
Software Tools for Technology Transfer manuscript No.
(will be inserted by the editor)

Protos2CPN:
Using Colored Petri Nets for Configuring and Testing
Business Processes

F. Gottschalk, W.M.P. van der Aalst, M.H. Jansen-Vullers, H.M.W. Verbeek

Eindhoven University of Technology
P.O. Box 513, 5600MB Eindhoven, The Netherlands
e-mail: {f.gottschalk,w.m.p.v.d.aalst,m.h.jansen-vullers,h.m.w.verbeek}@tue.nl

Received: date / Revised version: date

Abstract. Protos is a popular tool for business process
modelling used in more than 1500 organizations. It has
a built-in Petri-net-based simulation engine which shows
key performance indicators for the modelled processes.
Reference process models offered for Protos reduce mod-
elling efforts by providing generic solutions which only
need to be adapted to individual requirements. However,
the user can neither inspect or interact with simulations
running in Protos, nor does Protos provide any explicit
support for the adaptation of reference models. Hence,
we aim at a more open and configurable simulation so-
lution. To realize this we provide two transformations
from Protos models to colored Petri nets (CPNs), which
can be executed by CPN Tools. The first transformation
enables the usage of the extensive simulation and mea-
suring features of CPN Tools for the simulation of Pro-
tos models. The second transformation creates colored
Petri nets with dedicated features for process configura-
tion. Such configurable process models can be restricted
directly within the process model without changing the
model’s structure and provide therefore dedicated adap-
tation features for Protos’ reference process models.

1 Introduction

Today “process thinking” has become a mainstream or-
ganizational practice [22]. Business process models pro-
vide a graphical and systematic view on organizational
processes [17]. Various tools for business process mod-
elling have been developed since the late nineties [2].
One popular tool is Protos from the company “Pallas
Athena”. Currently it is used by about 1500 organiza-
tions in more than 20 countries. E.g., more than half of
all municipalities within the Netherlands use Protos for
the specification of their in-house business processes [26].

Most providers of modelling tools, and, e.g., also all
dominant enterprise system vendors provide reference
models with or for their software. Reference models are
supposed to reduce the modelling efforts by providing
generic solutions that just need to be adapted to in-
dividual requirements [5,9,10,11,20,21]. Pallas Athena
provides several sets of reference process models imple-
mented in Protos. As an example, there is a set of about
60 reference process models for municipalities. These
are ordinary Protos models depicting common processes.
The municipality or organization buying such a refer-
ence model can adapt the models to its individual re-
quirements, avoiding the huge effort of building process
models from scratch. However, it is quite important to
note that neither Protos nor any other popular process
modelling tool provides an explicit support for the adap-
tation of reference models, i.e. these tools do not provide
any constructs or mechanisms that highlight where and
how a syntactically and semantically valid change of a
given model is possible or which changes are impossi-
ble [18].

Figure 1 depicts a reference process model for the
handling of objections against parking tickets1. If an ob-
jection is received within the corresponding deadline it
is checked for its admissibility. In case it is not admissi-
ble, a supplement is requested. If this is received within
the new deadline or if a supplement was not needed,
the parking administration is consulted, reasons for ap-
proval/refusal as well as a settlement are drawn up, and
the judgement is sent to the objecting citizen. Otherwise
the objection times out and is refused directly as it is in
case the objection was not received within the deadline.
That means, although it is possible to specify in Protos if
a task has an XOR or an AND joining/splitting seman-
tics, in this example all splits and joins of the process
flow are in an XOR relation.

1 The model is motivated by one of Pallas Athena’s reference
models, but specially build for the purpose of this paper.

�

��������	��
���

��������������
�

�������

��
������

�������

��������
��

�����	������

������
��������

�������
��
���

��

�����
�������
��

�������������
��

������
�����������

����������������
��
����������
��

�������
����

��
������������

����
��

���������

������
���
�����������

���
����
������������

��
���������

!�����

"��

��������#!�����

��������
���

������

���������!�������
��
��

$���#%�

��
���

��	��
���

�����������
����

%�
��
���������

�
��

$����&'������

�������(

)�����

Fig. 1. An example decision-making process about objections against parking fines, modelled in Protos

During this research Pallas Athena made a set of ref-
erence process models and a set of adaptations of these
models available to us. Combined, the sets contained
more than 500 process models. Although guidelines how
to model sound business processes in Protos and tools
for verification exist [23,24,25], we discovered that most
of these models do not conform to the guidelines. In
addition, the models lack of data required for process
simulations which also means that simulation [26] was
hardly used, if at all. Thus, we can assume that the pro-
cess designers were either unaware or not convinced of
the value of sound models and simulation. Looking into
the current simulation of Protos also we had to realize
that it is unclear which of the parameters that can be
specified in Protos are actually used for the simulation.
For example, we discovered that in Protos a field for
the number of resources required for the execution of a
task exists, but the simulation always uses just a single
resource and neglects this parameter.

Within this paper we will present two new tools en-
abling Protos users to test and validate their process
models with the help of colored Petri nets (CPNs) [14].

Both tools are available for download from http://www.
florian-gottschalk.de/protos2cpn.

