
Pattern-based Translation of BPMN Process Models to
BPEL Web Services?

Chun Ouyang1, Marlon Dumas1, Arthur H.M. ter Hofstede1, and Wil M.P. van der Aalst2,1

1 Faculty of Information Technology, Queensland University of Technology,
GPO Box 2434, Brisbane QLD 4001, Australia

{c.ouyang,m.dumas,a.terhofstede}@qut.edu.au
2 Department of Mathematics and Computer Science, Eindhoven University of Technology,

GPO Box 513, NL-5600 MB, The Netherlands
w.m.p.v.d.aalst@tue.nl

Abstract. The Business Process Modelling Notation (BPMN) is a graph-oriented language in
which control and action nodes can be connected almost arbitrarily. It is primarily targeted at
domain analysts and is supported by many modelling tools, but in its current form, it lacks the
semantic precision required to capture fully executable business processes. The Business Process
Execution Language for Web Services (BPEL) on the other hand is a mainly block-structured
language, targeted at software developers and supported by several execution platforms. In
the current setting, translating BPMN models into BPEL code is a necessary step towards
standards-based business process development environments. This translation is challenging
since BPMN and BPEL represent two fundamentally different classes of languages. Existing
BPMN-to-BPEL translations rely on the identification of block-structured patterns in BPMN
models that are mapped into block-structured BPEL constructs. This paper advances the state
of the art in BPMN-to-BPEL translation by defining methods for identifying not only perfectly
block-structured fragments in BPMN models, but also quasi-structured fragments that can be
turned into perfectly structured ones and flow-based acyclic fragments that can be mapped into
a combination of block-structured constructs and control links. Beyond its direct relevance in the
context of BPMN and BPEL, this paper addresses issues that arise generally when translating
between graph-oriented and block-structured flow definition languages.

1 Introduction

The Business Process Execution Language for Web Services (BPEL) [2] is emerging as a
de facto standard for implementing business processes on top of web services technology.
Numerous platforms support the execution of BPEL processes.3 Some of these platforms also
provide graphical editing tools for defining BPEL processes. However, these tools directly
follow the syntax of BPEL without elevating the level of abstraction to make them usable
during the analysis and design phases of the development cycle. On the other hand, the
Business Process Modelling Notation (BPMN) [5] has attained some level of adoption among
business analysts and system architects as a language for defining business process blueprints
for subsequent implementation. Despite being a recent proposal, BPMN is already supported
by more than 30 tools.4 Consistent with the level of abstraction targeted by BPMN, none of
these tools supports the execution of BPMN models directly. Instead, some of them support
the translation of BPMN to BPEL.

Close inspection of existing translations from BPMN to BPEL, e.g., the one sketched
in [5], shows that these translations fail to fulfil the following key requirements: (i) complete-
ness, i.e., applicable to BPMN model with arbitrary topology; (ii) automation, i.e., capable

? This work is supported by the Australian Research Council under the Discovery Grant “Expressiveness
Comparison and Interchange Facilitation between Business Process Execution Languages” (DP0451092).

3 See http://en.wikipedia.org/wiki/BPEL
4 See http://www.bpmn.org

of producing target code without requiring human intervention to identify patterns in the
source model; and (iii) readability, i.e., consistently producing target code that is understand-
able by humans. The latter requirement is important since the BPEL definitions produced
by the translation are likely to require refinement (e.g., to specify partner links and data
manipulation expressions) as well as testing and debugging. If BPEL was only intended as
a language for machine consumption and not for human use, it could be replaced by main-
stream programming languages or even (virtual) machine languages, but this would defeat
the purpose of BPEL as a language for service composition.

The limitations of existing BPMN-to-BPEL translations are not surprising given that
BPMN and BPEL belong to two fundamentally different classes of languages. BPMN is
graph-oriented while BPEL is mainly block-structured (albeit providing graph-oriented con-
structs with syntactical limitations). Mapping between graph-oriented and block-structured
process definition languages is notoriously challenging. In the case of flowcharts, mapping un-
structured charts to structured ones is a well-understood problem. However, graph-oriented
process definition languages extend flowcharts with parallelism (i.e., AND-splits and AND-
joins) and other constructs such as deferred choice [1].

In prior work [15], we proposed a translation that achieves the completeness and au-
tomation requirements outlined above for a core subset of BPMN models. However, the code
produced by this translation lacks readability. Essentially, the BPMN process model is trans-
lated into a set of event-condition-action rules, and these rules are then encoded using BPEL
event handlers. Thus, the translation does not exploit the block-structured constructs of
BPEL, which would clearly lead to more readable code.

This paper presents a complementary technique to translate BPMN to BPEL that em-
phasises the readability requirement. The proposal is based on the identification of structural
patterns of BPMN models which can be translated into block-structured BPEL code. The
patterns are divided into: (i) well-structured patterns, which can be directly mapped onto
block-structured BPEL constructs; (ii) quasi-structured patterns, which can be re-written
into perfectly structured ones and then mapped onto block-structured BPEL constructs; and
(iii) flow-based acyclic fragments which can be mapped onto combinations of block-structured
BPEL constructs and additional control links to capture dependencies between activities lo-
cated in different blocks.

Beyond their direct relevance in the context of BPMN-to-BPEL mapping, the translation
patterns and algorithm presented in this paper address issues that arise generally when trans-
lating from graph-oriented process languages (e.g., UML Activity Diagrams, EPCs, YAWL,
or Petri nets) to block-structured ones.

The rest of the paper is structured as follows. Section 2 and 3 provide an overview of
BPMN and BPEL respectively. Next, Section 4 presents the identification of patterns in a
given BPMN process model and their mapping onto BPEL. The overall translation approach
is then illustrated through a case study in Section 5. Finally, Section 6 discusses related work
while Section 7 concludes and outlines future work.

2 Business Process Execution Language for Web Services (BPEL)

BPEL [2] can be seen as an extension of imperative programming languages with constructs
specific to web service implementation. These extensions are mainly inspired from business
process modelling languages. Accordingly, the top-level concept of BPEL is that of process
definition. A BPEL process definition relates a number of activities that need to be performed
by a Web service. An activity is either a basic or a structured activity. Basic activities
correspond to atomic actions such as: invoke, invoking an operation on a web service; receive,

2

waiting for a message from a partner; exit , terminating the entire service instance; empty ,
doing nothing; etc. To enable the presentation of complex structures the following structured
activities are defined: sequence, for defining an execution order; flow , for parallel routing;
switch, for conditional routing; pick , for race conditions based on timing or external triggers;
while, repeat and sequential foreach, for structured iteration; and scope, for grouping activities
into blocks to which event, fault and compensation handlers may be attached. An event
handler is an event-action rule that may fire at any time during the execution of a scope, while
fault and compensation handlers are designed for catching and handling exceptions. Finally,
the parallel foreach construct enables multiple instances of a given scope to be executed
multiple times concurrently.

In addition, BPEL provides a non-structured construct known as control link which,
together with the associated notions of join condition and transition condition, allows the
definition of directed graphs. The graphs can be nested but must be acyclic. A control link
between activities A and B indicates that B cannot start before A has either completed or
has been skipped. Moreover, B can only be executed if its associated join condition evaluates
to true, otherwise B is skipped. This join condition is expressed in terms of the tokens carried
by control links leading to B. These tokens may take either a positive (true) or a negative
(false) value. An activity X propagates a token with a positive value along an outgoing link L
iff X was executed (as opposed to being skipped) and the transition condition associated to
L evaluates to true. Transition conditions are boolean expressions over the process variables
(just like the conditions in a switch activity). The process by which positive and negative
tokens are propagated along control links, causing activities to be executed or skipped, is
called dead path elimination. Control links must not create cyclic control dependencies and
must not cross the boundary of a while activity.

