
Verification of Workflow Nets

W.M.P. van der Aalst

Eindhoven University of Technology, P.O. Box 513, NL-5600 MB, Eindhoven, The
Netherlands. wsinwa@win.tue.nl

Abstract. Workflow management systems will change the architecture of future informa-
tion systems dramatically. The explicit representation of business procedures is one of the
main issues when introducing a workflow management system. In this paper we focus on a
class of Petri nets suitable for the representation, validation and verification of these proce-
dures. We will show that the correctness of a procedure represented by such a Petri net can
be verified by using standard Petri-net-based techniques. Based on this result we provide
a comprehensive set of transformation rules which can be used to construct and modify
correct procedures.

1 Introduction

At the moment more than 250 Workflow Management Systems (WFMSs) are available.
This number signifies the importance of the workflow paradigm ([3,4,6,13,18,23]). Un-
fortunately, today’s WFMSs suffer from a number of serious drawbacks. A theoretical
basis for workflow management tools is missing. As a result there are, even at a concep-
tual level, important differences between the tools. Despite the efforts of the Workflow
Management Coalition [26] there are no real standards. Moreover, the absence of tools
to support the analysis of workflows is a serious drawback for the success of today’s
WFMSs. In this paper we present a Petri-net-based approach to overcome some of
these problems. In particular we will address the problem of analyzing the correctness
of workflow procedures.

Business processes supported by a WFMS are centered around procedures. A proce-
dure is the method of operation used by a business process to process cases. Exam-
ples of cases are orders, claims, travel expenses, tax declarations, etc. The procedure
specifies the set of tasks required to process these cases successfully. Moreover, the
procedure specifies the (partial) order in which these tasks have to be executed. The
goal of a procedure is to handle cases efficiently and properly. To achieve this goal, the
procedure should be tuned to the ever changing environment of the business process.
A WFMS supports the definition and modification of procedures. Unfortunately, most
of the WFMSs allow for the specification of incorrect procedures. We have evaluated
many WFMSs. None of these WFMSs allow for the verification of essential properties
such as the absence of deadlock and livelock.

In this paper we focus on the use of Petri nets ([20–22]) as a tool for the representation,
validation and verification of workflow procedures. It is not difficult to map a procedure
onto a Petri net. As it turns out, we can even restrict ourselves to a subclass of Petri nets.
Representatives of this class are called WorkFlow nets (WF-nets). A WF-net is a Petri
net with two special places: i and o. These places are used to mark the begin and the

end of a procedure, see Figure 1. The tasks are modeled by transitions and the partial
ordering of tasks is modeled by places connecting these transitions.

WF-net
i o

Fig. 1. A procedure modeled by a WF-net.

The processing of a case starts the moment we put a token in place i and terminates
the moment a token appears in place o. One of the main properties a proper procedure
should satisfy is the following:

For any case, the procedure will terminate eventually, and at the moment the
procedure terminates there is a token in place o and all the other places are
empty.

This property is called the soundness property. In this paper we present a technique
to verify this property using standard Petri-net tools. If we restrict ourselves to free-
choice Petri nets (cf. Best [8], Desel and Esparza [12]), this property can be verified in
polynomial time.

WF-nets have some interesting properties. For example, it turns out that a WF-net is
sound if and only if a slightly modified version of this net is live and bounded! We
will use this property to show that there is a comprehensive set of transformation rules
which preserve soundness. These transformation rules show how a sound procedure can
be transformed into another sound procedure.

The remainder of this paper is organized as follows. In Section 2 we introduce some
of the basic notations for Petri nets. Section 3 deals with WF-nets. In this section we
also define the soundness property. In Section 4 we present a technique to verify the
soundness property. A set of transformation rules that preserve soundness is presented
in Section 5.

2 Petri nets

Historically speaking, Petri nets originate from the early work of Carl Adam Petri
([22]). Since then the use and study of Petri nets has increased considerably. For a
review of the history of Petri nets and an extensive bibliography the reader is referred
to Murata [20].

The classical Petri net is a directed bipartite graph with two node types called places
and transitions. The nodes are connected via directed arcs. Connections between two

nodes of the same type are not allowed. Places are represented by circles and transitions
by rectangles.

Definition 1 (Petri net). A Petri net is a triple (P, T, F):

- P is a finite set of places,
- T is a finite set of transitions (P ∩ T = ∅),
- F ⊆ (P × T) ∪ (T × P) is a set of arcs (flow relation)

A place p is called an input place of a transition t iff there exists a directed arc from p
to t . Place p is called an output place of transition t iff there exists a directed arc from
t to p. We use •t to denote the set of input places for a transition t . The notations t•,
•p and p• have similar meanings, e.g. p• is the set of transitions sharing p as an input
place. Note that we restrict ourselves to arcs with weight 1. In the context of work-
flow procedures it makes no sense to have other weights, because places correspond to
conditions.

At any time a place contains zero or more tokens, drawn as black dots. The state, often
referred to as marking, is the distribution of tokens over places, i.e., M ∈ P → IN. We
will represent a state as follows: 1p1 + 2p2 + 1p3 + 0p4 is the state with one token in
place p1, two tokens in p2, one token in p3 and no tokens in p4. We can also represent
this state as follows: p1 + 2p2 + p3.

For any two states M1 and M2, M1 ≥ M2 iff for each p ∈ P: M1(p) ≥ M2(p).
M1 > M2 iff M1 ≥ M2 and M1 6= M2.