First, we will depict a new way to simulate busi-
ness processes modelled in Protos using CPN Tools [16,
27]. Nowadays CPN Tools is probably the most popular
modelling and analysis environment for CPNs, used in
more than 120 countries with more than 4500 licensees.
It provides not only a nice way to visualize running pro-
cesses but also extensive measurement and verification
opportunities for concurrent systems. Within this re-
search we developed a transformation from Protos mod-
els to CPNs, using the same data as the current Protos
simulation. Using the simulation of CPN Tools we enable
the unexperienced user to see directly in which order the
process tasks are executed and what might go wrong in
incorrect workflow models. In addition some basic statis-
tics are provided to her. The advanced user will be able
to add additional measurements to process models as
well as she can see which of the Protos parameters are
actually used during the simulation. The current Protos
simulation is using a tool called ExSpect [4,26] which is
based on another type of colored Petri nets. However,

2

http://www.florian-gottschalk.de/protos2cpn�
http://www.florian-gottschalk.de/protos2cpn�

ExSpect does not allow for the easy creation of addi-
tional measurements. Its standard layout scheme, which
is applied when loading a model, causes unacceptable
delays when trying to inspect or interact with running
processes. In addition, the development of ExSpect has
stopped for some time already [12].

Second, we change the transformation in such a way
that it creates a configurable process model from the
Protos model. We developed configurable process models
in our previous research as a general mechanism for pro-
cess model adaptation [5,13]. When configuring a pro-
cess, its unnecessary parts are eliminated, i.e. the possi-
ble process behavior is restricted [9,10,20,21]. Incorpo-
rating configuration options into the process model dur-
ing the transformation creates for the first time a tool
that enables users (1) to apply process configuration de-
cisions on a process model without changing the model’s
structure, and (2) to test these decisions by direct inter-
actions with a simulation model.

The tools are the result of a 6 months project in
which the authors were involved at different stages and
levels. Initial ideas for transforming Protos models into
CPN models combined with the fundament for the tools
were developed by one of the authors already before the
project started. For the project these ideas were then
combined with the idea to use the tool for configuration
which required the evolvement of the initial ideas to a
usable product.

The remainder of the paper is structured as follows:
Section 2 presents the transformation from Protos mod-
els to CPNs. Section 3 contains a short introduction
into configurable process models, a description how these
ideas have been implemented in the CPNs derived in Sec-
tion 2, and, based on four exemplary configuration pat-
terns, an outlook on possible soundness issues caused by
the process configuration. The paper concludes with a
summary and an outlook on open issues.

2 Protos2CPN: From Protos Models to
Colored Petri Nets

Basically Protos2CPN converts the data provided by
Protos for the current simulation into a CPN, executable
in CPN Tools. So far, CPN Tools provides no oppor-
tunities for importing other file formats than the CPN
Tools XML-file format. It is therefore reasonable to use
an XML export of Protos and transform this into the
CPN Tools format by an XSL transformation. The cur-
rent Protos simulation [26] is already using temporary
stored XML files2 for the communication between Pro-
tos and ExSpect. So we decided to “plug-in” in between
using the same files for the generation of the CPN Tools
files, especially as our main goal is the process simulation

2 These XML files are generated when starting a simulation (see
[26] for details), and should not be confused with the regular XML
export of Protos which is accessible through the File/Report menu.

����� �����
	���
 ����� � 	��

�������������

��� �
��� �����

����������� �

! ��"$#������ ��� 	�����%&����� ��'

����������()�

*&� ��+ �,#������ ��� 	��-%&����� ��'

�������
��.

/0��"�'��
"���� �
	��1+ ������� 2��

�������
��(

34����� 	�+�����2�2�5 ���6�����

�������
��7

"�+ ��89��26+ ������	����:� 	�+;��2�2�+ 	�<���5 =0+ ��� ������5

�������������

"�+ ��8>��26����� 5 5 ���6�����

������������?

@1A������
	���
 ����� � 	��6� 	�+���"��6� ����� ��� 5 � � B

�����������

@1	�������5 �C2���+ ��� ��'6��"��
� ��� ��� + ��� � 	��

����������D

������"6
 ��"�'��6�����

������������E

�����C	��1"�����"�5 � ���

@13&*F!

��	��62�5 ��� �6+ ��� ������"

@13&*F!

#������ ��� 	��$%&���G� ��'6��� ��+ � ��"

@&3&*H!

����I��������C��	��C��"��
� ����� ��5 �

@&3&*H!

JK��� � � ��'6� 	�+;����2�2�5 ���6�����

@134*H!

����� � 5 ���6�����C����'�'������ ��"

@13&*F!

JK� � A�� �-#�����"�5 � ���

@13&*F!

/ ��"�'��
�����C�������

@13&*F!

L ��+ ��� ��'6��"��6� ����� ��� + ��� � 	��K��	�������5 � ��"

@13&*F!

����I��������C��"��6� ����� ��5 �

@&3&*H!

��������	����:"���2�� ��� ��"

@13&*F!

������������E

����������D

�����������

������������?

�������������

�������
��7

�������
��(

�������
��.

����������()�

����������� �

�������������

Fig. 2. The overall process model of the CPN (generated from the
Protos process model depicted in Figure 1)

as well. The exported XML file includes a flattened pro-
cess structure (i.e, the hierarchical structure of Protos
models is reduced to a single level process model), the
resource utilization of each task, and further statistical
simulation parameters. It lacks of information about the
layout of the process, but we aim at providing an au-
tomatic layout functionality. Currently, the models are
created with a basic layout scheme that allows for an
easy re-arranging of process elements, keeping the man-
ual effort reasonable.

To enable the user to look at the CPN in the same
way as to the Protos model, without the need for learn-
ing a new “complicated” modelling language [19], it is

3

�������
���
	

�
� ��� �
���
	

� � � ��� �
�
� � � ��� ���

�
� ���

������� � � �����
������� � � �����

 � ��!

