 4. Section 5
shows the implementation of a selected pattern variant in Oracle BPEL PM.
Evaluation of WS-BPEL v2.0 is performed in Sec. 6. This paper concludes with
Conclusions described in Sec. 7.

2 Related Work

The Service Interaction Patterns documented by Barros et al. in [13,9] describe
a collection of scenarios, where a number of parties, each with its own internal
processes, need to interact with one another according to pre-agreed rules. These
scenarios were consolidated into 13 patterns and classified based on the maximal
number of parties involved in an exchange, the maximum number of exchanges
between two parties involved in an interaction and whether the receiver of a
response is necessarily the same as the sender of a request. Based on this classi-
fication four groups were identified: (1) single transmission bilateral interactions
(i.e. one-way and round-trip bilateral interactions where a party sends and/or
receives a message to another party); (2) single transmission multilateral non-
routed interactions (i.e. a party sends/receives multiple messages to different
parties); (3) multi transmission bilateral interaction (i.e. a party sends/ receives
more than one message to/from the same party); (4) routed interactions.

Since the Service Interaction Patterns of Barros et al. [9] lacked a formal
semantics, their formalization by means of the π-calculus has been proposed in
[14]. Decker and Puhlmann formalized the patterns based on their descriptions,
and did not take into account issues which were related to the patterns but
which were incorporated into the pattern descriptions. Thus, they showed the
possibility to formalize certain aspects of service interaction, but in fact did
not make the definition of patterns less ambiguous. For example, the pattern
Racing Incoming Messages specifies: A party expects to receive one among a set of
messages. These messages may be structurally different (i.e. different types) and
may come from different categories of partners. The way a message is processed
depends on its type and/or the category of partner from which it comes. This
pattern does not specify what happens if the party receives multiple messages
at once, i.e. it is not clear how many of the received messages will be consumed
and whether the rest of the messages will be discarded.

In [15] Zaha et al. formulate requirements for a service interaction modeling
language, in addition to the ones covered by Barros et al. in [13]. The authors
use these requirements for modeling behavioral dependencies between service
interactions. In [16] Barros et al. introduce a set of correlation patterns that
were used for evaluation of standards WS-addressing and BPEL. However, the
framework presented by the authors does not cover relationships between differ-
ent process instances. In [17] Barros et al. propose a compositional framework
for service interaction patterns and interaction flows. They provide high-level

738 N. Mulyar, L. Aldred, and W.M.P. van der Aalst

models for eight service interaction scenarios using ASM, illustrating the need
for distinguishing between different interpretations of the patterns.

In [18] Cooney et al. proposed a programming language for service interaction,
which has been used to describe implementations of One-to-Many Send-Receive
and Contingent Requests service interaction patterns [9].

Aldred et al. have performed a detailed analysis of the notion of (de-)coupling
in communication middleware using three dimensions of decoupling, e.g. synchro-
nization, time and space, and documented coupling integration patterns [19].

This work is also related to contracting workflows and protocol patterns of van
Dijk [20], who proposed a number of protocol patterns for the negotiation phase
on a transaction. Work of Hohpe and Woolf on Enterprise application integration
[21] covers various messaging aspects that can be encountered during application
integration.

Furthermore, this work relates to the Workflow Patterns initiative [22,23],
where a set of 43 Control-flow patterns [24], a set of 40 Data patterns [25] and
a set of 43 Resource patterns [26] are proposed. In addition, a Workflow Pat-
tern Specification Language (WPSL) [27] has been defined which allows various
pattern variants to be described in a language-independent way. In particular,
the control-flow patterns have had a considerable influence on the development
of new languages, the adaptation of the existing ones and all kinds of standard-
ization efforts. This paper should be seen as a part of the Workflow Patterns
initiative.

Our work, presented in this paper, differs from the described related work in
the following aspects. We broaden up the scope of the original Service Interaction
Patterns and systematically describe various pattern variants along with offering
a graphical notation that is suitable for representing every pattern variant. To
avoid ambiguous interpretation we formalize the patterns by means of CPNs.

3 Conceptual Background

In this section we describe concepts central to the pattern family considered and
present the format for describing the pattern variants.

Instead of listing the whole set of patterns identified, we underline the dif-
ferences between the pattern variants belonging to the same pattern family. We
introduce the key concepts used in the pattern description by means of a UML
Data Object diagram. The attributes that influence the detailed semantics of
each pattern variant are described separately. To clarify the semantics of the
pattern we apply the formalism of CPNs. We designed a (set of) CPN model(s)
and tested them using the simulator facilities of CPN Tools. Declarations used
within CPN models are based on the set of the concepts introduced in the UML
diagram. We depict a generic service-interaction scenario belonging to a given
pattern family with an icon graphically representing a set of attributes. By set-
ting the attributes a specific variant of a pattern family is selected.

The Conceptualization of a Configurable Conversation 739

Pattern attributes (also referred to as parameters) represent the orthogonal
dimensions for classifying different aspects of the service interaction within the
context of the given pattern family. All possible combinations of the attribute
values result in a large set of pattern variants, each of which can be easily derived
from the generic service-interaction scenario and is depicted by a corresponding
icon.