There are over 20 execution engines supporting BPEL. Many of them come with an
associated graphical editing tool. However, the notation supported by these tools directly
reflects the underlying code, thus forcing users to reason in terms of BPEL constructs (e.g.,
block-structured activities and syntactically restricted links). Current practice suggests that
the level of abstraction of BPEL is unsuitable for business process analysts and designers.
Instead, these user categories rely on languages perceived as “higher-level” such as BPMN
and various UML diagrams, thus justifying the need for mapping languages such as BPMN
onto BPEL.

BPEL process definitions can be either fully executable or they can be left underspec-
ified. Executable BPEL process definitions are intended to be deployed into an execution
engine, while underspecified BPEL definitions, also called abstract processes, capture a non-
executable set of interactions between a given service and several other “partner services”.
Our BPMN-to-BPEL mapping focuses on the control flow perspective, and does not deal
with data manipulation and other implementation details. Accordingly, the BPEL definitions
generated by the proposed mapping correspond to abstract processes, which can be used as
templates and enriched with additional details to obtain executable processes. This approach
is in line with the difference in abstraction between BPMN and BPEL: BPMN is intended
as a modelling language for analysis and design, while BPEL is an implementation language.
Thus, one way or another BPMN models need to undergo some form of refinement to yield
executable BPEL processes. This refinement is outside the scope of this paper.

3 Business Process Modelling Notation (BPMN)

BPMN [5] essentially provides a graphical notation for business process modelling, with an
emphasis on control-flow. It defines a Business Process Diagram (BPD), which is a kind of

3

flowchart incorporating constructs tailored to business process modelling, such as AND-split,
AND-join, XOR-split, XOR-join, and deferred (event-based) choice. Below, we first introduce
BPDs and then define an abstract syntax for it.

3.1 Business Process Diagrams (BPD)

BPMN uses BPDs to describe business processes. A BPD is made up of BPMN elements.
We consider a core subset of BPMN elements that can be used to build BPDs covering the
fundamental control flows in BPMN. These elements are shown in Figure 1. There are objects
and sequence flows. A sequence flow links two objects in a BPD and shows the control
flow relation (i.e., execution order). An object can be an event , a task or a gateway . An
event may signal the start of a process (start event), the end of a process (end event), a
message that arrives, or a specific time-date being reached during a process (intermediate
message/timer event). A task is an atomic activity and stands for work to be performed
within a process. There are seven task types: service, receive, send , user , script , manual ,
and reference. For example, a receive task is used when the process waits for a message to
arrive from an external partner. Also, a task may be none of the above types, which we
refer to as a blank task. A gateway is a routing construct used to control the divergence
and convergence of sequence flow. There are: parallel fork gateways (i.e., AND-splits) for
creating concurrent sequence flows, parallel join gateways (i.e., AND-joins) for synchronising
concurrent sequence flows, data/event-based XOR decision gateways for selecting one out of
a set of mutually exclusive alternative sequence flows where the choice is based on either
the process data (data-based, i.e., XOR-splits) or external events (event-based, i.e., deferred
choice), and XOR merge gateways (i.e., XOR-joins) for joining a set of mutually exclusive
alternative sequence flows into one sequence flow. It is important to note that an event-based
XOR decision gateway must be followed by either receive tasks or intermediate events to
capture race conditions based on timing or external triggers (e.g., the receipt of a message
from an external partner).

Figure 1. A core subset of BPMN elements.

BPMN defines several other control-flow constructs. These include: (1) task looping, (2)
multi-instance task, (3) exception flow, (4) sub-process invocation, (5) inclusive OR deci-
sion gateway – also called OR-split – and (6) inclusive OR merge gateway – also called
OR-join. The mapping of the first five of these non-core constructs onto BPEL does not en-
tail additional challenges. Task looping, which corresponds to “while-do” and “repeat-until”
structured loops, can be directly mapped onto the corresponding BPEL structured activi-
ties. Similarly, a multi-instance task can be directly mapped onto a “parallel foreach” activity.

4

Sub-processes can be mapped onto separate BPEL processes which call one another. Any OR-
split gateway can be expanded into a combination of AND-split and XOR-split gateways [1].
Hence, it does not require a separate mapping rule. On the other hand, the mapping of
OR-joins requires a special treatment and will be briefly discussed in Section 7.

3.2 Abstract syntax of a BPD

A BPD, which is made up of the core subset of BPMN elements shown in Figure 1, is hereafter
referred to as a core BPD . Below, we define the syntax of a core BPD.

Definition 1 (Core BPD). A core BPD is a tuple BPD = (O, T , E, G, T R, ES, EI , EE,
EI

M , EI
T , GF , GJ , GD, GM , GV , F , Cond) where:

– O is a set of objects which is divided into disjoint sets of tasks T , events E and gateways G,
– T R ⊆ T is a set of receive tasks,
– E is divided into disjoint sets of start events ES, intermediate events EI and end events EE,
– EI is divided into disjoint sets of intermediate message events EI

M and timer events EI
T ,

– G is divided into disjoint sets of parallel fork gateways GF , parallel join gateways GJ ,
data-based XOR decision gateways GD, event-based XOR decision gateways GV , and XOR
merge gateways GM ,

– F ⊆ O ×O is the control flow relation, i.e., a set of sequence flows connecting objects,
– Cond: F∩(GD×O) → B is a function mapping sequence flows emanating from data-based

XOR decision gateways to the set of all possible conditions (B).5

The relation F defines a directed graph with nodes (objects) O and arcs (sequence flows)
F . For any node x ∈ O, input nodes of x are given by in(x) = {y ∈ O | yFx} and output
nodes of x are given by out(x) = {y ∈ O | xFy}.

Definition 1 allows for graphs which are unconnected, not having start or end events,
containing objects without any input and output, etc. Therefore, it is necessary to restrict
the definition to well-formed core BPDs. Note that these restrictions are without loss of
generality and are to facilitate the definition of the mapping of BPMN to BPEL.

Definition 2 (Well-formed core BPD). A core BPD is well formed iff relation F satisfies
the following requirements:

– ∀ s ∈ ES, in(s) = ∅ ∧ |out(s)| = 1, i.e., start events have an indegree of zero and an
outdegree of one,

– ∀ e ∈ EE, out(e) = ∅ ∧ |in(e)| = 1, i.e., end events have an outdegree of zero and an
indegree of one,

– ∀ x ∈ T ∪ EI , |in(x)| = 1 and |out(x)| = 1, i.e., tasks and intermediate events have an
indegree of one and an outdegree of one,

– ∀ g ∈ GF ∪ GD ∪ GV , |in(g)| = 1 ∧ |out(g)| > 1, i.e., fork or decision gateways have an
indegree of one and an outdegree of more than one,

– ∀ g ∈ GJ ∪GM , |out(g)| = 1 ∧ |in(g)| > 1, i.e., join or merge gateways have an outdegree
of one and an indegree of more than one,

– ∀ g ∈ GV , out(g) ⊆ EI ∪ T R, i.e., event-based XOR decision gateways must be followed
by intermediate events or receive tasks,

5 A condition is a boolean function operating over a set of propositional variables that can be abstracted out
of the control flow definition. The condition may evaluate to true or false, which determines whether or not
the associated sequence flow is taken during process execution.