The number of tokens may change during the execution of the net. Transitions are the
active components in a Petri net: they change the state of the net according to the fol-
lowing firing rule:

(1) A transition t is said to be enabled iff each input place p of t contains at least one
token.

(2) An enabled transition may fire. If transition t fires, then t consumes one token from
each input place p of t and produces one token for each output place p of t .

Given a Petri net (P, T, F) and an initial state M1, we have the following notations:

- M1
t→ M2: transition t is enabled in state M1 and firing t in M1 results in state M2

- M1 → M2: there is a transition t such that M1
t→ M2

- M1
σ→ Mn : the firing sequence σ = t1t2t3 . . . tn−1 leads from state M1 to state Mn ,

i.e. M1
t1→ M2

t2→ ...
tn−1→ Mn

A state Mn is called reachable from M1 (notation M1
∗→ Mn) iff there is a firing

sequence σ = t1t2 . . . tn−1 such that M1
t1→ M2

t2→ ...
tn−1→ Mn .

We use (PN ,M) to denote a Petri net PN with an initial state M . Let us define some
properties for Petri nets.

Definition 2 (Live). A Petri net (PN ,M) is live iff, for every reachable state M ′ and
every transition t there is a state M ′′ reachable from M ′ which enables t .

Definition 3 (Bounded). A Petri net (PN ,M) is bounded iff, for every reachable state
and every place p the number of tokens in p is bounded.

Definition 4 (Strongly connected). A Petri net is strongly connected iff, for every pair
of nodes (i.e. places and transitions) x and y, there is a directed path leading from x to
y.

In this paper we use a restricted class of Petri nets for modeling and analyzing work-
flow procedures. As we will see in Section 4.3, it often suffices to consider Petri nets
satisfying the so-called free-choice property.

Definition 5 (Free-choice). A Petri net is a free-choice Petri net iff, for every two
places p1 and p2 either (p1 • ∩ p2•) = ∅ or p1• = p2•.

Free-choice Petri nets have been studied extensively (cf. Best [8], Desel and Esparza
[12,11,14], Hack [17]) because they seem to be a good compromise between expressive
power and analyzability. It is a class of Petri nets for which strong theoretical results
and efficient analysis techniques exist.

3 WF-nets

3.1 What is a WFMS?

A WFMS is a system that defines, creates and manages the execution of workflows
through the use of software, running on one or more workflow engines, which is able
to interpret the process definition, interact with workflow participants and, where re-
quired, invoke the use of IT tools and applications (WFMC [26]). A WFMS can be
seen as the operating system of administrative organisations. The WFMS takes care
of the ‘office logistics’. At the moment more than 250 WFMSs are available. Exam-
ples are: COSA (Software-Ley), Staffware (Staffware), Flowmark (IBM), InConcert
(XSoft), Open Workflow (Wang), TeamWARE (TeamWARE), Visual WorkFlo (Filenet)
and Workparty (Siemens). These systems focus on business processes and are centered
around the definition of a business process, often referred to as workflow.
The objective of a workflow process is the processing of cases (e.g. claims, orders,
travel expenses). To support the processing of these cases using a WFMS we need to
specify two aspects of the workflow ([5]):

(i) Procedure
For each workflow process we have to specify the procedure that is used to han-
dle a case. In essence the procedure defines a partially ordered set of tasks. Cases
are routed through the procedure using AND-splits, OR-splits, AND-joins and OR-
joins. As a result it is possible to specify sequential, selective and parallel routing
and iteration. In the procedure there are no explicit references to the resources (per-
sons) that will execute the tasks.

(ii) Resource classification
Besides the procedure we need to specify who is going to do the work. There-
fore, resources (persons, departments, machines, etc.) are classified into resources

classes. A resources class represents a role (a group of people with a specific set of
attributes, qualifications and/or skills) or an organisational unit (department, com-
pany or team).

Tasks are associated with resource classes. This way it is possible to link the resource
classification to the procedure. The workflow engine (i.e. the workflow enactment ser-
vice) allocates resources to tasks given the constraints specified in the procedure and
resource classification.

parallel routingiteration

sequential routing
task OR-split selection AND-join

OR-joinAND-split

resource classes

resources

roles

persons

organizational units

re
so

ur
ce

 c
la

ss
if

ic
at

io
n

procedure

workflow process
specification

Fig. 2. The two dimensions of a workflow process specification.

Figure 2 illustrates the fact that the specification of a workflow process is composed
from two elements: a procedure and a resource classification. Many WFMSs provide
two workflow definition tools: one for the specification of procedures and one for the
specification of resource classes. In this paper we abstract from resource classes and
focus on techniques to support the construction and analysis of procedures. We also
abstract from case data. In a WFMS it is possible to use case attributes when routing a
case. We abstract from this information by introducing non-deterministic choices. Since
case attributes are set and modified by applications and may involve human decisions,
we have no other choice but to abstract from case data.

3.2 What is a workflow procedure?

The procedure specifies the set of tasks required to process cases successfully. (Syn-
onyms for task are process activity, step and node.) Moreover, the procedure specifies
the order in which these tasks have to be executed. (Tasks may be optional or manda-
tory and are executed in parallel or sequential order.) The allocation of resources to
tasks is required to decide who is going to execute a specific task for a specific case.
Each resource (e.g. a secretary) is able to perform certain functions (e.g. typing a let-
ter) and each task requires certain functions. A resource may be allocated to a task, if
the resource provides the required functions. Recall that we concentrate on modeling

workflow procedures, i.e. we abstract from the resources required to execute these pro-
cedures. To illustrate the term (workflow) procedure we will use the following example.
Consider an automobile insurance company. The workflow process process claim takes
care of the processing of claims related to car damage. Each claim corresponds to a
case to be handled by process claim. The workflow procedure that is used to handle
these cases can be described as follows. There are four tasks: check insurance, con-
tact garage, pay damage and send letter. The tasks check insurance and contact garage
may be executed in any order to determine whether the claim is justified. If the claim is
justified, the damage is paid (task pay damage). Otherwise a ‘letter of rejection’ is sent
to the claimant (task send letter).