For the purposes of this paper a Conversation is defined as the communication
of a set of contextually related messages between two or more parties. A Party
is an entity involved in communication with other parties by means of send-
ing/receiving messages. A party may represent a process, a service, a business
unit, etc. A Message is a unit of information that may be composed of one or
more data fields. A message may represent a request or a reply.

We describe the pattern family using the following format:

• Description of a generic pattern variant belonging to a given pattern family.
• Examples illustrating the application of the given pattern variant in practice.
• UML meta-model describing concepts specific to a given pattern family.
• Visualization: a graphical notation representing a generic pattern variant and

the description of variation points that can be used for tuning the graphical
notation to represent pattern variants.

• CPN semantics : the semantics of a generic pattern variant illustrated in the
form of CPN models and their corresponding description.

• Issues that can be encountered when applying a pattern variant from the
given pattern family in practice.

4 Pattern Family: Multi-party Multi-message
Request-Reply Conversation

In this section, we present the Multi-party Multi-message Request-Reply Con-
versation pattern family using the format described earlier.

Description. A Requestor posts a compound request consisting of N sub-
requests to a set of M parties and expects a reply message to be received for
every sub-request. There exists the possibility that some parties will not respond
at all and the possibility that a Responder will not reply on some sub-requests.
The Requestor queues all incoming messages in a certain order. The enabling
of the Requestor for consumption of reply messages depends on the fulfillment
of activation criteria. The Requestor should be able to, optionally, consume a
subset of the responses and even process a subset of the consumed set - hence al-
lowing for business use cases where only the best or fastest responses are needed.
The number of times the Requestor may consume messages from the queue can
be specified explicitly.

Example

• A request to submit an abstract and to submit a paper is issued by an editor
to a list of people registered for participation in a workshop. Only papers and

740 N. Mulyar, L. Aldred, and W.M.P. van der Aalst

abstracts submitted before a deadline would be reviewed. If a large amount
of papers arrive, only the first 50 would be reviewed and only 10 best papers
out of the reviewed ones would be published.

UML meta-model. An object diagram illustrating the pattern on the concep-
tual level is presented in Fig. 1. A Conversation consists of a set of messages (see
a composition relation between Conversation and Message). A conversation in-
volves an initiating process (e.g. Requestor), and at least one following process
(e.g. Responder processes), depicted by associations requestor and responder.
Any process may be or may not be involved in multiple conversations (see the
multiplicity of the association involves). The Requestor generates at least one
Request, while the Responder returns one or more Replies or does not react at
all. The relation between request and reply messages is depicted by corresponds
to association, and sending of request and reply messages by a party is illustrated
by the dependency relations is sent by and is produced by. Requests issued
by a Requester can be composite meaning that the Requestor may send several
sub-requests in a single message concurrently to a single or multiple parties.

Request Reply

1 0..*1 0..*

corresponds to

Message

Party

0..*

is produced by
Conversation

1..*1..*

0..*

0..*

0..*

0..*

responder

0..*

1

0..*

1

requestor
2..*

0..*

2..*

0..*

involves

0..*

is sent by

Fig. 1. UML meta-model of Multi-party Multi-message Request-Reply Conversation

Visualization. The graphical notation of the generic pattern variant is given
in Fig. 2. The parties are visualized as rectangles. Directed arrows represent
the direction in which a party sends a message. A message containing a single
request is visualized as a black token, while a compound request is represented by
multiple overlapping tokens. Parameters specific to a given party are visualized
as icons residing within the boundaries of a rectangle representing a party. This
graphical notation has the following set of variation points :

• N - a parameter denoting a list of sub-requests sent by a Requestor to a
Responder in a single message.
Range of values : size(N)≥1.

The Conceptualization of a Configurable Conversation 741

Default value: size(N)=1.
Visualization: This parameter is depicted by the dots on the arc from Re-
quester to Responder. If size(N)>1 or size(N)=1 the graphical notations
depicted in Fig. 3 (1a) and (1b) are used respectively.

• M - a parameter denoting a list of Responders involved in the conversation.
Range of values : size(M)≥1.
Default value: size(M)=1.
Visualization: if size(M)>1 or size(M)=1 the graphical notations depicted
in Fig. 3 (2a) and (2b) are used respectively.

C
FIFO

U

 M

?

?

List of
Responders

Sorting algorithm of
messages in the
queue

Number of messages
consumed from queue

Consumption
frequency

Enabling condition
for message
consumption

Number of used
messages
from the consumed
ones

List of sub-
requests

Possibility
of missing
replies

Possibility of
non-responding
parties

Requestor

Reply
Message

F

E

Fig. 2. Graphical notation: Multi-party Multi-message Request-Reply Conversation

 M

?

? ?

?

 (4a) (4b) (4c) (4d)

K B

 (2a) (2b)

(1a) (1b)

 FIFO LIFO PRIO NOQUEUE

 (3a) (3b) (3c)

(5a) (5b) (5c) (5d)

Fig. 3. Variants of graphical notation: Multi-party Multi-message Request-Reply Con-
versation

742 N. Mulyar, L. Aldred, and W.M.P. van der Aalst

• Possibility of non-responding parties - a parameter specifying whether some
of the Responders will ignore the request issued by the Requestor.
Range of values :

◦ No: all M Responders will reply at least something (for example, a re-
quest to report the level of income to the tax-office obliges all receivers
to reply);

◦ Yes: some Responders may not reply anything (for example, only inter-
ested parties react on the invitation to participate in a social event).