5

– ∀ g ∈ GD, ∃ an order <g which is a strict total order over the set of flows {g} × out(g),
and for x ∈ out(g) such that ¬ ∃f∈{g}×out(g)((g, x)<gf), (g, x) is the default flow among
all the outgoing flows from g,6

– ∀ x ∈ O, ∃ s ∈ ES, ∃ e ∈ EE, sF∗x ∧ xF∗e,7 i.e., every object is on a path from a start
event to an end event.

For the translation of BPMN to BPEL in this paper, we only consider well-formed core
BPDs, and will use a simplified notation BPD = (O, F , Cond) for their representation.
Moreover, a BPD with multiple start events can be transformed into a BPD with a unique
start event by using an event-based XOR decision gateway, while a BPD with multiple end
events can be transformed into a BPD with a unique end event by using an inclusive OR merge
gateway (i.e., OR-join, see discussion in Section 7). Therefore, without loss of generality, we
assume that both ES and EE are singletons, i.e., ES = {s} and EE = {e}.

4 Identification and Translation of BPMN patterns

We would like to achieve two goals when mapping BPMN onto BPEL. One is to define
an algorithm which allows us to translate any well-formed core BPD into a valid BPEL
process; the other is to generate readable and compact BPEL code. In prior work [15], we
proposed a complete translation from well-formed core BPDs to BPEL. However, the code
produced by this translation lacks readability. In the following, we exploit the block-structured
constructs of BPEL to address the readability requirement. The translation is based on the
identification of three categories of patterns of BPMN fragments which can be mapped onto
block-structured BPEL code: (i) well-structured patterns, (ii) quasi-structured patterns, and
(iii) generalised flow-patterns. The well-structured pattern-based translation (Section 4.2) is
intended to cover the class of BPMN corresponding to structured workflow models as defined
in [7]. Quasi-structured patterns (Section 4.3) introduce some level of unstructuredness, but
still, they can be expanded into well-structured components. Finally, the generalised flow-
pattern-based translation (Section 4.4) caters for the class of acyclic BPMN models consisting
of tasks, events, sequence flows, and parallel gateways only. Models in this latter class do not
contain decision points (whether event-driven or data-driven) but they can be unstructured.
The translations of these three categories of patterns can be combined with our prior work [15].
The resulting combined translation approach, as discussed in [14], can deal with BPMN
models containing all parallel gateways and XOR (event-based and data-based) gateways
and with arbitrary topology.

4.1 Decomposing a BPD into components

To map a BPD onto readable BPEL code, we need to transform a graph structure into
a block structure. For this purpose, we decompose a BPD into “components” which refer
to subsets of the BPD. We then try to identify “patterns” which resemble different groups
of components that can be mapped onto suitable “BPEL blocks” in a systematic way. For
example, a component holding a purely sequential structure should be mapped onto a BPEL
sequence construct while a component holding a parallel structure should be mapped onto a
flow construct.

6 The total order defined over the set of outgoing flows of an XOR decision gateway is to capture the fact
that these flows are evaluated in order and the “default flow” is the one evaluated at last. This is part of
the semantics of XOR decision gateways as defined in the BPMN specification.

7 F∗ is the reflexive transitive closure of F , i.e., xF∗y iff there is a path from x to y in BPD.

6

A component is a subset of a BPD that has one entry point and one exit point. Before
identifying patterns in the remaining subsections, it is necessary to formalize the notion of
components in a BPD. Note that we adopt similar notations for representing an entire BPD
and a component thereof. Also, to formulate the definitions, we specify an auxiliary function
elt over a domain of singletons, i.e., if X = {x}, then elt(X) = x.

Definition 3 (Component). Let BPD = (O, F , Cond) be a well-formed core BPD. A
subset of BPD, as given by C = (Oc, Fc, Condc), is a component iff:
– Oc ⊆ O\(ES ∪ EE), i.e., a component does not contain any start or end event,
– |(

⋃
x∈Oc

in(x))\Oc| = 1, i.e., there is a single entry point into the component,8 which can
be denoted as entry(C) = elt((

⋃
x∈Oc

in(x))\Oc),
– |(

⋃
x∈Oc

out(x))\Oc| = 1, i.e., there is a single exit point out of the component, which can
be denoted as exit(C) = elt((

⋃
x∈Oc

out(x))\Oc),
– there exists a unique source object ic ∈ Oc and a unique sink object oc ∈ Oc and ic 6= oc,

such that entry(C) ∈ in(ic) and exit(C) ∈ out(oc),
– Fc = F ∩ (Oc ×Oc),
– Condc = Cond[Fc], i.e., the Cond function where the domain is restricted to Fc.

Note that all event objects in a component are intermediate events. Also, a component
contains at least two objects: the source object and the sink object. A BPD without any
component, which is referred to as a trivial BPD , has only a single task or intermediate event
between the start event and the end event. Hence, translating a trivial BPD into BPEL is
straightforward.

The decomposition of a BPD helps to define an iterative approach which allows us to
incrementally transform a “componentised” BPD to a block-structured BPEL process. Below,
we define the function Fold that replaces a component by a single task object in a BPD.
This function can be used to perform iterative reduction of a componentised BPD until no
component is left in the BPD. It will play a crucial role in the mapping where we incrementally
replace BPD components by BPEL constructs.

Definition 4 (Fold). Let BPD = (O, F , Cond) be a well-formed core BPD and C = (Oc,
Fc, Condc) be a component of BPD. The function Fold replaces C in BPD by a blank task
object tc /∈ O, i.e., Fold(BPD, C, tc) = (O′, F ′, Cond ′) with:
– O′ = (O\Oc) ∪ {tc},
– Tc is the set of tasks in C, i.e., Tc = Oc ∩ T ,
– T ′ = (T \Tc) ∪ {tc} is the set of tasks in Fold(BPD, C, tc),
– T R′

= (T R\Tc) is the set of receive tasks in Fold(BPD, C, tc), i.e., tc is not a receive task,
– F ′ = (F ∩ (O\Oc ×O\Oc)) ∪ {(entry(C), tc), (tc, exit(C))},

– Cond ′ =

{
Cond[F ′] if entry(C) /∈ GD

Cond[F ′] ∪ {((entry(C), tc),Cond(entry(C), ic))} otherwise

4.2 Well-structured pattern-based translation

Since one of our goals for mapping BPMN onto BPEL is to generate readable BPEL code,
BPEL structured activities comprising sequence, flow, switch, pick and while, have the first
preference if the corresponding structures appear in the BPD. Components that can be
suitably mapped onto any of these five structured constructs are identified as well-structured
patterns. Below, we classify different types of well-structured patterns resembling these five
structured constructs.
8 Note that in(x) is not defined with respect to the component but refers to the whole BPD. Similarly, this

also applies to out(x) in this definition.

7

Definition 5 (Well-structured patterns). Let BPD = (O,F ,Cond) be a well-formed core
BPD and C = (Oc, Fc, Condc) be a component of BPD. ic is the source object of C and oc

is the sink object of C. The following components are identified as well-structured patterns:

(a) C exhibits a sequence-pattern iff Oc ⊆ T ∪ EI (i.e., ∀ x ∈ Oc, |in(x)| = |out(x)| = 1)
and entry(C) /∈ GV . C is a maximal sequence-pattern iff C is a sequence-pattern and
there is no other sequence-pattern C′ such that Oc ⊂ O′

c where O′
c is the set of objects

in C′,
(b) C is identified as a flow-pattern iff

- ic ∈ GF ∧ oc ∈ GJ ,
- Oc ⊆ T ∪ EI ∪ {ic, oc},
- ∀ x∈Oc\{ic, oc}, in(x)={ic} ∧ out(x)={oc}.