3.3 Modeling a procedure

We use Petri nets for modeling and analyzing workflow procedures. Basically, a proce-
dure is a partially ordered set of tasks. Therefore, it is quite easy to map a procedure
onto a Petri net. Tasks are modeled by transitions and precedence relations are modeled
by places. Consider for example the workflow procedure process claim, see Figure 3.
The tasks check insurance, contact garage, pay damage and send letter are modeled
by transitions. Since the two tasks check insurance and contact garage may be exe-
cuted in parallel, there are two additional transitions: fork and join. The places p1, p2,
p3, p4 and p5 are used to route a case through the procedure in a proper manner.

fork

i

p1 p2

contact_garage

join

p3 p4

p5

send_letter

o

pay_damage

check_insurance

Fig. 3. The workflow procedure process claim.

Cases are processed independently, i.e. a task executed for some case cannot influence a
task executed for another case. Nevertheless, the throughput time of a case may increase

if there are many other cases competing for the same resources. In this paper we abstract
from resources; cases do not affect each other in any way. Therefore, it suffices to
consider one case at a time. The token in place i in Figure 3 corresponds to one case.
During the processing of a case there may be several tokens referring to the same case.
(If transition fork fires, then there are two tokens, one in p1 and one in p2, referring to
the same claim.) The processing of the case is completed if there is a token in place o
and there are no other tokens also referring to the same case.

Petri nets which model workflow procedures have some typical properties. First of all,
they always have two special places i and o, which correspond to the beginning and
termination of the processing of a case respectively. Place i is a source place and o is a
sink place. Secondly, for each transition t (place p) there should be directed path from
place i to o via t (p). A Petri net which satisfies these two requirements is called a
Workflow net (WF-net), see Figure 1.

Definition 6 (WF-net). A Petri net PN = (P, T, F) is a WF-net (Workflow net) if and
only if:

(i) PN has two special places: i and o. Place i is a source place: •i = ∅. Place o is a
sink place: o• = ∅.

(ii) If we add a transition t∗ to PN which connects place o with i (i.e. •t∗ = {o} and
t∗• = {i}), then the resulting Petri net is strongly connected.

A WF-net has one input place (i) and one output place (o) because any case handled
by the procedure represented by the WF-net is created if it enters the WFMS and is
deleted once it is completely handled by the WFMS, i.e., the WF-net specifies the life-
cycle of a case. The second requirement in Definition 6 (the Petri net extended with t∗
should be strongly connected), states that for each transition t (place p) there should
be directed path from place i to o via t (p). This requirement has been added to avoid
‘dangling tasks and/or conditions’, i.e. tasks and conditions which do not contribute to
the processing of cases.

It is easy to verify that the Petri net shown in Figure 3 is a WF-net.

3.4 Sound procedures

The two requirements stated in Definition 6 can be verified statically, i.e. they only relate
to the structure of the Petri net. There is however a third requirement which should be
satisfied:

For any case, the procedure will terminate eventually, and at the moment the
procedure terminates there is a token in place o and all the other places are
empty.

Moreover, there should be no dead tasks, i.e., it should be possible to execute an arbi-
trary task by following the appropriate route though the WF-net. These two additional
constraints correspond to the so-called soundness property.

Definition 7 (Sound). A procedure modeled by a WF-net PN = (P, T, F) is sound if
and only if:

(i) For every state M reachable from state i , there exists a firing sequence leading from
state M to state o. Formally:

∀M (i
∗→ M)⇒ (M

∗→ o)

(ii) State o is the only state reachable from state i with at least one token in place o.
Formally:

∀M (i
∗→ M ∧ M ≥ o)⇒ (M = o)

(iii) There are no dead transitions in (PN , i). Formally:

∀t∈T ∃M,M ′ i
∗→ M

t→ M ′

Note that there is an overloading of notation: the symbol i is used to denote both the
place i and the state with only one token in place i (see Section 2). The soundness
property relates to the dynamics of a WF-net. The first requirement in Definition 7 states
that starting from the initial state (state i), it is always possible to reach the state with one
token in place o (state o). If we assume fairness (i.e. a transition that is enabled infinitely
often will fire eventually), then the first requirement implies that eventually state o is
reached. The fairness assumption is reasonable in the context of workflow management;
all choices are made (implicitly or explicitly) by applications, humans or external actors.
Clearly, they should not introduce an infinite loop. The second requirement states that
the moment a token is put in place o, all the other places should be empty. Sometimes
the term proper termination is used to describe the first two requirements [15]. The last
requirement states that there are no dead transitions (tasks) in the initial state i.

For the WF-net shown in Figure 3 it is easy to see that it is sound. However, for complex
workflow procedures it is far from trivial to check the soundness property.