Default value: No.
Visualization: Fig. 3 depicts the graphical representation of four variations,
where: in (4a) and(4b) all M Responders will produce at least some replies;
in (4c) and(4d) some Responders may not reply on the requests received.

• Possibility of missing replies - a parameter specifying whether the Responder
will not reply on some of the sub-requests (i.e. it is a choice of the Responder
to engage in the conversation or not, and respectively to reply on all or only
some of the received requests).
Range of values :

◦ No: Responders reply on all sub-requests (for example, the Responder
answers on all questions in the tax declaration);

◦ Yes: Responders reply only on some sub-requests (for example, a client
subscribes only for two out of five journal offers received).

Default value: No.
Visualization: Fig. 3 depicts the graphical representation of four variations,
where: in (4a) and (4c) no replies will be lost; in (4b) and (4d) some replies
may not reach the Requestor.

• Sorting of the queued messages - a parameter specifying an ordering disci-
pline according to which response messages queued by the sender are sorted.
Range of values :

◦ FIFO: oldest message is queued first;
◦ LIFO: newest message is queued first;
◦ PRIO: sorting based on some criterion (for instance, the price);
◦ NOQUEUE: messages are not queued and consumed upon arrival if the

sender is ready to process them, otherwise they are lost.
Default value: FIFO.
Visualization: Fig. 3 (5a)-(5d) depicts the graphical notation of different
policies applied for sorting messages in the queue.

• Enabling condition - a parameter specifying the condition that has to be
fulfilled to enable the Requestor to consume replies.
Range of values :

◦ a timeout (for example, requests for purchase on discount basis are ac-
cepted only until the expiration of the discount period);

◦ a boolean condition, examining the properties of the queued messages
(for example, at least three low-cost offers are required to select the best
of them);

The Conceptualization of a Configurable Conversation 743

◦ a specified number of messages K (0<K≤N).
Default value: K=1.
Visualization: The icon E residing at the Requestor’s side in Fig. 1 substi-
tuted with one of the graphical notations presented in Fig. 3 (3a), (3b) and
(3c) which denote the enabling condition based on a timeout, availability of
specific number of messages and boolean expression respectively.

• Consumption index - a parameter specifying the number of reply messages
to be consumed by the Requestor from the queue.
Range of values :

◦ 0: none of the messages are removed from the queue (for example, mes-
sages must have enabled the process to receive, but it may need to leave
them on the queue for another process to use);

◦ S: S messages are removed from the queue such that 0≤S<K, where K is
a number of replies sufficient for activation of the requester (for example,
only messages selected by a boolean expression based on the property
values are consumed);

◦ All: all messages contained in the queue are removed.
Default value: All.
Visualization: The icon C residing at the Requestor’s side in Fig. 2 substi-
tuted with a suitable value.

• Utilization index - a parameter specifying a number of messages from the
consumed ones used by the Requestor for the processing.
Range of values :

◦ 0: no messages are used for processing (for example, if no messages were
consumed, or if none of the consumed messages are required by the
receiving process);

◦ 1: one message is used for processing (for instance, a best offer from the
available ones is selected);

◦ UN: a number of messages used for the processing such that 1<UN<C,
where C is a number of messages consumed (for example, a boolean
condition chooses only messages that pass the boolean constraint);

◦ All: all consumed messages are used for the processing.
Default value: All.
Visualization: The icon U residing at the Requestor’s side in Fig. 2 substi-
tuted with its value.

• Consumption Frequency - a parameter specifying the number of times the
sender performs the consumption of messages from the queue.
Range of values :

◦ 1: the sender is activated only once, after this all remaining and arriving
messages are destroyed;

◦ FN: the sender consumes messages FN number of times, 1<FN, after
which all remaining and arriving messages are destroyed;

◦ ∞: the sender consumes messages as long as they arrive.

744 N. Mulyar, L. Aldred, and W.M.P. van der Aalst

Default value: 1.
Visualization: The icon F residing at the Requestor’s side in Fig. 2 substi-
tuted with its value.

The pattern variant representing a scenario in which every parameter is set
to the default value is presented in Fig. 4. A party A sends a single request to a
party B, who sends a reply back. The party A queues the messages in the FIFO-
order, and as soon as one message is received from the party B, it is consumed
and processed. The presented notation may be used to represent Broadcast Re-
mote Procedure Calls (RPC) [28], which expects one or more answers from each
responding machine and treats all unsuccessful responses as garbage by filtering
them out.

FIFO
All

1

A B

All

1

1

Fig. 4. Notation for the default pattern variant

CPN semantics. To avoid an ambiguous interpretation of the pattern variants
related to Multi-party Multi-message Request-Reply Conversation we formalize
the semantics by means of CPNs. Figure 5 depicts the top view of the CPN
diagram representing the pattern.