(c) C is identified as a switch-pattern iff
- ic ∈ GD ∧ oc ∈ GM ,
- Oc ⊆ T ∪ EI ∪ {ic, oc},
- ∀ x∈Oc\{ic, oc}, in(x)={ic} ∧ out(x)={oc}.

(d) C is identified as a pick-pattern iff
- ic ∈ GV ∧ oc ∈ GM ,
- Oc ⊆ T ∪ EI ∪ {ic, oc},
- ∀ x ∈ Oc\({ic, oc} ∪ out(ic)), in(x) ⊂ out(ic) ∧ out(x) = {oc}.9

(e) C is identified as a while-pattern iff
- ic ∈ GM ∧ oc ∈ GD ∧ x ∈ T ∪ EI ,
- Oc = {ic, oc, x},
- Fc = {(ic, oc), (oc, x), (x, ic)}.

(f) C is identified as a repeat-pattern iff
- ic ∈ GM ∧ oc ∈ GD ∧ x ∈ T ∪ EI ,
- Oc = {ic, oc, x},
- Fc = {(ic, x), (x, oc), (oc, ic)}.

(g) C is identified as a repeat+while-pattern iff
- ic ∈ GM ∧ oc ∈ GD ∧ x1, x2 ∈ T ∪ EI ∧ x1 6= x2,
- Oc = {ic, oc, x1, x2},
- Fc = {(ic, x1), (x1, oc), (oc, x2), (x2, ic)}.

Figure 2 illustrates how to map each of the above patterns onto the corresponding BPEL
structured activities. Using the function Fold of Definition 4, a component C is replaced by
a single task tc attached with the BPEL translation of C. Note that the BPEL code for the
mapping of each task ti (i = 1, ..., n) is denoted as Mapping(ti). Based on the nature of these
task objects they are mapped onto the corresponding types of BPEL activities. For example, a
service task is mapped to an invoke activity, a receive task (like tr in Figure 2(d)) is mapped
to a receive activity, and a user task may be mapped to an invoke activity followed by a
receive activity10. Also, a task ti may result from the folding of a previous component C′, in
which case, Mapping(ti) is the code for the mapping of component C′.

In Figure 2(a) to (e), the mappings of the five patterns, sequence, flow, switch,
pick and while, are straightforward. In a pick-pattern (Figure 2(d)), an event-based XOR
decision gateway must be followed by receive tasks or intermediate message or timer events.
9 Note that out(ic) ⊆ T R ∪ EI is the set of receive tasks and intermediate events following the event-based

XOR decision gateway ic. Between the merge gateway oc and each of the objects in out(ic) there is at most
one task or event object.

10 Since the goal of this paper is to define an approach for translating BPDs to BPEL processes, we do not
discuss further how to map simple tasks in BPMN to BPEL. Interested readers may refer to [5] for some
guidelines on mapping BPMN tasks into BPEL activities.

8

Figure 2. Mapping a well-structured pattern C onto a BPEL structured activity and folding C into a single
task object tc attached with the resulting BPEL code.

For this reason, a sequence-pattern (Figure 2(a)) cannot be preceded by an event-based
XOR decision gateway.

In Figure 2(f) and (g), two patterns, repeat and repeat+while, represent repeat loops.
Repeat loops are the opposite of while loops. A while loop (see while-pattern in Figure 2(e))
evaluates the loop condition before the body of the loop is executed, so that the loop is never
executed if the condition is initially false. In a repeat loop, the condition is checked after the
body of the loop is executed, so that the loop is always executed at least once. In Figure 2(f),
a repeat loop of task t1 is equivalent to a single execution of t1 followed by a while loop of t1.

9

In Figure 2(g), a repeat loop of task t1 is combined with a while loop of task t2, and both share
one loop condition. In this case, task t1 is always executed once before the initial evaluation
of the condition, which is then followed by a while loop of sequential execution of t2 and t1.

4.3 Quasi-structured pattern-based translation

It can be observed from the previous subsection that well-structured patterns impose strict
structural restrictions on BPDs. Again, to achieve the goal of producing readable BPEL code
for the mapping of BPMN, we would like to exploit patterns with potential well-structuredness
even if they do not strictly satisfy the restrictions captured in the previous patterns. To this
end, we start to identify some of those components for which it is easy to temporarily extend
them (without changing semantics) to allow for further reductions, e.g., split a gateway into
two gateways to separate the incompatible parts. We call this category of components quasi-
structured patterns. In the following, we classify three types of quasi-structured patterns for
flow, switch, and pick, respectively. Also, we specify how to refine them to construct a
well-structured pattern within them. To illustrate this definition, Figure 3 depicts examples
of three types of quasi-structured patterns and the corresponding refinements. Note that for
a given object x that has an outdegree of one (e.g., a join gateway), succ(x) provides the
object that follows x. Similarly, for any object y that has an indegree of one (e.g., a fork
gateway), pred(x) provides the object that precedes y (this will be used in Section 4.4).

Definition 6 (Quasi-structured patterns). Let BPD = (O,F ,Cond) be a well-formed
core BPD, and T E=T ∪E. We may identify three types of quasi-structured patterns as follows:

(a) Let x ∈ GF , y ∈ GJ , X = out(x), Y = in(y), and Z = X ∩Y . If X 6= Y and |Z ∩T E| > 1,
we can identify a subset of BPD as Q = (Oq,Fq, ∅) where Oq = {x, y} ∪ X ∪ Y and
Fq = F ∩ (Oq × Oq). Q is called a quasi-flow-pattern, and can be converted to Q′ =
(O′

q,F ′
q, ∅) where

- O′
q = Oq ∪ {x′, y′},

- F ′
q = (Fq\(({x} × Z) ∪ (Z × {y}))) ∪ {(x, x′), (y′, y)} ∪ ({x′} × Z) ∪ (Z × {y′}), and

- Q′ contains a flow-pattern C = (Z ∪ {x′, y′}, ({x′} × Z) ∪ (Z × {y′}), ∅).

(b) Let x ∈ GD, y ∈ GM , X = out(x)\{y}, Y = in(y), and Z = X ∩ Y . If X ⊂ Y and |Z ∩
T E| + |Y ∩ {x}| > 1, we can identify a subset of BPD as Q = (Oq,Fq,Condq) where
Oq = {x, y} ∪X ∪ Y , Fq = F ∩ (Oq × Oq), and Condq = Cond[Fq]. Q is called a quasi-
switch-pattern, and can be converted to Q′ = (O′

q,F ′
q,Condq) where

- O′
q = Oq ∪ {y′},

- F ′
q = (Fq\(Z × {y})) ∪ {(y′, y)} ∪ (Z × {y′}), and

- Q′ contains a switch-pattern C = (Z ∪ {x, y′}, ({x} × Z) ∪ (Z × {y′}),Condq).