" ����� �
#
" �

��������$

" �

% �����&'��(() ���'�*� ��((%

% �����&'��(() ���'�*� ��((%

�
+*� "-, �
,.�
���
�/�*��01� � �������� � � ����� �02�*3�� �
� ���

��������$

��������$

465*78��� &�9�) :;� � �
<�= >

��� ����? ����� �A@ B ����� � � �) C���B 9�) :;�
��������$ = 9�) :;� =D>D>

� � �

Fig. 3. Dedicated task page with information for simulation

our goal to transform the Protos models into CPN mod-
els that match the Protos model in look and structure
as closely as possible. For that reason we decided that
any information not depicted in the process view of Pro-
tos (cf. Figure 1) but maintained in property dialogues
and needed for simulation must be depicted on separate
sub-pages. The derived CPN model provides therefore
two levels: First the overall process model, similar to
the (flattened) process view of Protos, where every Pro-
tos status3 is transformed into a CPN place and each
Protos task is transformed to a CPN substitution tran-
sition4 (cf. figures 1 and 2); and second the sub-pages of
these substitution transitions representing an “execution
layer” incorporating all data relevant for the simulation
(cf. Figure 3).

The places in the overall process model are allowed
to have tokens of the type CASE5 depicting the details
about the cases running through the process such as a
case id, the start time of the process, and the arrival
time of the process in the particular place:

colset CASE = record CaseID:INT *
ProcessArrivalTime:INT *
PlaceArrivalTime:INT;

3 The Protos name for a place (e.g., a model object representing
a channel or state) is status.

4 Note, that in Protos it is possible to connect transitions di-
rectly to transitions or statuses directly to statuses whereas in
(colored) Petri nets this is not. In this case additional auxiliary
statuses or transitions are introduced into the CPN overall pro-
cess model. This is already done by Protos when creating the XML
export.

5 In order to distinguish between color sets, labels and variables
in the CPNs, all color sets are written in capital letters, all vari-
ables in lowercase letters, and all labels start with a capital letter.

Whenever a token is residing in one of the places of
the overall process model it is waiting for execution by
one of the subsequent transitions. All specifications of
how and when a task can be performed by one of these
transitions are “hidden” on the corresponding sub-page
for the task, i.e. the transition depicted in the overall
process model is just a substitution transition for the
underlying sub-page which is named according to the
task’s unique ID.

Instead of the full task and status names, the sub-
pages of the overall model use distinct IDs to refer to
statuses or tasks. These IDs are provided in the Protos
export, task IDs start with a “u”, status IDs with a “w”.

Each sub-page consists basically of two transitions: A
Start and a Done transition (cf. Figure 3). The Start
transition symbolizes the start of the task and is en-
abled by token(s) on its input place(s), i.e. by tokens
arriving on the preceding places on the overall process
model page. When the Start transition fires, it puts a
token into a place Busy, symbolizing the lasting of the
task. The duration of the task, i.e. the delay, is deter-
mined by the function WorkTimeuXX() which calculates
the duration of the task according to the specification
at the corresponding task in the Protos model (in the
model XX is replaced with an automatically calculated
code serving as a shortcut for the name of the particu-
lar task). By adding the delay to the token it is ensured
that the token cannot be removed from the Busy place
while the task lasts. Firing the Done transition depicts
the completion of the task. It removes the token from the
Busy place, and puts token(s) into the output place(s),
i.e. in the succeeding place(s) within the overall process
model. As such a token arrives in a new place of the
overall process model, the place arrival time of the par-
ticular case is updated with the new actual point in time
while the token is put into the succeeding place (function
CASE.set PlaceArrivalTime).

The number of input and output places depends on
the number of incoming and outgoing arcs of the partic-
ular task within the Protos model. In the attributes of
a task in Protos it can be specified if several incoming
arcs depict either an AND-Join or an XOR-Join. Sev-
eral outgoing arcs of a task can depict either an AND-
split or an XOR-split. This might be confusing for Petri
net users as the substitution transitions within the over-
all process model are looking like a standard Petri net
AND-join/-split, but can represent both XOR and AND-
joins/-splits. The exact behavior is only modelled within
the corresponding CPN sub-page:

– In case of an AND-join each input place is connected
to the Start transition. The case id’s of incoming to-
kens from different arcs are synchronized by a guard
attached to the Start transition. (see Figure 4).

– In case of an XOR-join, a Start transition is intro-
duced for each input-place/arc. So a Start transition
can fire and result in the busy state of the task when-

4

��������� �
	��
�� � ���
	���� � � ����� ��� ��	
�
���
	�������� ��	������

��� ���
 "!�# # � �
	"�$� ��# # � �
���
	��

��� ���
 "!�# # � �
	"�$� ��# # � �
���
	��

�
���
	&%�'���
	��

(�)�*�	
+�,�,

�$� ��� �
+�,�,

-/.102)�� ���� ��	 + (3(����4 5 �����
	�67(��
���'	��98:� 5 �����
	�67(��
���'	&%;��<

! + �
�= ,�>
! + � �������

6 *�
�= ,�?
6 * �����@�

6 *1
�= ,�A
6 * �������

B'	��') + � �
	��
B'	��') + � �
	�� ��C$��67D � � DE�;
�B��F�$!�GHB'�I�

� + �
J
� GK��L�
��������B'	��') + � �
	��

6 * 6 *

! + �

Fig. 4. The AND-Join modelled using a CPN sub-page: The tran-
sition Start u21 needs a token with the same case id in both input
places (In w19 and In w20)

�������������	���
 �����
�
����	���
 �����

�������

��	����
�����

� ���������
� �

� ����� �"!
� �� � � �������� �������

�$# %�
 #
�������������

��# %�
 #
�&�'!��������

��%������

��%������ ��%������

��%������

(*)�+,	�
 -�.�/ 0 �������$132 (4)$+ 	�
 -�.�/ 0 �������$132

��5����76 ���$6
�"�8���"��9�:;�
��� ��:<�$=����������

��%������

�>������? ����# �8@ A %�������

 / B�%�A .�/ 0 �
��%������,13.�/ 0 ��13232

C ��%���-&9�D D / ���&�$# %�D D C

C ��%���-&9�D D / ���&�$# %�D D C

9���#

�
����	���
 �����

Fig. 5. XOR-Join: Each Start transition is enabled as soon as a
token arrives in the corresponding In place and the resource “Back
Office Staff” is available.

ever a token is placed into one of the input places (see
Figure 5).