Message

request

reply

Requestor

Requestor

Responder

ResponderResponder
Requestor

Message

Fig. 5. CPN diagram: The main
view

Receive response

Receive response

Send request

Send request

Conv

"X"

Party

running

Proc

Message

Reply
In

Message
In

Send request

Receive response

Request
OutOut

Process
instances

process instancesprocess instances

Conversations Requestor
ID

Fig. 6. CPN diagram: The Requestor page

The Conceptualization of a Configurable Conversation 745

Requestor and Responder are represented as substitution transitions which
can be unfolded to the nets depicted in Fig. 6 and Fig. 7(c) respectively. In every
given conversation the parties exchange requests and replies of type Message.

The Requestor (whose behavior is shown in Fig. 6) can send requests and re-
ceive response messages using substitution transitions Send request and
Receive response whose decomposition is presented in Fig. 7(b) and Fig. 8. A
Requestor process may have multiple process instances, whose lifecycle is shown
in Fig. 7(a). Process instances available for participation in a conversation are
stored in place enabled. When for a given process instance a conversation is
started, a conversation identifier cid is coupled with a process instance. The
uniqueness of identifiers is ensured by incrementing of a counter whose value
is stored in place Conversation counter. A process instance chosen for con-
versation is stored in place running. Transitions activate, deactivate and

Table 1. Data types used in Figs. 5-8

colset Party = string;
colset Request = string;
colset Requests = list Request;
colset Reply = string;
colset Replies = list Reply;
colset ConvId = int;
colset Content = union Req:Requests + Repl:Replies; a

colset Message = product ConvId * Party * Party * Content; b

colset Count = int;
colset MTime = int;
colset Status = with active|inactive|enabled|completed; c

colset ConvRequest = product Parties * Requests;
colset ConvRequests = list ConvRequest;
colset ConvReply = product Parties * Replies;
colset ConvReplies = list ConvReply;
colset Pr = product ConvRequests*ConvReplies*Status;
colset Proc = product ConvId*Pr; d

colset ConvInfo = record start time: MTime * last act:MTime
* nof unique messages: Count * nof parties: Count * total nof messages: Count;

colset Conv = product ConvId * ConvInfo * Status;

a The content of a message is either a list of requests or a list of replies. The CPN
union type is used to specify this.

b A message is a tuple (cid,P1,P2,c) where cid is a conversation identifier, P1 is
the requestor, P2 is the responder, and c is the content. Such a message is of type
Message.

c The lifecycle of a process instance starts with activation of an enabled instance. An
active instance can become inactive through deactivation, or completed when the
instance lifecycle ends.

d Process instances of type Pr contain a list of requests sent, replies received and a
status of the instance. When a conversation starts, a process instance is coupled with
a conversation identifier.

746 N. Mulyar, L. Aldred, and W.M.P. van der Aalst

complete control the status of a process instance during its lifecycle. When an
enabled process instance is activated, it gets the status active and may partici-
pate in sending and receiving of messages. Meanwhile the active process instance
can become inactive through deactivation or can become completed. The life-
cycle of a process instances ends upon completion and the process instance is
placed to place completed.

The Requestor’s Send Request sub-page in Fig. 7(b) shows that the Re-
questor, whose identifier is stored in place Requestor ID, on the moment of send-
ing a request message creates a new conversation. Function create messages()
takes a list of conversation requests crqs of type ConvRequests, which contains
a list of parties to whom a request should be sent, and a list of sub-requests that
should be sent to each party, and creates as many messages as there are parties
in the list. This function directly corresponds to the variation point specifying
that messages with N sub-requests are sent to M parties.

When request messages are created, a new conversation is created by means
of the function create conversation(). This function records the information
about the conversation identifier, conversation-specific parameters (the start
time of the conversation, the time of the last activation, a total number of

cid+1

cid

(cid,(crqs,crps,completed))

(cid,(crqs,crps,completed))

(cid,proc)

proc

end

complete

complete

deactivate

deactivate

activate

activate

start conversation
counter

1

ConvId

running

I/O
Proc

enabled

InitProc

Pr

completed

Proc

I/O

activate

deactivate

complete

(a) A Process instances
sub-page

requestor
send

[crqs<>[]]
Message

Party

"X"

Conv

running
I/OI/O

(cid,(crqs,crps,active))

Proc

(cid,(tl(crqs),crps,active))

Requestor
ID

I/OI/O

Variation point:
messages with N requests
are sent to M parties

request

OutOut

create_messages(cid,requestor,crqs)

conversations
OutOutcreate_conversation(cid,requestor,crqs)

(b) The Requestor’s Send Request sub-page

m

responder
(cid,requestor,
responder,con) Receive

request

Message

Message

Request
In

Message
In

1`"A"++1`"B"++1`"C"

ready to return

if uniform(0.0,1.0)>
 prob_all_lost_for_party
then unpack(cid,requestor,
 responder,con)
else empty ************

Variation point:
possibility that
some parties
won't reply

self

Party

Variation point:
possibility that
party replies only
on some requests

Send
replyReply

OutOut

if uniform(0.0,1.0)>
prob_individual_message_lost
then 1`m
else empty

(c) The Responder page

Fig. 7. CPN diagrams

The Conceptualization of a Configurable Conversation 747

messages sent, a number of parties to whom the requests have been sent, and a
number of unique messages (i.e. a number of sub-requests contained in the sin-
gle message)), and the status of the process instance. The recorded conversation
information is used later on for the purpose of correlating response messages
received with the requests sent and for identifying how many times the received
messages can be consumed for processing.