4 Analysis of WF-nets

4.1 Introduction

In this section, we focus on analysis techniques that can be used to verify the sound-
ness property. The soundness property is a property which relates to the dynamics of
a WF-net. Therefore, the coverability graph (Peterson [21], Murata [20]) seems to be
an obvious technique to check whether the WF-net is sound. Figure 4 shows the cov-
erability graph which corresponds to the Petri net shown in Figure 3 (the initial state is
i). There are only 7 reachable states, therefore it is easy to verify the three requirements
stated in Definition 7.
In general the coverability graph can be used to decide whether a WF-net is sound. (In
Section 4.2 we show that a sound WF-net is bounded. If the coverability graph has an
unbounded state (an ‘ω-state’), then the WF-net is not sound. Otherwise, we can use
a simple algorithm to check the three requirements stated in Definition 7.) However,

i

p1 + p2

p1 + p4 p3 + p2

o

p5

p3 + p4

Fig. 4. The coverability graph of the Petri net shown in Figure 3.

for complex procedures, the construction of the coverability graph may be very time
consuming. The complexity of the algorithm to construct the coverability graph can
be worse than primitive recursive space. Even for free-choice Petri nets the reachabil-
ity problem is known to be EXPSPACE-hard (cf. Cheng, Esparza and Palsberg [9]).
Therefore, any ‘brute-force approach’ to check soundness is bound to be intractable.
Fortunately, the problem of deciding whether a given WF-net is sound corresponds to
standard Petri-net properties. In the remainder of this section, we present a technique
to decide soundness. Along the way, we encounter some interesting properties of sound
WF-nets. Moreover, we will show that for most WF-net encountered in practice, the
soundness property can be verified in polynomial time.

4.2 A necessary and sufficient condition for soundness

Given WF-net PN = (P, T, F), we want to decide whether PN is sound. For this
purpose we define an extended net PN = (P, T , F). PN is the Petri net that we obtain
by adding an extra transition t∗ which connects o and i . The extended Petri net PN =
(P, T , F) is defined as follows:

P = P
T = T ∪ {t∗}
F = F ∪ {〈o, t∗〉, 〈t∗, i〉}

Figure 5 illustrates the relation between PN and PN .

For an arbitrary WF-net PN and the corresponding extended Petri net PN we will prove
the following result:

PN is sound if and only if (PN , i) is live and bounded.

First, we prove the ‘if’ direction.

Lemma 8. If (PN , i) is live and bounded, then PN is a sound WF-net.

PN

*

i

t

o

Fig. 5. PN = (P, T ∪ {t∗}, F ∪ {〈o, t∗〉, 〈t∗, i〉}).

Proof. (PN , i) is live, i.e., for every reachable state M there is a firing sequence which
leads to a state in which t∗ is enabled. Since o is the input place of t∗, we find that for
any state M reachable from state i it is possible to reach a state with at least one token in
place o. Consider an arbitrary reachable state M ′+ o, i.e. a state with at least one token
in place o. In this state t∗ is enabled. If t∗ fires, then the state M ′ + i is reached. Since
(PN , i) is also bounded, M ′ should be equal to the empty state. Hence requirements (i)
and (ii) hold and proper termination is guaranteed. Requirement (iii) follows directly
from the fact that (PN , i) is live. Hence, PN is a sound WF-net. ut

To prove the ‘only if’ direction, we first show that the extended net is bounded.

Lemma 9. If PN is sound, then (PN , i) is bounded.

Proof. Assume that PN is sound and (PN , i) not bounded. Since PN is not bounded
there are two states Mi and M j such that i

∗→ Mi , Mi
∗→ M j and M j > Mi . (See for

example the proof that the coverability tree is finite in Peterson [21] (Theorem 4.1).)
However, since PN is sound we know that there is a firing sequence σ such that Mi

σ→
o. Therefore, there is a state M such that M j

σ→ M and M > o. Hence, it is not possible
that PN is both sound and not bounded. So if PN is sound, then (PN , i) is bounded.
From the fact that PN is sound and (PN , i) is bounded, we can deduce that (PN , i) is
bounded. If transition t∗ in PN fires, the net returns to the initial state i . ut

Now we can prove that (PN , i) is live.

Lemma 10. If PN is sound, then (PN , i) is live.

Proof. Assume PN is sound. By Lemma 9 we know that (PN , i) is bounded. Because
PN is sound we know that state i is a so-called home-marking of PN , i.e., for every
state M ′ reachable from (PN , i) it is possible to return to state i . In the original net
(PN , i), it is possible to fire an arbitrary transition t (requirement (iii)). This is also the
case in the modified net. Therefore, (PN , i) is live because for every state M ′ reachable
from (PN , i) it is possible to reach a state which enables an arbitrary transition t . ut

Theorem 11. A WF-net PN is sound if and only if (PN , i) is live and bounded.

Proof. It follows directly from Lemma 8, 9 and 10. ut

Theorem 11 is an extension of the results presented in [2,24]. In [2] we restrict ourselves
to free-choice WF-nets. Independently, Straub and Hurtado [24] found necessary and
sufficient conditions for soundness of COPA nets. (COPA nets correspond to a subclass
of free-choice Petri nets.)

Perhaps surprisingly, the verification of the soundness property boils down to check-
ing whether the extended Petri net is live and bounded! This means that we can use
standard Petri-net-based analysis tools to decide soundness. In Section 5 we will use
Theorem 11 to prove that there is a comprehensive set of transformation rules which
preserve soundness. However, first we consider an important subclass of WF-nets.