– In case of an AND-split the Done transition puts to-
kens into all output places (see Figure 6).

– In case of an XOR-split, a Done transition is intro-
duced for each output place/arc (Figure 7). So only
one Done transition can take the token out of the
Busy place and fire by removing the token from the
place Busy, releasing the resource and putting the
case token into the corresponding Out place. The
other Done transitions become disabled as soon as
the first one fires as no token remains in the Busy
place.

���������
	�� �
 ���
��� ��� � �
���������

��� ����� ����� ����� ����� � � �
 !���� "�
 #$�
���������&%�"�
 #$��%�'�'

��� ����� ����� �(� � ����� � � �
 !���� "�
 #$�
���������&%�"�
 #$��%�'�'

���������
	�� �
 ���
��� ��� � � ���������

���������

)�*�+ �
,�- �

� � � � �
,.- �

/10�2$*�� ��"�
 #$� , � 3 %�'

	 , � �.4 -.5
	 , � ��� ���

	 , � ��4 -�6
	 , � ��� �7�

8 + ��4 5�9
8 +

��� �7�

: ��� * , � �����
: ��� * , � ����� � ;�� 8=< � � < �>� : �?��	�@ :�� �

� , ��A
��@B� C�� ��� �7�: ��� * , � �����

8 +

	 , � 	 , �

Fig. 6. AND-Split: The transition Done u2 releases the resource
“Back Office Staff” and forwards the case to both outgoing arcs
by putting a case token into each of the two Out places.

����������	��
	��� ���	�
���	��

��� ���	�

�������

������� �������

��� �	� �
�����

���	���	�

� �������
� �

���
���	�

� �

 "!$#%

� &	'�()%�	����* +

, ���	��&�-�. . (�����$� �	. . ,

/

���
�%�10������

��2$���43 ����35�1�����6�$-�78���9����	��

��� ���	�

/

���
�;:������

-���� ���%�10
-����

-���� ���;:
-���� -����-����

��7<��=
���>�$���

���
���	� ���
���	�

, ���	��&�-�. . (�����$� �	. . ,

�>�$����? ���	� ��@BA �	���	��� � (C4�
A '
()%�
���
���	�D* '�()%�	*B+ +

��������? ���	� ��@ A �	���	��� � (C	�	A '
()%�
���	���
�%*B'
()%�	*B+B+

Fig. 7. XOR-Split: As soon as the case is not “busy” anymore,
both Done transitions become enabled, but only one can fire.

In addition to the control flow behavior also resource
utilization is depicted in the sub-pages. For that reason
every sub-page contains a place Resources. All these
resource places are members of a fusion set containing
the available resources:

colset AVAILABLE_RESOURCE = STRING;

Transition Start can only fire if the required re-
sources are available. The resource requirements for a
task are specified on the arc from the place Resources
to the transition Start. When the transition Done is
fired, depicting the completion of the task, the previ-
ously occupied resources are released, i.e. the resources

5

removed by the Start transition are put back into the
Resources place. They can afterwards be used for other
tasks.

Besides the overall process model and the sub-pages
for the tasks, Protos2CPN creates a page Arrival
System. It consists of a single transition spawning cases
into the input place of the first Protos task based on
some predefined arrival process, e.g. a Poisson arrival
process using negative exponential inter arrival times.
In this way it is ensured that the simulation is continu-
ously fed with new cases.

Altogether the CPN model enables a step-by-step
simulation of the Protos model, allowing a detailed anal-
ysis of diverse process behavior. In addition the
monitoring-features of CPN Tools enable complex data
collection while simulating processes. When transform-
ing Protos models to CPN, Protos2CPN generates au-
tomatically three types of data collector monitors:

– A data collector monitor measuring the total flow
time through the process per case,

– A data collector monitor measuring the resource avail-
ability/resource utilization over time per resource
type, and

– A data collector monitor measuring the waiting time
of cases per task (i.e. the time cases are waiting for
execution by the particular task solely due to the lack
of resources).

Normally the simulation would run forever as cases
are continuously spawned into the system. To stop the
simulation a breakpoint monitor is defined on the ar-
rival system. By default it stops the simulation after 500
cases have been spawned into the system. This value can
of course be adapted to individual requirements. Using
the function CPN’Replications.nreplications n the
performance of n replications of the simulation can be
started. Thus, Protos2CPN provides this function for the
execution of by default four replications on a dedicated
SimulationStart page.

The automatically generated statistics can be used to
find bottlenecks or other performance related problems
of the model. When analyzing the data, keep however
in mind that it might include a warm up period before
reaching a steady state. Additional, more complex mon-
itors can be added by the advanced user in CPN Tools.
Users interested in details are referred to the monitoring
help pages of CPN Tools [28].

3 Protos2C-CPN: Using CPN for Building
Configurable Process Models

The second tool we developed is an extended variant of
Protos2CPN allowing process model configuration within
the generated model. For that reason we called it
Protos2C-CPN where C-CPN stands for “configurable
colored Petri net”. When configuring a process model,

e.g. the process model depicted in Figure 1, some of the
tasks of the model are eliminated in such a way that
they cannot be performed when the process is enacted.