The Responder page shown in Fig. 7(c) illustrates the behavior of Respon-
ders involved in the conversation. The identifiers of the Responders are stored in
place self. They are used to relate incoming requests to a right party, based on
the party identifier. When a Responder receives a request message, it unpacks
the composite requests into separate messages each containing a separate sub-
request. The parameter prob all lost for party corresponds to a variation
point specifying the probability that the Responder will ignore a received com-
posite request or will process it. If the Responder decides to reply on the request,
the parameter prob individual message lost is used as a variation point to
define the probability that a reply will be sent for every unpacked sub-request.

The Requestor’s Receive response sub-page presented in Fig. 8 illustrates
the mechanism of queueing and processing of incoming responds by the Re-
questor. The Requestor processes only messages addressed to it (for this purpose,
a Requestor ID is used). The response messages received are queued according
to the QueueingDiscipline() function, which corresponds to a variation point
that can be set to any of the queueing disciplines, i.e. LIFO, FIFO or PRIO.

Variation point:
a number of times
the sender is activated
for consumption

Variation point:
immediate consumption
or not

Variation point:
enabling condition
for activating the
consumption of
messages

Variation point:
sorting of the messages

(cid,(crqs,crps,sp))

mss

filter(mss,cid,sc,sp,NoQueue)

(cid,ci,i,sc)

(cid,(crqs,crps,active))

responder
(cid,requestor,responder,con)

(cid,ci,i,active)

(cid,upd(ci),i+1,
if i<MaxAct
then active
else completed)

QueueingDiscipline((cid,requestor,responder,con),mss)

mss

mss

destroy messages

[mss<>filter(mss,cid,sc,sp,NoQueue)]

receivepull

[Activated(cid,ci,mss)]

Responder
 ID

I/O

"X"

Party

Reply
In
Message

running
I/O Proc

Conversations
I/O Conv

queue

[]

Messages

I/O

I/O

In

I/O

Consume(cid,ci,mss)

Variation point:
a number of consumed
messages

(cid,(crqs,crps^^Use(cid,ci,mss),active))

Variation point:
a number of messages
used from the
consumed ones

Fig. 8. CPN diagram: The Requestor’s Receive Response sub-page

748 N. Mulyar, L. Aldred, and W.M.P. van der Aalst

Function Consume() corresponds to a variation point specifying how many
messages from the queued ones have to be consumed. One, several, or all avail-
able in the queue messages can be consumed. The consumption of messages
happens upon the satisfaction of an enabling condition (which is a variation
point) encoded as a guard of transition Pull. Function Activated() can be
tuned to specify the enabling upon the availability of one or several messages in
a queue, upon the satisfaction of a certain condition, or upon a timeout.

From the messages consumed only a number of messages defined by the func-
tion Use() are actually used by the Requestor for the processing. This variation
point can be set for using either one, several or all consumed messages.

The parameter MaxAct corresponds to the variation point specifying how many
times the Requestor may consume the messages from the queue for the given
conversation. If the messages have been consumed the specified number of times,
the process instance receives the status completed and the messages left in
the queue are removed from it by means of the function filter(). Transition
destroy messages is used to retrieve messages from the place queue if the
incoming response messages do not need to be sorted and have to be consumed
immediately upon arrival.

Issues. When applying pattern variants belonging to the Multi-party Multi-
message Request-Reply Conversation pattern family an issue of the message
correlation may arise while matching replies received with the requests sent.
This issue can be solved by applying a suitable pattern variant from the Message
Correlation family. If a Multi-message Multi-Party Request-Reply Conversation
pattern variant has to be applied in the context of a long-running conversation,
where a series of requests have to be sent one after another, the given pattern
variant can be combined with a suitable pattern variant from the family of
Bipartite Conversation Correlation.

5 Oracle BPEL PM: A Default Scenario in Action

In this section, we illustrate an implementation of the default pattern variant
in Oracle BPEL PM v.10.1.3.1.0 (which is a tool supporting design of BPEL
processes).

Figure 9(a) illustrates an asynchronous process which upon an initiation by a
client performs the invocation of a synchronous service ResponseProcess pre-
sented in Fig. 9(b) using an invoke activity SendRequestToResponder.

The content of the request sent, enclosed in the RequestorInputVariable,
is specified by the <assign> activity AssignInputData in Fig. 9(a). The Re-
sponder process ResponseProcess is initiated by a message received from the

The Conceptualization of a Configurable Conversation 749

Fig. 9. Implementation of default pattern variant in Oracle BPEL PM

Requestor process. The request received is processed by an <assign> activity
ProcessRequest in Fig. 9(b) and a response is sent back to the Requestor pro-
cess using a replyOutput activity. The response message is assigned to an out-
put variable ObtainedOutputVariable of the SendRequestToResponder invoke
activity. Note that <invoke> activity has no attribute for message queueing,
therefore response messages are not queued and are consumed and processed
as soon as they arrive. We discuss the support of other pattern variants by
WS-BPEL v.2.0 in the next section.