(c) Let x ∈ GV , y ∈ GM , X =
⋃

z∈out(x){succ(z)}\{y}, Y = in(y), and Z = X ∩ Y . If X ⊂ Y
and |Z∩T E|+ |Y ∩

⋃
z∈out(x){z}| > 1, we can identify a subset of BPD as Q = (Oq,Fq, ∅)

where Oq = {x, y} ∪ X ∪ Y and Fq = F ∩ (Oq × Oq). Q is called a quasi-pick-pattern,
and can be converted to Q′ = (O′

q,F ′
q, ∅) where

- O′
q = Oq ∪ {y′},

- F ′
q = (Fq\(Z × {y})) ∪ {(y′, y)} ∪ (Z × {y′}), and

- Q′ contains a pick-pattern C = (Z ∪ {x, y′}, ({x} × Z) ∪ (Z × {y′}), ∅).

From the above definition, it should be mentioned that for quasi-switch and quasi-
pick-patterns, we decided not to consider the situation when there are additional outgoing
flows from decision gateways. For quasi-switch-patterns, due to the fact that the conditional
flows emanating from an XOR-decision gateway are evaluated in order, it would become quite

10

complicate and error-prone to refine the conditions on the outgoing flows when splitting XOR-
decision gateways. For quasi-pick-patterns, since we cannot decompose race conditions, it is
not possible to split an event-based decision gateway.

Figure 3. Refining a quasi-structured pattern Q to construct a well-structured pattern C in Q′.

4.4 Generalised FLOW-pattern-based translation

As mentioned before, we are interested in exploring more patterns which preserve structured-
ness to a certain extent such that they can always be mapped onto block-structured BPEL
code. In this subsection, we look into another group of components which are acyclic and
contain parallelism only. We name this group of components generalised flow-patterns.

Definition 7 (Generalised FLOW-pattern). Let C = (Oc, Fc, Condc) be a component of
a well-formed core BPD. C is a generalised flow-pattern iff:

– C contains no cycles,
– all the gateways in C are either parallel fork or join gateways (i.e., Gc = GF

c ∪ GJ
c), and

– there is no other component C′ = (O′
c, F ′

c, Cond ′) such that O′
c ⊂ Oc.

The reason for restricting this pattern to acyclic fragments is that we intend to map
occurrences of this pattern using BPEL control links. BPEL control links can be used to
define directed graphs of activities provided that these graphs are acyclic. In addition, the
graphs in question must be sound and safe, which means that it should not have deadlocks
(sound) and that there should be no cases where multiple instances of the same activity are
executed concurrently (safe). Generalised FLOW-patterns as defined above satisfy these two
properties. Indeed, these patterns contain only AND-gateways, and AND-gateways are such

11

that every time the nodes that precede the gateway are executed once (each), then the nodes
that follow it are also executed once (each).

Translation Algorithm We could easily map a generalised FLOW-pattern into BPEL using
control links. However, control links lead to BPEL code that is arguably not as readable as
equivalent code using BPEL structured activities. Many BPEL tools do not even offer a way
of visualising control links. Therefore, given a generalised flow-pattern, we aim at map-
ping it onto a combination of BPEL structured activities (only flow and sequence activities
will be used) with as few control links as possible. In other words, during the mapping of
such a pattern, we need to preserve as much as possible the well-structuredness within the
pattern, by incrementally deriving and removing the links from the pattern. Based on this,
Figure 4 defines an algorithm for mapping generalised flow-patterns to BPEL. To illustrate
the algorithm, Figure 5 provides an example of applying the algorithm to the mapping of a
generalised flow-pattern.

First, we introduce a couple of functions used in the algorithm. The function Struc-
turedMap translates a well-structured pattern into the corresponding BPEL structured
construct according to Figure 2 in Section 4.2. It outputs a string of BPEL code. The func-
tion Quasi2Structured takes as input a well-formed BPD W and a quasi-structured pat-
tern Q in W, refines Q to construct the corresponding well-structure pattern C according to
Figure 3 in Section 4.3, and finally produces as output the updated BPD with the refined
pattern Q′. Also, apart from pred and succ, we apply another auxiliary function CompIn. For
any well-formed BPD W, CompIn(W) returns the set of components contained in W.

For our algorithm defined in Figure 4, the key issue is the identification of control links
from a generalised flow-pattern. The control links are derived at two different stages. First,
before it starts to search for the well-structured patterns in the component, the algorithm
checks for all the arcs connecting a fork gateway x directly to a join gateway g (lines 19-28).
If such an arc does not lead from a source fork gateway nor lead to a sink join gateway, it can
be explicitly viewed as a link which imposes causal dependencies between the input object
of x (pred(x)) and the output object of g (succ(g)) on two parallel threads (lines 22-24).
Note that after the reduction of sequentially connected fork/join gateways at the beginning
of the algorithm (lines 9-17), it is always true that a gateway is preceded/followed by a
task/event object. Therefore, we can derive from the above arc connecting x to g (written
as (x, g)), a link identified by its source object pred(x) and target object succ(g) (written as
(pred(x), succ(g))). Then, each arc connecting a fork gateway to a join gateway is removed
from the component (line 25). After the removal of these arcs, there may appear gateways
with an indegree of one and an outdegree of one. These gateways do not perform any routing
functions, and thus can be further reduced from the component (lines 30-33). After the above
reductions, the component is now ready for the next stage of the mapping.

In a second stage, to facilitate the mapping of the entire component C, we construct a
well-formed BPD W by simply adding a start event and an end event to wrap C (lines 35-
36). W is a non-trivial BPD unless C is folded into a task object. Thus, the mapping of
W is repeated until the whole component C is translated into BPEL (lines 38-61). For a
non-trivial BPD W, the mapping always starts from a well-structured sequence-pattern
or flow-pattern after each iteration. Such a pattern C′ will be mapped to BPEL via the
function StructuredMap and then be folded into a new task object tc (lines 39-42). Next,
when there are no well-structured patterns, the algorithm tries to search for a quasi-structured
pattern and then re-writes it into a well-structured one via the function Quasi2Structured
(lines 43-44). Finally, when none of the above patterns can be identified, the algorithm starts
to derive an additional link from any arc connecting a task/event object x to a join gateway g

12

1: input: C = (Oc,Fc, Condc): a generalised flow-pattern
2: output: Blocks: {(tc: task object, bpelcode: string)};
3: output: Links: {(sl: task/event object, tl: task/event object)}
4: begin
5: let Oc = Tc ∪ Ec ∪ Gc; Gc = GF

c ∪ GJ
c

6: let fc ∈ GF
c is the source (fork gateway) object of C

7: let jc ∈ GJ
c is the sink (join gateway) object of C

8: // reduction of two sequentially connected fork gateways into one fork gateway

9: while ∃ g ∈ GF
c \{fc} such that pred(g) ∈ GF

c do
10: GF

c := GF
c \{g}

11: Fc:= Fc ∪ ({pred(g)} × out(g)) \ ({(pred(g), g)} ∪ ({g} × out(g)))
12: end while
13: // reduction of two sequentially connected join gateways into one join gateway

14: while g ∈ GJ
c \{jc} such that succ(g) ∈ GJ

c do
15: GJ

c := GJ
c \{g}

16: Fc:= Fc ∪ (in(g)× {succ(g)}) \ ({(g, succ(g))} ∪ (in(g)× {g}))
17: end while
18: // deriving links from arcs connecting a fork gateway directly to a join gateway