CPN models created by Protos2C-CPN provide ded-
icated features for process model configuration. These
features enable the user to adapt the model to individual
requirements without changing the structure of the orig-
inal reference model. Afterwards the configured model
can either be tested on its feasibility, i.e. its soundness,
or it can be simulated in the same way as the models
generated by the Protos2CPN tool depicted in the pre-
vious section. By applying and simulating different con-
figurations on the same process model their particular
efficiency could even be compared.

To depict how Protos2C-CPN can be used in this
context and also to show the limitations of Protos2C-
CPN, this section is split into three parts. First we will
give some background information on the ideas behind
configuration of process models. Second we will explain
how these ideas are incorporated into the CPN models.
And third we will conclude this section with an outlook
on possible limitations of the configuration approach in-
troduced in this paper which is based on the analysis
of four exemplary configuration decisions for the process
model from Figure 1.

3.1 Configuring Process Models

Configuration is a mechanism for adapting process mod-
els that restricts the possible run-time behavior of a pro-
cess [8,9]. As an example, removing an arbitrary task
from the process model in figures 1 and 2 would be con-
figuring of the process model. However, according to our
definition of configuration, operations such as the adding
of additional tasks or the renaming of model elements are
not possible by means of configuration. Also note that
not all configurations are sound/valid.

Based on concepts adopted from the inheritance of
dynamic behavior [3,7], we identified two mechanisms
for configuration of process models in previous research,
called blocking and hiding [5,13]. Blocking refers to en-
capsulation. If a task in a process is blocked, it cannot
be executed. The process will never reach a subsequent
state and therefore all (potential) subsequent tasks will
not be executed as well. If, e.g., the task Time-Out in Fig-
ure 1 (or Figure 2) is blocked the process will never reach
the status Out of deadline from the place Waiting
for supplement and thus also never execute the task
Refuse objection after it has reached the place
Waiting for supplement. Hiding corresponds to ab-
straction. If a task is hidden, its performance is not
observable, i.e. it consumes neither time nor resources
when it is executed. But the process flow continues af-
terwards and subsequent tasks will be performed. For
that reason we also talk about a silent task or sim-
ply about skipping the task. If, e.g., the task Draw up
reasons for approval/refusal in figures 1 and 2 is

6

���������
	�� �
 ���
��� ��� � �
���������

��� ����� ����� � ����� �
 ���! ���
 ���#"
��� ����� ����� ��$ % ����� �
 &���% '�
 (#�
��������� " '�
 (
� ")*)
)
+ ,

-�����
 ��
 ���

���������
	�� �
 ���
��� ��� � � ���������

� -�- ����� �
 ���� ���
 ���
" ���������!./�*��021!�*./-�����
 ��
 ���!)

���������

��������� ���������

��� ����� ����� � ����� �
 ���� ���
 ��� ��������� + ,
3���� �
��021

4
 -��
��021

+ ��5������ ����� �
 � " �*��021!�*. ����������. 4
 -�-�� ��)*,

3 ����
 -��
�/��� �
 ���� ���
 ���

��021

+ ��� � �/��� �
 ���� ��- " �*��021��*. ���������)*,

��� �� �
��021

687�9#� ��'�
 (#��� ��:;"*)+ ��5������ ����� �
 � " �*��0<1��*. ����������. � ���
 &���� ��-)*,

	=��� �!>
0<?
	���� �/� ���

@ � �!>
0<A
@ � �/� ���

B ��� � �� �����
B ��� � �� ����� ��C���@ED � � D �2� B �<��	�F B�� �

������G
��FH��I�� �/� �J�

�/��� �
 ���� ���
 ���
0�K � ���
 &���� ��-

� 	MLON @ : � 3 � ��@ � @ 	ML

B ��� � �� �����

@ �

	����

Fig. 8. A sub page of a configurable task

hidden, the task draw up settlement will be the next
task after the parking administration was consulted. So,
whenever a certain task should not be executed, but the
process flow should be able to continue in this direction,
the task must be hidden. If the process flow should not
continue in this direction, the task must be blocked.

Configuration decisions about blocking or hiding of
tasks are typically made before the execution of the pro-
cess. However, sometimes not all information required to
decide between activating, blocking, or hiding might or
needs to be available in advance. For example, in certain
cities an accelerated procedure which allows skipping the
task Draw up reasons for approval/refusal might
be applied whenever the fine has been imposed by po-
lice officers instead of traffic wardens. However, the in-
formation of who has imposed the fine is only found out
when consulting the parking administration. Thus, the
configuration decision if the task Draw up reasons for
approval/refusal has to be executed must be trans-
formed from a configuration decision into a run-time de-
cision, and has to be made on a case-by-case basis during
the process execution.

3.2 Configurable CPN

To cope with the two mechanisms for configuration, block-
ing and hiding, the models derived in Section 2 have to
be extended with additional behavior. As process con-

figuration is defined on a task level this can be done on
the sub-page of each task. A task is activated if it is
neither blocked nor hidden. This corresponds to the sit-
uation in ordinary, i.e. non-configurable, models. Within
the CPNs generated by Protos2C-CPN these three con-
figuration opportunities are distinguished by using the
color set CONFIG DECISION:

colset CONFIG_DECISION = with Activated |
Hidden |
Blocked;

The decision between activating, hiding, and block-
ing has to be made for each task individually. For that
reason a place Configuration is added to each sub-page
as depicted in the top-right of Figure 8. When configur-
ing the task the default decision, i.e. the initial mark-
ing of the place Configuration, can be changed from
Activated to Hidden or Blocked. By implementing the
configuration decision as a marking of a place (instead of
defining it, e.g., as a constant arc inscription) the config-
uration can be changed without changing the net struc-
ture.