6 Evaluation of WS-BPEL v2.0

In this section we analyze what pattern variants of Multi-party Multi-Message
Request-Reply Conversation are supported by WS-BPEL v2.0 by defining what
values each variation point can take.

• Number of sub-requests in a message: an <invoke> activity in WS-BPEL is
used to call an operation on a service. To realize a request-reply conversation
a correlation pattern of the <invoke> activity has to be set to “request-
response” and both an inputVariable and outputVariable of certain data
types have to be specified. Since WS-BPEL is XML-based, a complex data

750 N. Mulyar, L. Aldred, and W.M.P. van der Aalst

types can be defined, thus allowing to compose message from multiple sub-
requests.

• Number of Responders involved in a conversation: many parties can be in-
volved in a conversation with a given Requestor. A message can be sent by a
Requestor to a set of Responders in parallel if every Responder is defined as
a separate PartnerLink and a separate <invoke> activity is placed for every
partner either in the body of the <flow> construct or in the <forEach> con-
struct that operates in parallel mode. Therefore WS-BPEL can implement
this, albeit clumsily.

• Possibility of non-responding parties : an <invoke> activity is used to call
(an operation on) a service. Such an invocation can be one-way or request-
response. When a request-response invocation is performed by the Requester,
the <invoke> activity stays open until the response is received. This however
does not guarantee that the service invoked will respond.

• Possibility of missing replies: in WS-BPEL inbound message activities (IMA)
(i.e. <receive>, <pick>, <onEvent>) may complete only after they have re-
ceived a matching message. However, in some situation an orphaned IMA
occurs when an inbound message activity remains to be open. In this case,
the standard fault bpel:missingReply is thrown and the orphaned IMA is
not considered to be orphaned anymore.

• Sorting of queued messages: messages received by a process instance are
not queued (NOQUEUE). WS-BPEL defines that a receiving activity needs
at most one message to proceed. However, in the situation when a receiving
activity is not ready for consumption and multiple messages arrive at a time,
a race condition occurs. WS-BPEL does not mandate any specific mechanism
for handling race conditions and leaves this decision to the BPEL engine
designers.

• Enabling condition: an inbound message activity becomes enabled as soon as
a matching message has been received by a process instance (i.e. a message
of a specific type). However, it is also possible to use a <wait> construct in
order to enable an activity for message receival after a given time period or
after a certain deadline has been reached.

• Consumption index : only one message at a time can be consumed by an
inbound message activity.

• Utilization index : since inbound message activities can consume only one
message at at a time, therefore the message consumed is also the one used
for processing.

• Consumption Frequency: in WS-BPEL it is possible to specify that a party
may consume messages multiple times if IMA is placed in a <while> or
<repeatUntil>. The consumption frequency in this case is defined by the
evaluation of the boolean condition defined in these repetitive constructs.

The mapping of the pattern attributes to the WS-BPEL is not straightfor-
ward, since WS-BPEL does not have concepts able to capture the meaning of
all pattern attributes or these concepts are not explicitly defined. By definition,
all inbound message activities in WS-BPEL are executed as soon as a suitable

The Conceptualization of a Configurable Conversation 751

message arrives. Selection of such a behavior as a default results in quite lim-
ited capabilities of WS-BPEL to support different variants of message handling.
Since WS-BPEL intentionally does not specify a mechanism for handling of
the race conditions, systems supporting BPEL-processes may employ different
implementations and thus support distinct pattern variants. In this case, the
pattern attributes can be used to assist in selecting an appropriate system.

7 Conclusions

The approach presented in this paper shows that a multitude of pattern variants
can be derived by assigning different values to variation points identified as a
result of the systematic analysis of service interaction scenarios. This approach
is applicable for describing other problems in the form of the configurable frame-
work, given that all dimensions of the problem analyzed are clearly delineated
and well understood. The main benefit of presenting patterns by means of a con-
figurable pattern family is that it allows various variants of multi-dimensional
complex problems to be described and referenced in a uniform way. The com-
plexity of the Multi-party Multi-message Request-Reply Conversation pattern
family is characterized by 6912 pattern variants (this number is calculated as
multiplication of total number of values each of the variation points may take).
The variation points identified can be used for the evaluation of tools and web-
service composition standards as it has been done for Oracle BPEL PM and WS-
BPEL v2.0. The analysis of WS-BPEL has shown that many pattern variants
related to processing of multiple messages are not supported. Such an analysis
forces us to deeply think about the requirements in service interaction and may
trigger a revision of current best practices in order to capture all variation points
and support more pattern variants. Furthermore, the pattern family presented
can be used as a solution selection instrument, or even as a set of requirements
for new languages in the area. In the future, we plan to use the pattern families
as a benchmark for classification of complex service interaction scenarios.