4.3 Free-choice WF-nets

Most of the WFMSs available at the moment, abstract from states between tasks, i.e.,
states are not represented explicitly. These WFMSs use building blocks such as the
AND-split, AND-join, OR-split and OR-join to specify workflow procedures. The AND-
split and the AND-join are used for parallel routing. The OR-split and the OR-join are
used for conditional routing. Because these systems abstract from states, every choice is
made inside an OR-split building block. If we model an OR-split in terms of a Petri net,
the OR-split corresponds to a number of transitions sharing the same set of input places.
This means that for these WFMSs, a workflow procedure corresponds to a free-choice
Petri net (see Definition 5). We have evaluated many WFMSs (e.g. the ones mentioned
in Section 3.1) and just one of these systems (COSA) allows for a construction which
is comparable to a non-free choice WF-net. Therefore, it makes sense to consider free-
choice Petri nets. Parallelism, sequential routing, conditional routing and iteration can
be modeled without violating the free-choice property (cf. Section 5). Another reason
for restricting WF-nets to free-choice Petri nets is the following. If we allow non-free-
choice Petri nets, then the choice between conflicting tasks may be influenced by the
order in which the preceding tasks are executed. The routing of a case should be in-
dependent of the order in which tasks are executed. A situation where the free-choice
property is violated is often a mixture of parallelism and choice. In our opinion paral-
lelism itself should be separated from the choice between a parallel and a non-parallel
execution of tasks.

Free-choice Petri nets have been studied extensively and are marked by strong theoreti-
cal results and efficient analysis techniques (cf. Best [8], Desel and Esparza [12,11,14],
Hack [17]). As a result soundness can be determined in polynomial time for free-choice
WF-nets.

Theorem 12. For a free-choice WF-net it is possible to decide soundness in polynomial
time.

Proof. As a direct result of the Rank theorem ([12]), it is possible to decide liveness
and boundedness in polynomial time. Therefore, the problem of checking whether a
WF-net is sound can be solved in polynomial time using standard techniques. ut
Clearly, the correctness of a free-choice WF-nets can be analyzed very efficiently.
Moreover, it is possible to simplify Definition 7.

Proposition 13. For free-choice WF-nets, the first two requirements in Definition 7 im-
ply the third requirement.

Proof. Let PN be a free-choice WF-net satisfying the first two requirements in Defi-
nition 7 ((i) and (ii)). These requirements state that the WF-net is proper terminating.
It is easy to prove that the extended net (PN , i) is bounded without using the third re-
quirement (see Lemma 9). Moreover, it is also easy to show that i is a so-called home-
marking of PN . Therefore (PN , i) is deadlock-free. Since (PN , i) is a deadlock-free,
bounded, strongly connected, free-choice Petri net, we deduce that (PN , i) is live (see
Theorem 4.31 in Desel and Esparza [12]). Since (PN , i) is live and bounded, PN is
sound (Theorem 11) and the third requirement (iii) holds. ut
Most of the workflow procedures we have seen in practice obey the free-choice prop-
erty. This is a direct result of the fact that most of the workflow systems abstract
from the explicit modeling of states. However, a Petri-net-based WFMS such as COSA
(Software-Ley, Pullheim, Germany) allows for the construction of non-free-choice WF-
nets. Fortunately, for non-free-choice WF-nets we can check a sufficient condition for
soundness in polynomial time.

In the following theorem we assume that the reader is familiar with some advanced
notions: rank, siphon and cluster. A cluster is a minimal set C of nodes satisfying the
following conditions. If the set contains a place s, then s• ⊆ C . If the set contains a
place t , then •t ⊆ C . For more information on these advanced topics, we refer to [12]
and [20].

Theorem 14. A WF-net PN is sound if the rank of PN is equal to the number of clusters
minus 1 and every proper siphon contains at least one token.

Proof. PN is strongly connected. Therefore we can apply Theorem 10.17 in [12]. This
theorem states that a weakly connected Petri net with at least one place and one transi-
tion, a rank equal to the number of clusters minus 1 (i.e. Rank(PN) = |CN | − 1) and a
token in every proper siphon, is live and bounded. By applying Theorem 11 we deduce
that PN is sound. ut

The conditions stated in Theorem 14 are sufficient for soundness and can be checked in
polynomial time. Figure 6 shows a WF-net which is not free-choice. The two transitions
pay damage and send letter are in conflict with the new transition inform customer but
the sets of input places differ. The rank of the extended WF-net is 5, the number of
clusters is 6 and every proper siphon contains at least one token. Therefore, we can use
Theorem 14 to prove that the WF-net is sound (in polynomial time).

Unfortunately, there are sound WF-nets which do not satisfy the conditions stated in
Theorem 14. However, we can extend the class of free-choice WF-nets such that these
conditions are necessary and sufficient for soundness. A Petri net that belongs to this
class is called an almost free-choice WF-net.

Definition 15 (Almost free-choice). A Petri net is an almost free-choice Petri net iff,
for every two transitions t1 and t2 either

fork

i

p1

join

p3 p4

p5

o

pay_damage

check_insurance contact_garage

send_letter

inform_customer

p2

p6

Fig. 6. The modified procedure process claim.

- (•t1 ∩ •t2) = ∅, or
- •t1 = •t2, or
- •t1 = t1• and •t1 ⊆ •t2, or
- •t2 = t2• and •t2 ⊆ •t1.

An almost free-choice Petri net is a free-choice Petri net extended with zero or more
transitions which can not change the state of the net and preserve (non)liveness of the
net. The additional transitions correspond to inquiry tasks, i.e. tasks which do not con-
tribute to the processing of a case. These tasks are executed if someone requires in-
formation about a particular case. The WF-net in Figure 6 is almost free-choice; in-
form customer corresponds to a so-called inquiry task.

Theorem 16. For an almost free-choice WF-net it is possible to decide soundness in
polynomial time.