Whenever a token arrives in an input place of a task,
the transition Decide Configuration is enabled. When
firing, this transition takes a configuration from the
Configuration place (variable decision), combines it
with the number of the particular task (“u17” in the
example in Figure 8), and adds it to the list of con-
figurations made for the corresponding case (function

7

fun AddConfiguration (case0:CASE,task:STRING,decision:CONFIG_DECISION) =

{CaseID=(#CaseID case0),

ProcessArrivalTime=(#ProcessArrivalTime case0),

PlaceArrivalTime=(#PlaceArrivalTime case0),

Configuration=({Task=task,Configuration=decision} :: (#Configuration case0))

};

fun checkConfig (task:STRING, case0:CASE, config_decision:CONFIG_DECISION) =

List.exists

(fn a => (#Task a) = task andalso (#Configuration a) = config_decision) (#Configuration case0);

fun notConfigured (task:STRING, case0:CASE) =

not(List.exists (fn a => (#Task a) = task) (#Configuration case0));

Fig. 9. The functions for adding and checking configuration decisions

AddConfiguration, see Figure 9). This list is an addi-
tional attribute to the color set CASE:

colset TASK_CONFIGURATION =
record Task:STRING *

Configuration:CONFIG_DECISION;
colset TASK_CONFIGURATIONS =

list TASK_CONFIGURATION;
colset CASE =

record CaseID:INT *
ProcessArrivalTime:INT *
PlaceArrivalTime:INT *
Configuration:TASK_CONFIGURATIONS;

If the configuration decision is not clear during the
phase of process configuration, tokens for all possible
configuration decisions can be put into the
Configuration place at the same time. The decision will
then be made at runtime on a case-by-case basis. Then
the transition Decide Configuration “selects” one of
the configuration tokens before the task can be started.
The function notConfigured (see Figure 9) in the guard
of the transition ensures that for each arriving case this
decision can only be made once per task by checking the
list of already added configuration decisions.

The guard of the Start transition ensures that the
task can only be started in case it is activated, i.e. if
an element of the list of configurations combines the
task with the decision Activated. For this, the func-
tion checkConfig (see Figure 9) uses the Standard ML
function List.exists which returns true if its first pa-
rameter returns true for any of the elements in case0’s
list of configurations.

In case the task is hidden, it is required to bypass the
Busy place. This is done by an additional Hide transi-
tion, connecting the input place directly with the output
place, without using any resources. The Hide transition
is only enabled if the case token contains a Hidden de-
cision for the particular task which is again enforced by
the guard of the transition.

If the case is blocked for the particular task, no fur-
ther behavior is allowed within this task. For that reason
no transition on the sub-page is able to remove a token
from the input place which is blocked for the actual task.
This needs to be done by another task.

If the corresponding Protos task is an XOR-join, mul-
tiple Hide transitions and multiple Decide
Configuration transitions will be introduced, similar to
the multiple Start transitions introduced in Section 2.
As the Hide transitions combine the Start- and the
Done transitions, additional Hide transitions must also
be introduced in case of an XOR-split. Then each Hide
transition combines one of the alternative input places
with one of the alternative output places. So the maxi-
mum amount of Hide transitions (in case of an XOR-join
and an XOR-split) is “incoming arcs of the Protos task”
times “outgoing arcs of the Protos task”. As the embed-
ding is analogous to the description and the figures 5
and 7 of the non-configurable model in Section 2, we
omit further figures at this point.

As the state of the token has changed after the exe-
cution of the task, all configuration decisions which have
been made already, must be re-evaluated afterwards.
For that reason the list of configuration decisions is set
back to the empty list by the function CASE.set Con-
figuration before the case token leaves a sub-page via
the Out-place. If the task was activated and therefore
executed, this is done in addition to the update of the
place arrival time. Note, that the task requires no time if
it was hidden, and thus it is then not required to update
the token’s place arrival time.

3.3 Soundness Analysis and Limitations of Configured
Process Models

After implementing configurable process models and con-
figuring them, we are now able to test the configured
process models on their feasibility, i.e. their soundness,
and on their performance. The notion of sound workflow
nets [1] expresses the minimal requirements any work-
flow (and therefore also any executable process

8

model) should satisfy. Simulation allows for the evalu-
ation of various configurations in the same manner as
described in the end of Section 2. By simulating differ-
ent configurations the results can also be compared. In
this paper we will, however, only focus on the testing
of soundness as the basic prerequisite for every process
model.

A workflow net is sound if it satisfies the following
conditions:

1. Option to complete: There should always be an op-
tion to complete a case that is handled according to
the process definition.

2. Proper completion: A workflow should never signal
completion of a case while there is work in progress
on this case.

3. No dead tasks: For every task there should at least
be a chance that it is executed, i.e. for each task
there should be at least one execution sequence that
includes the task.

Although, theoretically only the configured models
need to be sound, we require within this approach that
the reference model itself is sound as well. In this way we
ensure that every model element can be part of a sound
process model. Otherwise these elements would have to
be blocked in all configurations and would therefore be
superfluous. The soundness of the reference model can
be tested in Protos using Woflan [25]. After configuring
the reference model we can use CPN Tools’ state space
analysis tool to check how far the soundness conditions
are satisfied for a configured model. Details on how to
perform a state space analysis with CPN Tools can be
found in the CPN Tools State Space Manual [15]. In
the following we only explain possible applications of its
results.

As the size of the state space may grow exponen-
tially (or worse) with the size of the process model, the
model’s complexity and its initial marking are reduced
for soundness testing as follows:

– The process model is reduced to a single case as
cases are handled independently and hence interac-
tions among cases cannot invalidate soundness.

– All timing aspects are neglected as the untimed net
includes every order of task execution.

– All resource requirements are neglected as soundness
is here purely defined on the control-flow perspective
(resource requirements do not influence soundness as
long as resources are not assigned incrementally and
as long as no task requires more resources of a certain
type than resources of this type are in total defined).