References

1. Box, D., Ehnebuske, D., Kakivaya, G., Layman, A., Mendelsohn, N., Nielsen, H.,
Thatte, S., Winer, D.: Simple Object Access Protocol (SOAP) 1.1. (2000),
http://www.w3.org/TR/soap

2. Christensen, E., Curbera, F., Meredith, G., Weerawarana, S.: Web Services De-
scription Language (WSDL) 1.1 (2001), http://www.w3.org/TR/wsdl

3. Belwood, T., et al.: UDDI Version 3.0 (2000), http://uddi.org
4. Arkin, A., Askary, S., Fordin, S., Jekel, et al.: Web Service Choreography Interface

(WSCI) 1.0. Standards proposal by BEA Systems, Intalio, SAP, and Sun Microsys-
tems (2002)

5. Arkin, A., et al.: Business Process Modeling Language (BPML), Version 1.0 (2002)
6. Thatte, S.: XLANG Web Services for Business Process Design (2001)
7. Peltz, C.: Web services orchestration: a review of emerging technologies, tools and

standards. Hewlett Packard, Co. (2003)

http://www.w3.org/TR/soap
http://www.w3.org/TR/wsdl
http://uddi.org

752 N. Mulyar, L. Aldred, and W.M.P. van der Aalst

8. Andrews, T., Curbera, F., Dholakia, H., Goland, Y., Klein, J., Leymann, F., Liu,
K., Roller, D., Smith, D., Thatte, S., Trickovic, I., Weerawarana, S.: Business
Process Execution Language for Web Services, Version 1.1. Standards proposal
by BEA Systems, International Business Machines Corporation, and Microsoft
Corporation (2003)

9. Barros, A., Dumas, M., Hofstede, A.: Service Interaction Patterns: Towards a Refer-
ence Framework for Service-based Business Process Interconnection. QUT Techni-
cal report, FIT-TR-2005-02, Queensland University of Technology, Brisbane (2005)

10. CPN Group University of Aarhus, Denmark: CPN Tools Home Page
http://wiki.daimi.au.dk/cpntools/

11. Jensen, K.: Coloured Petri Nets. Basic Concepts, Analysis Methods and Practical
Use. In: EATCS monographs on Theoretical Computer Science, Springer, Berlin
(1992)

12. Mulyar, N., Aldred, L., Aalst, W., Russell, N.: Service interaction patterns: A
configurable framework. BPM Center Report BPM-07-07, BPM Center, BPMcen-
ter.org (2007)

13. Barros, A., Dumas, M., ter Hofstede, A.: Service Interaction Patterns. In: Proceed-
ings of the 3rd International Conference on Business Process Management, Nancy,
France, vol. 3716/2005, pp. 302–318 (2005)

14. Decker, G., Puhlmann, F., Weske, M.: Formalizing service interactions. In: Dust-
dar, S., Fiadeiro, J.L., Sheth, A. (eds.) BPM 2006. LNCS, vol. 4102, pp. 414–419.
Springer, Heidelberg (2006)

15. Zaha, J., Barros, A., Dumas, M., ter Hofstede, A.: Let’s Dance: A Language for
Service Behavior Modeling. In: OTM Conferences (1), Vienna, Austria, pp. 145–
162 (2006)

16. Barros, A., Decker, G., Dumas, M., Weber, F.: Correlation Patterns in Service-
Oriented Architectures. In: FASE. Proceedings of the 9th International Conference
on Fundamental Approaches to Software Engineering, Braga, Portugal (2007)

17. Barros, A., Borger, E.: A Compositional Framework for Service Interaction Pat-
terns and Interaction Flows. In: Lau, K.K., Banach, R. (eds.) ICFEM 2005. LNCS,
vol. 3785, pp. 5–35. Springer, Heidelberg (2005)

18. Cooney, D., Dumas, M., Roe, P.: GPSL: A Programming Language for Service Im-
plementation. In: Proceedings of the 8th International Conference on Fundamental
Approaches to Software Engineering, Vienna, Austria (2006)

19. Aldred, L., Aalst, W., Dumas, M., Hofstede, A.: Understanding the Challenges
in Getting Together: The Semantics of Decoupling in Middleware. BPM Center
Report BPM-06-19, BPMcenter.org (2006)

20. van Dijk, A.: Contracting Workflows and Protocol Patterns. In: Business Process
Management, pp. 152–167. Springer, Heidelberg (2003)

21. Hohpe, G., Woolf, B.: Enterprise Integration Patterns. Addison-Wesley Profes-
sional, Reading (2003)

22. Aalst, W., Hofstede, A., Kiepuszewski, B., Barros, A.: Workflow Patterns. Dis-
tributed and Parallel Databases 14(1), 5–51 (2003)

23. WPHP: Workflow Patterns Home Page, http://www.workflowpatterns.com
24. Russell, N., Hofstede, A., Aalst, W., Mulyar, N.: Workflow Control-Flow Patterns:

A Revised View. BPM Center Report BPM-06-22, BPMcenter.org (2006)
25. Russell, N., Hofstede, A., Edmond, D., Aalst, W.: Workflow Data Patterns. QUT

Technical report, FIT-TR-2004-01, Queensland University of Technology, Brisbane
(2004)

http://wiki.daimi.au.dk/cpntools/
http://www.workflowpatterns.com

The Conceptualization of a Configurable Conversation 753

26. Russell, N., Hofstede, A., Edmond, D., Aalst, W.: Workflow Resource Patterns. In:
WP 127, Eindhoven University of Technology, Eindhoven. BETA Working Paper
Series (2004)

27. Mulyar, N., Aalst, W., ter Hofstede, A.H.M., Russell, N.: Towards a WPSL: A
Critical Analysis of the 20 Classical Workflow Control-flow Patterns. Technical
report, Center Report BPM-06-18, BPMcenter.org (2006)