19: for all g ∈ GJ
c such that in(g) ∩ GF

c 6= ∅
20: while |in(g)| > 1 do
21: select any x ∈ in(g) ∩ GF

c such that |out(x)| > 1
22: if x 6= fc and g 6= jc

23: then Links := Links ∪ {(pred(x), succ(g))}
24: end if
25: Fc := Fc\{(x, g)}
26: end select
27: end while
28: end for
29: // reduction of gateways with an indegree and an outdegree of one

30: while ∃ g ∈ Gc\{fc, jc} such that |in(g)| = |out(g)| = 1 do
31: Gc := Gc\{g}
32: Fc := (Fc\{(pred(g), g), (g, succ(g))}) ∪ {(pred(g), succ(g))}
33: end while
34: // construction of a BPD W containing only component C
35: let s be a start event and e be an end event
36: W := (Oc ∪ {s, e},Fc ∪ {(s, fc), (jc, e)}, Cond[Fc])
37: // mapping of component C
38: while CompIn(W) 6= ∅ do
39: if ∃ a maximal sequence-pattern or a flow-pattern C′ ∈ CompIn(W)
40: then t := a new task object
41: thenBlocks := Blocks ∪ {(t,StructuredMap(C′))}
42: thenW := Fold(W, C′, t)
43: else if ∃ a quasi-flow-pattern Q in W
44: else then W := Quasi2Structured(W,Q)
45: else else // deriving an additional link from any arc connecting a task/event to a join gateway

46: else else begin
47: select any g ∈ GJ

c \{jc}
48: select any x ∈ in(g)
49: Links := Links ∪ {(x, succ(g))}
50: Fc := (Fc\{(x, g)}) ∪ {(x, jc)}
51: end select
52: if |in(g)| = 1
53: then GJ

c := GJ
c \{g}

54: then Fc := (Fc\{(pred(g), g), (g, succ(g))}) ∪ {(pred(g), succ(g))}
55: end if
56: end select
57: else else end
58: else end if
59: end if
60: end while
61: end

Figure 4. Algorithm for translating a generalised flow-pattern into a BPEL flow construct with control links.

13

Figure 5. Example of applying the algorithm shown in Figure 4 to the translation of a generalised flow-
pattern.

14

(except the sink join gateway) in W (lines 46-57). Similarly, after the arc (x, g) is selected
and mapped onto a link (x, succ(g)), it is then removed from the component. However, in
this case, the source task/event object x will lose its outgoing flow and thereby the resulting
BPD will not be well-formed any more. In order to maintain the well-formedness of the BPD
without changing its behaviour, the algorithm adds an arc from the task/event x to the end
join gateway jc. Next, if the join gateway g has only one incoming arc left, it can be deleted.
Note that in the above procedure, conducting the identification of additional control links
(one at a time) only as a last resort, reflects the desire to produce structured BPEL code
with as few control links as possible.

Complexity Analysis We now analyse the complexity of the above algorithm. In this
analysis, we use the following notations. Symbol kn,m denotes the worst-case complexity
of the fragment of the algorithm contained between lines n and m. Symbols ind or outd
denote functions that take as input an object x and return the indegree and the outdegree
of x respectively, i.e., ind(x) = |in(x)|, outd(x) = |out(x)|. Meanwhile, app is a higher-level
function that applies a function given as first parameter (e.g., ind or outd) to each element
of a set S = {x1, ..., xn} given as second parameter, e.g. app(ind,S) = {ind(x1), ..., ind(xn)}.
Finally, function max takes as input a set of integers, and returns the integer with the maximal
value among the set. We use indmax(S) as a shorthand notation for max(app(ind, S)), and
outdmax(S) for max(app(outd, S)).

Consider the body of the algorithm (lines 5 to 60) in Figure 4. Lines 5 to 7 do not
contribute to the asymptotic worst-case complexity. In lines 9 to 12, a reduction is performed
for every two sequentially connected fork gateways in C. For each reduction, the set operations
(lines 10 to 11) are performed, leading to a complexity of O(outdmax(GF

c)). In the extreme
case, all fork gateways in GF

c are sequentially connected, and to reduce them into one fork
gateway, |GF

c | − 1 reductions need to be performed. Thus, the complexity of lines 9 to 12 is
bounded by k9,12 = O(|GF

c | ∗ outdmax(GF
c)). Similarly, the complexity of lines 14 to 17 for

reducing join gateways is k14,17 = O(|GJ
c | ∗ indmax(GJ

c)). In lines 19 to 28, the number of join
gateways that directly follow fork gateways is bounded by |GJ

c |, and for each of these join
gateways, the number of its preceding fork gateways is bounded by O(indmax(GJ

c)). Given
that mapping an arc between a join gateway and its preceding fork gateway onto a control
link is trivial, the complexity of lines 19 to 28 is given by k19,28 = O(|GJ

c | ∗ indmax(GJ
c)). In

lines 30 to 33, gateways with only one incoming arc and one outgoing arc are removed, hence
a complexity of k30,33 = O(|Gc|).

The construction of a BPD W around component C in lines 35 and 36 is trivial and does
not contribute to the asymptotic worst-case complexity. Within W, the entire component C
is then gradually mapped onto BPEL block constructs in lines 38 to 60. First, in the if -
clause (line 39), to identify a maximal sequence-pattern, one may need to explore all tasks
and events in linear time, and to identify a flow-pattern, one may need to go through all
parallel fork gateways. As a result, the complexity of line 39 is bounded by k39 = O(|Tc ∪
EI

c | + |GF
c | ∗ outdmax(GF

c)). Next, in the then-clause (lines 40 to 42), both the BPEL code
translation (line 41) and the pattern folding operation (line 42) can be performed in linear
time and thus the complexity of this then-clause is dominated by the pattern identification in
the if -clause. The else-clause contains a nested if-then-else structure. Again, the complexity
of the pattern identification in the nested if -clause (line 43) dominates the complexity of
the pattern refinement in the nested then-clause (line 44) as well as the complexity of the
link derivation in the nested else-clause (lines 46 to 57). Thus, we can focus on analysing
the complexity of the if -clause. A quasi-flow-pattern is similar to a well-structured flow-
pattern but it allows additional outputs from the starting (fork) gateway and additional

15

inputs to the closing (join) gateway. When identifying such a pattern, an additional step
is required to check that at least two output task/event objects of the fork gateway share
one same output join gateway. Given a fork gateway g ∈ GF

c , this additional step can be
implemented by using an algorithm that detects if there is a duplicate in the set of second-
degree successors of g, i.e., {out(x)|x ∈ out(g)}. This duplicate detection can be achieved
for example using a sorting algorithm. Hence, the complexity of identifying a quasi-flow-
pattern is O(|GF

c | ∗ outdmax(GF
c) ∗ log(outdmax(GF

c))). This is also the value of k43,58. Next,
based on the fact that a maximum of |Oc|/2 patterns may be identified in component C, the
complexity of lines 38 to 60 is k38,60 = O(|Oc| ∗ (k39 + k43,58)). Finally, the complexity of the
algorithm shown in Figure 5 can be obtained as a sum of the above worst-case complexity
bounds, i.e., k9,12 + k14,17 + k19,28 + k30,33 + k38,60.