Proof. An almost free-choice WF-net can be transformed into a free-choice WF-net
without changing liveness and boundedness properties. This can be done by simply
removing the inquiry transitions. An inquiry transition is a transition t1 such that (1)
•t1 = t1• and (2) there is another transition t2 such that •t1 ⊆ •t2. Removing
t1 does not change boundedness, because t1 cannot change the state. Liveness is also
not affected because t1 cannot change the state and t1 is live if t2 is live. By removing
all inquiry transitions we obtain a free-choice WF-net. Then we can apply the Rank
theorem to decide soundness. ut

These results show that for a fairly large class of WF-nets we can decide soundness very
efficiently. We have been involved in a number of workflow projects (Dutch Customs

department, Dutch Justice department and a number of banks and insurance compa-
nies). In these projects we hardly ever experienced the need for WF-nets which are not
almost free-choice.

5 Transformation rules

One of the major benefits of a WFMS is the ability to change business processes very
easily, i.e., without a complete redesign of the information system. Moreover, work-
flow mangement software is an essential enabler for management philosophies such as
Business Process Reengineering (BPR) and Continuous Process Improvement (CPI).
BPR and CPI are also a stimulus for the modification of business processes. As a result,
the procedures supported by the WFMS are subject to frequent changes. These changes
may introduce errors. In this paper we have shown that it is possible to check the sound-
ness of a procedure very efficiently. However, we can use an alternative approach to
make sure that the procedure remains sound. This approach is based on soundness pre-
serving transformation rules.

In our opinion there are eight basic transformation rules (T1a, T1b, T2a, T2b, T3a,
T3b, T4a and T4b) which can be used to modify a sound workflow procedure. These
transformation rules are shown in Figures 7, 8, 9 and 10 and elucidated in the sequel.
The transformation rules correspond to the basic routing constructs identified by the
Workflow Management Coalition ([26]). These rules should not be confused with the
reduction rules presented in Petri-net literature (cf. Berthelot [7], Desel [10], Desel and
Esparza [12] and Kovalyov [19]). The transformation rules presented in this section are
not used for analysis purposes; they are used for the modification of WF-nets.

T1a Task t1 is replaced by two consecutive tasks t2 and t3. This transformation rule
corresponds to the division of a task: a complex task is divided into two tasks which
are less complicated. (See Figure 7.)

i

o

t1

i

o

t2

t3

p

Rule T1a

Rule T1b

Fig. 7. Transformation rules: T1a and T1b.

T1b Two consecutive tasks t2 and t3 are replaced by one task t1. This transformation
rule is the opposite of T1a and corresponds to the aggregation of tasks. Two tasks
are combined into one task. (See Figure 7.)

T2a Task t1 is replaced by two conditional tasks t2 and t3. This transformation rule
corresponds to the specialization of a task (e.g. handle order) into two more spe-
cialized tasks (e.g. handle small order and handle large order).
(See Figure 8.)

i

o

t1

i

o

Rule T2a

Rule T2b

t2 t3

Fig. 8. Transformation rules: T2a and T2b.

T2b Two conditional tasks t2 and t3 are replaced by one task t1. This transformation
rule is the opposite of T2a and corresponds to the generalization of tasks. Two
rather specific tasks are replaced by one more generic task. (See Figure 8.)

T3a Task t1 is replaced by two parallel tasks t2 and t3. (See Figure 9.) The effect of the
execution of t2 and t3 is identical to the effect of the execution of t1. The transitions
c1 and c2 represent control activities to fork and join two parallel threads.

T3b The opposite of transformation rule T3a: two parallel tasks t2 and t3 are replaced
by one task t1. (See Figure 9.)

T4a Task t1 is replaced by an iteration of task t2. (See Figure 10.) The execution of
task t1 (e.g. type letter) corresponds to zero or more executions of task t2 (e.g.
type sentence). The transitions c1 and c2 represent control activities that mark the
begin and end of a sequence of ‘t2-tasks’. Typical examples of situations where
iteration is required are quality control and communication.

T4b The opposite of transformation rule T4a: the iteration of t2 is replaced by task t1.
(See Figure 10.)

Formalization of these transformation rules is straightforward. To illustrate this we de-
fine T1a. (See Figure 7.)

Definition 17 (T1a). Let PN = (P, T, F) be WF-net. This net can be transformed by
rule T1a into a net PN ′ = (P ′, T ′, F ′) iff there exist t1 ∈ T , t2, t3 ∈ T ′ and p ∈ P ′
such that P ′ = P ∪ {p}, p 6∈ P , T ′ = (T \ {t1}) ∪ {t2, t3}, {t2, t3} ∩ T = ∅ and

i

o

t1

i

o

t3t2

c2

c1

p2

p1 p3

p4

Rule T3a

Rule T3b

Fig. 9. Transformation rules: T3a and T3b.

i

o

t1

i

o

c2

c1

Rule T4a

Rule T4b

p1t2

Fig. 10. Transformation rules: T4a and T4b.

F ′ = {〈x, y〉 ∈ F | (x 6= t1)∧ (y 6= t1)} ∪ {〈x, t2〉 ∈ P × T | 〈x, t1〉 ∈ F} ∪ {〈t3, y〉 ∈
T × P | 〈t1, y〉 ∈ F} ∪ {〈t2, p〉, 〈p, t3〉}.
It is easy to see that if we take a sound WF-net and we apply one of these transformation
rules, then the resulting Petri net is still a WF-net. Moreover, the resulting WF-net is
also sound.