To test the first condition “Option to complete” our
approach requires to check the list of dead markings, i.e.
the possible markings of the net in which no further be-
havior is possible: If in such a marking a token remains
in a place which is not the “final place” of the process,
the condition is violated. In a dead marking, tokens can-
not remain in the busy places of sub-pages as the Done

transitions will always be enabled after a Start transi-
tion has fired. It is therefore possible to test if a dead
marking exists that marks a place of the overall process
model (Figure 2). Such a case will never be completed as
the Protos model (and therefore also the overall process
model of the CPN) completes with the execution of the
last task6. Then the condition is violated and the con-
figured net is not sound. However, this approach does
not cover livelocks: If the process models contains loops
which can be entered by tokens, but all tasks allowing to
exit this loop are blocked this check will fail because then
the tokens will “circle” without reaching a dead state or
completing. Such a situation can only be detected by
analyzing strongly connected components. Any strongly
connected component that has no outgoing edge to any
other strongly connected component should not contain
a state with a place on the overall process model page
marked. Otherwise the option to complete is violated
and the configured net is not sound. Note that there can
not be a cyclic path between connected components, as
this would result in one big connected component. As a
result, the system will always be able to reach a strongly
connected component that has no outgoing edge to any
other strongly connected component.

It is not required to explicitly test the second con-
dition to verify that the the reference model is sound.
Configuration only restricts the possible process behav-
ior. For that reason configured process variants cannot
produce tokens which are not produced by the complete
reference model; i.e., it is impossible that new tokens
which indicate the completion of the workflow are gener-
ated. Within the reference model the proper completion
might, e.g., be ensured by AND-joins in the termination
task. Such task behavior is kept in the configured process
model even if the task itself is hidden. So the completion
of a case in the configured process can only be observed
if the same conditions for completion are satisfied as re-
quired by the reference model. If this is impossible, to-
kens will remain in the process model, which is detected
by the test for the first condition.

A task of a process is dead if the Start transition on
the task’s sub-page is a dead transition. Dead tasks are
indeed not desirable in a sound workflow net. However
when configuring a process, i.e. restricting its possible
behavior, dead tasks may be desirable. The dead tasks
are the unnecessary tasks that can be removed from the
configured net. When analyzing the configured net it is
therefore required to check if the dead tasks are those
tasks which were intended to be removed.

In the following we will use the decision-making pro-
cess from Figure 2 to discuss four example configurations
of this process. Making use of the results provided by the

6 On the process level the last (termination) task is not con-
nected to any subsequent status/place which could be marked by
it, i.e. all tokens are “consumed” by this last task. For that reason
a properly completed case leaves no tokens behind on the overall
process model page.

9

����� �����
	���
 ����� � 	��

�������������

��� �
��� �����

����������� �

! ��"$#������ ��� 	�����%&����� ��'

����������()�

*&� ��+ �,#������ ��� 	��-%&����� ��'

�������
��.

/0��"�'��
"���� �
	��1+ ������� 2��

�������
��(

34����� 	�+�����2�2�5 ���6�����

�������
��7

8�9:#;#;!�<

�������������

"�+ ��=>��26����� 5 5 ���6�����

������������?

@1A������
	���
 ����� � 	��6� 	�+���"��6� ����� ��� 5 � � B

�����������

@1	�������5 �C2���+ ��� ��'6��"��
� ��� ��� + ��� � 	��

����������D

������"6
 ��"�'��6�����

������������E

�����C	��1"�����"�5 � ���

@13&*F!

��	��62�5 ��� �6+ ��� ������"

@13&*F!

#������ ��� 	��$%&���:� ��'6��� ��+ � ��"

@&3&*G!

����H��������C��	��C��"��
� ����� ��5 �

@&3&*G!

IJ��� � � ��'6� 	�+;����2�2�5 ���6�����

@134*G!

����� � 5 ���6�����C����'�'������ ��"

@13&*F!

IJ� � A�� �-#�����"�5 � ���

@13&*F!

/ ��"�'��
�����C�������

@13&*F!

K ��+ ��� ��'6��"��6� ����� ��� + ��� � 	��J��	�������5 � ��"

@13&*F!

����H��������C��"��6� ����� ��5 �

@&3&*G!

��������	����L"���2�� ��� ��"

@13&*F!

������������E

����������D

�����������

������������?

�������������

�������
��7

�������
��(

�������
��.

����������()�

����������� �

�������������

Fig. 10. Task draw up reasons for approval/refusal hidden
(grey)

state space analysis, we will depict and analyze the pur-
pose and sense of the configuration decisions of blocking
and hiding for the selected tasks in the particular con-
text. This analysis is far from complete as it is based
on examples in which we address only selected workflow
patterns. For example, it does not contain any loops,
and thus does not contain the risk for livelocks. It is in-
cluded to demonstrate the existence of certain process
configuration patterns.

Configuring tasks in sequence patterns

The task draw up reasons for approval/refusal is
located in a sequence of tasks between the task Consult
parking administration and the task draw up
settlement. In some municipalities it might be sufficient
to draw up the settlement without explicitly drawing up
reasons. In this case a single token “Hidden” is placed
in the configuration place of task draw up reasons for
approval/refusal (task ID: u11, see Figure 10). If we
run a state space analysis the corresponding report con-
tains only Task u11’Start u11 and Task u11’
Done u11 as dead transitions (besides all the other Hide
transitions) which is exactly what we wanted to achieve:
the task is never executed, but the subsequent tasks are
executed.

����� �����
	���
 ����� � 	��

�������������

��� �
��� �����

����������� �

! ��"$#������ ��� 	�����%&����� ��'

����������()�

*&� ��+ �,#������ ��� 	��-%&����� ��'

�������
��.