28. Broadcast RPC: Programming with Remote Procedure Calls.
http://ou800doc.caldera.com/en/SDK netapi/rpcpC.bcast.html

http://ou800doc.caldera.com/en/SDK_netapi/rpcpC.bcast.html

	The Conceptualization of a Configurable Multi-party Multi-message Request-Reply Conversation
	Introduction
	Related Work
	Conceptual Background
	Pattern Family: Multi-party Multi-message Request-Reply Conversation
	Oracle BPEL PM: A Default Scenario in Action
	Evaluation of WS-BPEL v2.0
	Conclusions

<<
 /ASCII85EncodePages false
 /AllowTransparency false
 /AutoPositionEPSFiles true
 /AutoRotatePages /None
 /Binding /Left
 /CalGrayProfile (Gray Gamma 2.2)
 /CalRGBProfile (sRGB IEC61966-2.1)
 /CalCMYKProfile (ISO Coated)
 /sRGBProfile (sRGB IEC61966-2.1)
 /CannotEmbedFontPolicy /Error
 /CompatibilityLevel 1.3
 /CompressObjects /Off
 /CompressPages true
 /ConvertImagesToIndexed true
 /PassThroughJPEGImages true
 /CreateJDFFile false
 /CreateJobTicket false
 /DefaultRenderingIntent /Default
 /DetectBlends true
 /DetectCurves 0.1000
 /ColorConversionStrategy /sRGB
 /DoThumbnails true
 /EmbedAllFonts true
 /EmbedOpenType false
 /ParseICCProfilesInComments true
 /EmbedJobOptions true
 /DSCReportingLevel 0
 /EmitDSCWarnings false
 /EndPage -1
 /ImageMemory 524288
 /LockDistillerParams true
 /MaxSubsetPct 100
 /Optimize true
 /OPM 1
 /ParseDSCComments true
 /ParseDSCCommentsForDocInfo true
 /PreserveCopyPage true
 /PreserveDICMYKValues true
 /PreserveEPSInfo true
 /PreserveFlatness true
 /PreserveHalftoneInfo false
 /PreserveOPIComments false
 /PreserveOverprintSettings true
 /StartPage 1
 /SubsetFonts false
 /TransferFunctionInfo /Remove
 /UCRandBGInfo /Preserve
 /UsePrologue false
 /ColorSettingsFile ()
 /AlwaysEmbed [true
]
 /NeverEmbed [true
 /MTEX
]
 /AntiAliasColorImages false
 /CropColorImages true
 /ColorImageMinResolution 150
 /ColorImageMinResolutionPolicy /OK
 /DownsampleColorImages true
 /ColorImageDownsampleType /Bicubic
 /ColorImageResolution 600
 /ColorImageDepth 8
 /ColorImageMinDownsampleDepth 1
 /ColorImageDownsampleThreshold 1.01667
 /EncodeColorImages true
 /ColorImageFilter /FlateEncode
 /AutoFilterColorImages false
 /ColorImageAutoFilterStrategy /JPEG
 /ColorACSImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /ColorImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /JPEG2000ColorACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /JPEG2000ColorImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /AntiAliasGrayImages false
 /CropGrayImages true
 /GrayImageMinResolution 150
 /GrayImageMinResolutionPolicy /OK
 /DownsampleGrayImages true
 /GrayImageDownsampleType /Bicubic
 /GrayImageResolution 600
 /GrayImageDepth 8
 /GrayImageMinDownsampleDepth 2
 /GrayImageDownsampleThreshold 1.01667
 /EncodeGrayImages true
 /GrayImageFilter /FlateEncode
 /AutoFilterGrayImages false
 /GrayImageAutoFilterStrategy /JPEG
 /GrayACSImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /GrayImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /JPEG2000GrayACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /JPEG2000GrayImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /AntiAliasMonoImages false
 /CropMonoImages true
 /MonoImageMinResolution 1200
 /MonoImageMinResolutionPolicy /OK
 /DownsampleMonoImages true
 /MonoImageDownsampleType /Bicubic
 /MonoImageResolution 1200
 /MonoImageDepth -1
 /MonoImageDownsampleThreshold 2.00000
 /EncodeMonoImages true
 /MonoImageFilter /CCITTFaxEncode
 /MonoImageDict <<
 /K -1
 >>
 /AllowPSXObjects false
 /CheckCompliance [
 /None
]
 /PDFX1aCheck false
 /PDFX3Check false
 /PDFXCompliantPDFOnly false
 /PDFXNoTrimBoxError true
 /PDFXTrimBoxToMediaBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXSetBleedBoxToMediaBox true
 /PDFXBleedBoxToTrimBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXOutputIntentProfile (None)
 /PDFXOutputConditionIdentifier ()
 /PDFXOutputCondition ()
 /PDFXRegistryName (http://www.color.org)
 /PDFXTrapped /False

 /SyntheticBoldness 1.000000
 /Description <<
 /DEU ()
 /ENU ()
 >>
>> setdistillerparams
<<
 /HWResolution [2400 2400]
 /PageSize [595.000 842.000]
>> setpagedevice