Theorem 18. The transformation rules T1a, T1b, T2a, T2b, T3a, T3b, T4a and T4b
preserve soundness, i.e. if a WF-net is sound, then the WF-net transformed by one of
these rules is also sound.

Proof. Let PN be a sound WF-net. Let PN ′ be a net which is obtained by applying one
of the transformation rules on PN . We have to prove that PN ′ is a sound WF-net. It is
easy to see that PN ′ is a WF-net. There is still one input and one output place and the
PN ′ is strongly connected. (PN ′ is the Petri net PN ′ with an extra transition t∗ which
connects place o and place i .) By Theorem 11 we know that, to prove soundness, it
suffices to show (PN ′, i) is live and bounded. (PN , i) is live and bounded. Therefore,
we have to prove that each of the rules preserves liveness and boundedness. Because it
is obvious that the rules preserve liveness and boundedness, we do not give a detailed
proof. It is for example possible to prove this by using the 6 liveness and boundedness
preserving operations described in Murata [20]. ut
The eight transformation rules shown in figures 7, 8, 9 and 10 preserve soundness.
We can use these basic transformation rules to construct more complex transformation
rules. Figure 11 shows two of these rules: T5a and T5b.

T5a Two consecutive tasks are replaced by two parallel tasks.
T5b Two parallel tasks are replaced by two consecutive tasks.

i

o

i

o

t3t2

c2

c1

p2

p1 p3

p4

t2

t3

p

Rule T5a

Rule T5b

Fig. 11. Transformation rules: T5a and T5b.

The application of transformation rule T5a corresponds to the application of T1b fol-
lowed by the application of T3a. Transformation rule T5b is a combination of T3b and

T1a. Therefore, soundness is also preserved by the transformation rules T5a and T5b.
We use the term ‘sound transformation rule’ to refer to a transformation rules which
preserves soundness.

The WF-net which comprises only one task t is sound. We can use this net as a start-
ing point for a sequence of sound transformations. By Theorem 18 we know that the
resulting WF-net is sound.

Corollary 19. If the Petri net PN = ({i, o}, {t}, {〈i, t〉, 〈t, o〉}) is transformed into a
Petri net PN ′ by applying a sequence of sound transformation rules (e.g. T1a, T1b,
T2a, T2b, T3a, T3b, T4a, T4b, T5a and T5b), then PN ′ is sound.

Consider for example the WF-net shown in Figure 3. We can construct this net by
applying the transformation rules T1a, T2a and T3a, see Figure 12.

fork

i

p1

contact_garage

join

p3

p5

send_letterpay_damage

check_insurance

p2

p4

o

i

o

Rule T1a Rule T2a

i

o
o

Rule T3a

i

Fig. 12. Construction of the WF-net shown in Figure 3.

Note that the converse of Corollary 19 is not true. There are sound WF-nets which
cannot be constructed by the transformation rules defined in this section. Consider for
example the WF-net shown in Figure 6; this net is sound but cannot be constructed by
using the transformation rules. Nevertheless, the rules correspond to the basic routing
primitives present in most WFMSs.

6 Related work

Many researchers have inversigated properties similar to the soundness property. Straub
and Hurtado [24] have analyzed a similar property for COPA nets. The soundness prop-
erty is also closely related to Valette’s concept of a well-formed block [25] and Gostel-
low’s concept of proper termination [15]. There is also a relation between reversibility
(the possibility to return to the initial state, i.e., the initial state is a home-marking)

and soundness. The results presented in this paper are marked by the fact that they are
valid for any WF-net. Moreover, we have showed that for an important subclass (almost
free-choice) the soundness property can be verified in polynomial time.

The use of Petri nets in the workflow domain is increasing. At the moment several
Petri-net-based workflow tools are available. COSA (Software-Ley) is a Petri-net-based
workflow management system. COSA is one of the leading workflow products in Eu-
rope. LEU (LION/Vebacom) is a WFMS based on FUNSOFT nets ([16]). INCOME
(Promatis) and StructWare/BusinessSpecs (IvyTeam) are both Petri-net-based BPR tools
which can be used to configure a WFMS. INCOME interfaces with Designer/2000 (Or-
acle), Plexus (BacTec) and CSE/Workflow (CSE systems). StructWare/BusinessSpecs
interfaces with Staffware (Staffware), one of the worlds leading WFMSs. These tools
show that workflow managemant is becoming an important application domain for
Petri nets. However, these Petri-net-based workflow tools do not support advanced
analysis techniques. Therefore, we have developed WOFLAN (WOrkFLow ANalyser).
WOFLAN is a Petri-net-based analysis tool for the verfication of workflows. Amongst
others it supports the analysis techniques described in this paper.

7 Conclusion

In this paper we have presented a class of Petri nets, the so-called WF-nets, suitable for
the representation, validation and verification of workflow procedures. One of the mer-
its of this class is that we can verify the soundness property using standard techniques.
Moreover, we have identified an important class of WF-nets that can be verified in poly-
nomial time. Even though sound WF-nets have some nice properties from a theoretical
point of view, they are powerful enough to model any workflow procedure. Moreover,
we have shown that the plausible transformation rules encountered in practice preserve
soundness.

In this paper we focused on the workflow procedures supported by a WFMS. To com-
pletely specify a workflow process we also have to specify the management of re-
sources: given a task that needs to be executed for a specific case we have to specify the
resource (person or machine) that is going to process the task (cf. Van der Aalst and Van
Hee [5]). A direction for further research is to incorporate this dimension. We hope to
find a necessary and sufficient condition for soundness given a WF-net extended with
some mechanism to allocate resources to tasks.