5 Overall Translation Approach: An Example

In this section, we describe and illustrate the overall translation approach. Given a well-
formed BPD, the basic idea of each step of the approach is to identify an occurrence of a
pattern, to generate its BPEL translation, and then to fold the component or fragment of the
model matched by the pattern into a single task object. This is repeated until no pattern is
left in the BPD. The process of identifying which pattern to apply next always starts from a
maximal sequence-pattern after each folding. When there are no occurrences of the sequence
pattern left in the BPD, occurrences of other well-structured patterns are searched for. If one
such occurrence is found, it is processed, leading the folding of a component or fragment of
the model. The search for patterns then starts again with the sequence pattern. Since all
well-structured non-sequence components are disjoint, the order of identifying these patterns
is irrelevant. Next, when no well-structured patterns are left, any quasi-structured patterns
are processed – again, the identification of an occurrence of any of these pattern leads to
part of the model being folded and the search re-starts again from the sequence pattern.
Finally, if no well-structured nor quasi-structured patterns are left, the approach searches for
a generalised flow-pattern as a last resort. Note that a BPD comprising only the patterns
defined in Section 4 can be fully translated into a BPEL process. For other BPDs, we can
use the general translation approach described in our prior work [15].

Consider the complaint handling process model shown in Figure 6 which is a well-formed
core BPD. First the complaint is registered (task register), then in parallel a questionnaire
is sent to the complainant (task send questionnaire) and the complaint is evaluated (task
evaluate). If the complainant returns the questionnaire within two weeks (event returned-
questionnaire), task process questionnaire is executed. Otherwise (event time-out), the result
of the questionnaire is discarded. After either the questionnaire is processed or a time-out
has occurred, the result needs to be archived (task archive), and in parallel, if the complaint

Figure 6. A complaint handling process model.

16

evaluation has been completed, the actual processing of the complaint (task process com-
plaint) can start. Next, the processing of the complaint is checked via task check processing.
If the check result is not ok, the complaint requires re-processing. Otherwise, if the check
result is ok and also the questionnaire has been archived, a notice will be sent to inform the
complainant about the completion of the complaint handling (task send notice). Note that
labels ok and nok on the outgoing flows of a data-based XOR decision gateway, are abstract
representations of conditions on these flows.

Following the pattern-based translation approach in Section 4, we map the above BPD
onto a BPEL process. Figure 7 sketches the translation procedure which shows how this BPD
can be reduced to a trivial BPD. Each component is named Ci where i specifies in what order
the components are processed, and Ci is folded into a task object named tic. In Figure 7, seven
components are identified. All these components except C5 capture well-structured patterns.
In particular, C1, C3, C6, C7 and C8 are identified as sequence-patterns and are folded into
sequence activities t1c , t3c , t6c , t7c and t8c , respectively; C2 exhibits a pick-pattern and is folded
into a pick activity t2c ; and C4 exhibits a repeat-pattern and is folded into a sequence of
activity t1c followed by a while activity t4c . C5 exhibits a generalised flow-pattern, and is
folded into t5c which is a flow activity with a control link connecting t3c to t4c . The resulting
BPEL process is sketched as:

<process>

<links>

<link name="t3TOt4"/>

</links>

<sequence name="t8c">

<invoke name="register"/>

<flow name="t5c">

<sequence name="t6c">

<sequence name="t3c">

<source linkName="t3TOt4"/>

<invoke name="send questionnaire"/>

<pick name="t2c">

<onMessage name="returned-questionnaire">

<invoke name="process questionnaire"/>

</onMessage>

<onAlarm name="time-out">

<empty/>

</onAlarm>

</pick>

</sequence>

<invoke name="archive"/>

</sequence>

<sequence name="t7c">

<invoke name="evaluate"/>

<sequence name="t4c">

<target linkName="t3TOt4"/>

<sequence name="t1c">

<invoke name="process complaint"/>

<invoke name="check processing"/>

</sequence>

17

Figure 7. Translating the complaint handling process model in Figure 6 into BPEL.

18

<while condition="NOK">

<sequence name="t1c">

<invoke name="process complaint"/>

<invoke name="check processing"/>

</sequence>

</while>

</sequence>

</sequence>

</flow>

<invoke name="send notice"/>

</sequence>

</process>

6 Related Work

White [5, 18] informally sketches a translation from BPMN to BPEL. However, as acknowl-
edged in [5] this translation is fundamentally limited, e.g. it excludes diagrams with arbitrary
topologies and several steps in the translation require human input to identify patterns in
the source model. Several tool vendors have integrated variants of this translation into their
BPMN modelling tools. Not surprisingly however, these tools are only able to export BPEL
code for restricted classes of BPMN models [4, 17].

Research into structured programming in the 60s and 70s led to techniques for translating
unstructured flowcharts into structured ones. However, these techniques are no longer appli-
cable when AND-splits and AND-joins are introduced. An identification of situations where
unstructured process diagrams cannot be translated into equivalent structured ones (under
weak bisimulation equivalence) can be found in [7, 11], while an approach to overcome some
of these limitations for processes without parallelism is sketched in [9]. However, these related
work only address a piece of the puzzle of translating from graph-oriented process modelling
languages to BPEL.

This paper is an extended version of [16] which in turn draws upon insights from one
of our previous publications [10]. In [10], we implement a semi-automated mapping from
Coloured Petri nets to BPEL. This semi-automated mapping is based on the identification
of structural patterns that have commonalities with the set of well-structured translation
patterns discussed in the present paper.

In other complementary work [15], we presented a mapping from a graph-oriented lan-
guage supporting AND-splits, AND-joins, XOR-splits, and XOR-joins, into BPEL. This map-
ping can deal with any BPMN model composed of elementary activities and these four types
of gateways. However, the generated BPEL code relies heavily on BPEL event handlers, while
in this paper we make use of BPEL’s block-structured constructs, thus obtaining more read-
able code. It is possible to combine these two methods by iteratively applying first the method
presented in this paper, and when this method can not be applied to any component of the
model, applying the method in [15] on a minimal-size component, and so on until the process
model is reduced to one single component. The technical details of this combined translation
procedure are discussed in reference [14] which also introduces another translation approach
that can deal with any acyclic BPMN graph containing AND and XOR gateways.

In parallel with our work, Mendling et al. [13] have developed four strategies to trans-
late from graph-oriented process modelling languages (such as BPMN) to BPEL. The first
of these strategies, namely Structure-Identification Strategy , works by identifying perfectly

19

well-structured components and folding them incrementally, as discussed in Section 4.2. The
second and third strategies, namely the Element-Preservation Strategy and the Element-
Minimisation Strategy translate acyclic graph-oriented models into BPEL process definitions
that rely intensively on control links, as opposed to relying on BPEL structured activities.
These strategies are similar to one of the translation procedures formalised in [14]. Finally,
the Structure-Maximisation Strategy tries to derive a BPEL process with as many structured
activities as possible and for the remaining unstructured fragments, it tries to apply the
strategies that rely on control links. None of the translation strategies by Mendling et al. are
able to identify quasi-structured and generalised flow-patterns as discussed in this paper.

Finally, it is interesting to mention the work conducted on the translations in the opposite
direction, i.e., from BPEL to graph-oriented process modelling languages. One typical exam-
ple is a toolset, namely Tools4BPEL, which consists of two main tools: BPEL2oWFN and
Fiona. BPEL2oWFN maps BPEL specifications onto open Workflow nets using an algorithm
described in [6]. The resulting nets can be loaded into a tool called Fiona that can check for
various properties both for standalone and for inter-connected processes [12]. Driven by the
same motivation of enabling static analysis of BPEL processes, Brogi and Popescu [3] present
a translation from BPEL to YAWL (a graph-oriented process definition language inspired by
Petri nets). Arguably, this latter BPEL-to-YAWL translation could be adapted to yield a
BPEL-to-BPMN translation.