References

1. W.M.P. van der Aalst. Putting Petri nets to work in industry. Computers in Industry,
25(1):45–54, 1994.

2. W.M.P. van der Aalst. A class of Petri net for modeling and analyzing business processes.
Computing Science Reports 95/26, Eindhoven University of Technology, Eindhoven, 1995.

3. W.M.P. van der Aalst. Petri-net-based Workflow Management Software. In A. Sheth, edi-
tor, Proceedings of the NFS Workshop on Workflow and Process Automation in Information
Systems, pages 114–118, Athens, Georgia, May 1996.

4. W.M.P. van der Aalst. Three Good reasons for Using a Petri-net-based Workflow Man-
agement System. In S. Navathe and T. Wakayama, editors, Proceedings of the International
Working Conference on Information and Process Integration in Enterprises (IPIC’96), pages
179–201, Camebridge, Massachusetts, Nov 1996.

5. W.M.P. van der Aalst and K.M. van Hee. Business Process Redesign: A Petri-net-based
approach. Computers in Industry, 29(1-2):15–26, 1996.

6. W.M.P. van der Aalst and K.M. van Hee. Workflow Management: Modellen, Methoden en
Systemen (in Dutch). Academic Service, Schoonhoven, 1997.

7. G. Berthelot. Transformations and decompositions of nets. In W. Brauer, W. Reisig,
and G. Rozenberg, editors, Advances in Petri Nets 1986 Part I: Petri Nets, central mod-
els and their properties, volume 254 of Lecture Notes in Computer Science, pages 360–376.
Springer-Verlag, Berlin, 1987.

8. E. Best. Structure theory of Petri nets: the free choice hiatus. In W. Brauer, W. Reisig,
and G. Rozenberg, editors, Advances in Petri Nets 1986 Part I: Petri Nets, central models
and their properties, volume 254 of Lecture Notes in Computer Science, pages 168–206.
Springer-Verlag, Berlin, 1987.

9. A. Cheng, J. Esparza, and J. Palsberg. Complexity results for 1-safe nets. In R.K. Shyama-
sundar, editor, Foundations of software technology and theoretical computer science, volume
761 of Lecture Notes in Computer Science, pages 326–337. Springer-Verlag, Berlin, 1993.

10. J. Desel. Reduction and design of well-behaved concurrent systems. In J.C.M. Baeten
and J.W. Klop, editors, Proceedings of CONCUR 1990, volume 458 of Lecture Notes in
Computer Science, pages 166–181. Springer-Verlag, Berlin, 1990.

11. J. Desel. A proof of the Rank theorem for extended free-choice nets. In K. Jensen, edi-
tor, Application and Theory of Petri Nets 1992, volume 616 of Lecture Notes in Computer
Science, pages 134–153. Springer-Verlag, Berlin, 1992.

12. J. Desel and J. Esparza. Free choice Petri nets, volume 40 of Cambridge tracts in theoretical
computer science. Cambridge University Press, Cambridge, 1995.

13. C.A. Ellis and G.J. Nutt. Modelling and Enactment of Workflow Systems. In M. Ajmone
Marsan, editor, Application and Theory of Petri Nets 1993, volume 691 of Lecture Notes in
Computer Science, pages 1–16. Springer-Verlag, Berlin, 1993.

14. J. Esparza. Synthesis rules for Petri nets, and how they can lead to new results. In J.C.M.
Baeten and J.W. Klop, editors, Proceedings of CONCUR 1990, volume 458 of Lecture Notes
in Computer Science, pages 182–198. Springer-Verlag, Berlin, 1990.

15. K. Gostellow, V. Cerf, G. Estrin, and S. Volansky. Proper Termination of Flow-of-control in
Programs Involving Concurrent Processes. ACM Sigplan, 7(11):15–27, 1972.

16. V. Gruhn. Validation and Verification of Software Process Models. In A. Endres and H. We-
ber, editors, Software Development Environments and CASE Technology, volume 509 of Lec-
ture Notes in Computer Science, pages 271–286. Springer-Verlag, Berlin, 1991.

17. M.H.T. Hack. Analysis production schemata by Petri nets. Master’s thesis, Massachusetts
Institute of Technology, Cambridge, Mass., 1972.

18. T.M. Koulopoulos. The Workflow Imperative. Van Nostrand Reinhold, New York, 1995.
19. A.V. Kovalyov. On complete reducability of some classes of Petri nets. In Proceedings of

the 11th International Conference on Applications and Theory of Petri Nets, pages 352–366,
Paris, June 1990.

20. T. Murata. Petri Nets: Properties, Analysis and Applications. Proceedings of the IEEE,
77(4):541–580, April 1989.

21. J.L. Peterson. Petri net theory and the modeling of systems. Prentice-Hall, Englewood Cliffs,
1981.

22. C.A. Petri. Kommunikation mit Automaten. PhD thesis, Institut für instrumentelle Mathe-
matik, Bonn, 1962.

23. T. Schäl. Workflow Management for Process Organisations, volume 1096 of Lecture Notes
in Computer Science. Springer-Verlag, Berlin, 1996.

24. P.A. Straub and C. Hurtado. The Simple Control Property of Business Process Models. In
XV International Conference of the Chilean Computer Science Society, 1995.

25. R. Valette. Analysis of Petri Nets by Stepwise Refinements. Journal of Computer and System
Sciences, 18:35–46, 1979.

26. WFMC. Workflow Management Coalition Terminology and Glossary (WFMC-TC-1011).
Technical report, Workflow Management Coalition, Brussels, 1996.