7 Conclusion

In this paper, we presented an algorithm to translate models captured in a core subset of
BPMN into BPEL. The translation algorithm is capable of generating readable and structured
BPEL code by discovering structural patterns in the BPMN models. The proposal advances
the state of the art in BPMN-to-BPEL translations by formally defining not only perfectly
block-structured patterns of BPMN models, but also quasi-structured patterns and flow-based
acyclic patterns. We have shown how well-structured and quasi-structured model fragments
can be mapped into block-structured BPEL constructs, while flow-based acyclic fragments
can be mapped into block-structured BPEL constructs with some additional control links to
capture dependencies between activities located in different blocks.

An implementation of the proposed pattern-based translation algorithm is available as an
open-source tool called BPMN2BPEL11. The current tool implementation covers the well-
structured patterns presented in this paper as well as other complementary translation al-
gorithms presented in [14, 15]. Ongoing work aims at extending the tool with the ability to
detect quasi-structured patterns and flow-based acyclic patterns.

The translation technique described in this paper focuses on mapping a core subset of
BPMN’s control-flow constructs. For the translation to be complete, it needs to be extended
to cover: (i) mappings of individual tasks and events such as send and receive tasks, user
tasks, message events, timer events, etc.; and (ii) mappings of other constructs. The first
point is covered in some details by [5, 18] and by other ongoing work in the context of the
BPMN standardisation process. The second point brings up some challenges which require
special attention. In particular, mapping the OR-join gateway is likely to prove challenging
especially for BPMN models containing arbitrary cycles. Indeed, this construct has a non-
local semantics [8], meaning that the firing behaviour of an OR-join gateway may depend
on other gateways in the model located far away from the OR-join gateway, as opposed to
only depending on the tokens available on its input arcs. In future, we plan to investigate

11 BPMN2BPEL is available via http://www.bpm.fit.qut.edu.au/projects/babel/tools.

20

under which conditions can a BPMN model containing OR-join gateways be transformed into
an equivalent BPMN model containing only AND and XOR gateways, so that the resulting
models can be translated into BPEL using the algorithms described in this and related papers.

References

1. W.M.P. van der Aalst, A.H.M. ter Hofstede, B. Kiepuszewski, and A. P. Barros. Workflow Patterns.
Distributed and Parallel Databases, 14(3):5–51, July 2003.

2. A. Arkin, S. Askary, B. Bloch, F. Curbera, Y. Goland, N. Kartha, C. K. Liu, S. Thatte, P. Yendluri,
and A. Yiu, editors. Web Services Business Process Execution Language Version 2.0. Committee Draft.
WS-BPEL TC OASIS, 2005.

3. A. Brogi and R. Popescu. From BPEL processes to YAWL workflows. In Proceedings of the 3rd Interna-
tional Workshop on Web Services and Formal Methods (WS-FM’2006), volume 4184 of Lecture Notes in
Computer Science, pages 107–122. Springer-Verlag, 2006.

4. Y. Gao. BPMN-BPEL transformation and round trip engineering. URL: http://www.eclarus.com/pdf/
BPMN BPEL Mapping.pdf, March 2006. eClarus Software.

5. Object Management Group. Business Process Modeling Notation (BPMN) Version 1.0. OMG Final
Adopted Specification. Object Management Group, 2006.

6. S. Hinz, K. Schmidt, and C. Stahl. Transforming BPEL to Petri nets. In W.M.P. van der Aalst, B. Be-
natallah, F. Casati, and F. Curbera, editors, Proceedings of the International Conference on Business
Process Management (BPM2005), volume 3649 of Lecture Notes in Computer Science, pages 220–235,
Nancy, France, September 2005. Springer-Verlag.

7. B. Kiepuszewski, A.H.M. ter Hofstede, and C. Bussler. On structured workflow modelling. In Proceedings
of 12th International Conference on Advanced Information Systems Engineering (CAiSE 2000), volume
1789 of Lecture Notes in Computer Science, pages 431–445, London, UK, 2000. Springer-Verlag.

8. Ekkart Kindler. On the semantics of EPCs: Resolving the vicious circle. Data & Knowledge Engineering,
56(1):23–40, 2006.

9. J. Koehler and R. Hauser. Untangling Unstructured Cyclic Flows - A Solution Based on Continuations.
In R. Meersman, Z. Tari, W.M.P. van der Aalst, C. Bussler, and A. Gal et al., editors, On the Move
to Meaningful Internet Systems 2004: CoopIS, DOA, and ODBASE: OTM Confederated International
Conferences, CoopIS, DOA, and ODBASE 2004, volume 3290 of Lecture Notes in Computer Science,
pages 121–138, 2004.

10. K.B. Lassen and W.M.P. van der Aalst. WorkflowNet2BPEL4WS: A tool for translating unstructured
workflow processes to readable BPEL. In On the Move to Meaningful Internet Systems 2006, OTM Con-
federated International Conferences, 14th International Conference on Cooperative Information Systems
(CoopIS 2006), volume 4275 of Lecture Notes in Computer Science, pages 127–144. Springer-Verlag, 2006.

11. R. Liu and A. Kumar. An analysis and taxonomy of unstructured workflows. In Proceedings of the
International Conference on Business Process Management (BPM2005), volume 3649 of Lecture Notes in
Computer Science, pages 268–284, Nancy, France, 2005. Springer-Verlag.

12. N. Lohmann, P. Massuthe, C. Stahl, and D. Weinberg. Analyzing interacting BPEL processes. In
S. Dustdar, J. L. Fiadeiro, and A. Sheth, editors, Proceedings of the 4th International Conference on
Business Process Management (BPM2006), volume 4102 of Lecture Notes in Computer Science, pages
17–32. Springer-Verlag, 2006.

13. J. Mendling, K.B. Lassen, and U. Zdun. Transformation strategies between block-oriented and graph-
oriented process modelling languages. In F. Lehner, H. Nösekabel, and P. Kleinschmidt, editors, Multi-
konferenz Wirtschaftsinformatik 2006. Band 2, pages 297–312. GITO-Verlag, Berlin, Germany, 2006.

14. C. Ouyang, M. Dumas, W.M.P. van der Aalst, and A.H.M. ter Hofstede. From business process mod-
els to process-oriented software systems: The BPMN to BPEL way. Technical Report BPM-06-27,
BPMcenter.org, 2006. Available via http://is.tm.tue.nl/staff/wvdaalst/BPMcenter/reports/2006/

BPM-06-27.pdf.
15. C. Ouyang, M. Dumas, S. Breutel, and A.H.M. ter Hofstede. Translating Standard Process Models to

BPEL. In Proceedings of 18th International Conference on Advanced Information Systems Engineering
(CAiSE 2006), volume 4001 of Lecture Notes in Computer Science, pages 417–432, Luxembourg, 2006.
Springer-Verlag.

16. C. Ouyang, M. Dumas, A.H.M. ter Hofstede, and W.M.P. van der Aalst. From BPMN process models
to BPEL Web services. In Proceedings of the 4th International Conference on Web Services (ICWS’06),
pages 285–292, Chicago, Illinois, USA, September 2006. IEEE Computer Society.

17. B. Silver. The next step in process modelling. URL: http://www.brsilver.com/wordpress/2006/02/03/
the-next-step-in-process-modeling/, February 2006. BPMSWatch.

18. S. White. Using BPMN to Model a BPEL Process. BPTrends, 3(3):1–18, March 2005.

21