/0��"�'��
"���� �
	��1+ ������� 2��

�������
��(

34����� 	�+�����2�2�5 ���6�����

�������
��7

8&9 ��:<;&!�#

�������������

"�+ ��=>��26����� 5 5 ���6�����

������������?

:1@������
	���
 ����� � 	��6� 	�+���"��6� ����� ��� 5 � � A

�����������

:1	�������5 �B2���+ ��� ��'6��"��
� ��� ��� + ��� � 	��

����������C

������"6
 ��"�'��6�����

������������D

�����B	��1"�����"�5 � ���

:13&*E!

��	��62�5 ��� �6+ ��� ������"

:13&*E!

#������ ��� 	��$%&���F� ��'6��� ��+ � ��"

:&3&*G!

����H��������B��	��B��"��
� ����� ��5 �

:&3&*G!

IJ��� � � ��'6� 	�+K����2�2�5 ���6�����

:134*G!

����� � 5 ���6�����B����'�'������ ��"

:13&*E!

IJ� � @�� �-#�����"�5 � ���

:13&*E!

/ ��"�'��
�����B�������

:13&*E!

L ��+ ��� ��'6��"��6� ����� ��� + ��� � 	��J��	�������5 � ��"

:13&*E!

����H��������B��"��6� ����� ��5 �

:&3&*G!

��������	����<"���2�� ��� ��"

:13&*E!

������������D

����������C

�����������

������������?

�������������

�������
��7

�������
��(

�������
��.

����������()�

����������� �

�������������

Fig. 11. Task draw up reasons for approval/refusal blocked
(black)

If the task is configured as blocked (see Figure 11)
the state space analysis lists further dead transitions:

Task u11’Done u11
Task u17’Done u17
Task u11’Hide u11
Task u17’Hide u17
Task u11’Start u11
Task u17’Start u17
Task u13’Decide Configuration u13
Task u21’Decide Configuration w19 u21
Task u13’Done u13
Task u21’Hide w19 u21
Task u13’Hide u13
Task u21’Start w19 u21
Task u13’Start u13
Task u17’Decide Configuration u17
[...]

Neither the Task draw up settlement (task ID: u13)
nor the task send judgement (task ID: u17) will ever
be started. It is even never needed to decide its config-
uration. This means tokens will never be in the place
Reasons depicted or settlement suggested which is
also indicated by the upper and lower bounds of these
places in the state space report which are 0. Also the task
End Decision-Making (task ID: u21) will never be exe-

10

����� �����
	���
 ����� � 	��

�������������

��� � �"!$#�%

�����������'&

#���()%������ ��� 	���*�+$����� ��,

���������.-��

/$� ��0 �1%������ ��� 	��)+$����� ��,

����������2

34��(�,��
(���� �
	��50 ������� 6��

����������-

7������ 	�0�����6�6�8 ��9:�����

�������
��;

(�0 ��<=��6:0 ������	����>� 	�0?��6�6�0 	�@���8 A40 ��� ������8

�������������

(�0 ��<B��6:����� 8 8 ��9:�����

������������C

�5D������
	���
 ����� � 	��:� 	�0���(�9:� ����� ��� 8 � � E

����������&

�5	�������8 �F6���0 ��� ��,:��(�9
� ��� ��� 0 ��� � 	��

����������G

������(:
 ��(�,�9:�����

������������H

�����F	��5(�����(�8 � ���

�57$/I#

��	�9:6�8 ��� �:0 ��� ������(

�57$/I#

%������ ��� 	��)+$����� ��,:��� ��0 � ��(

�7/"#

����J��.�����F��	��F��(�9
� ����� ��8 �

�7/"#

KL��� � � ��,:� 	�0?���.6�6�8 ��9:�����

�57�/"#

����� � 8 ��9:�����F����,�,������ ��(

�57$/I#

KL� � D�� �M%�����(�8 � ���

�57$/I#

3 ��(�,�9
���.�F�������

�57$/I#

N ��0 ��� ��,:��(�9:� �.��� ��� 0 ��� � 	��L��	�������8 � ��(

�57$/I#

����J��������F��(�9:� ����� ��8 �

�7/"#

��������	����>(���6�� ��� ��(

�57$/I#

������������H

����������G

����������&

������������C

�������������

�������
��;

����������-

����������2

���������.-��

�����������'&

�������������

Fig. 12. Task Time-Out blocked (black)

cuted from place Judgment send (place ID: w19) which
is indicated by the last three dead transitions.

These results of the state space analysis are not sur-
prising as it is exactly what was intended when blocking
the task. However, the configured net is not sound: In
some of the dead markings a token, i.e. the case, remains
in the place Parking administration consulted which
is not the final place of the process. As depicted this is
not allowed in a sound workflow net, which means that
the net would remain incorrect even after removing all
dead model parts. We can conclude that the blocking of
a task in a sequence causes problems.

Configuring dummy tasks in deferred choice patterns

The task Time-Out is executed when the supplement was
not received within a certain period of time. This means
there is a race condition between the timer triggering the
time-out and the receival of the supplement triggering
the task Consult parking administration. The deci-
sion which of the two tasks is executed is postponed
until the execution of one of the tasks starts. Therefore
this situation is also called a deferred choice. If the mu-
nicipality decides that cases cannot time-out, the task
Time-Out has to be blocked (see Figure 12). Then its
Start and Done transitions are listed as dead in the cor-
responding state-space report. However, the state space

����� �����
	���
 ����� � 	��

�������������

�������� "!

�����������$#

 ���%&������� ��� 	���'�()����� ��*

���������"+��

,)� ��- �.������� ��� 	��&()����� ��*

����������/

01��%�*��
%���� �
	��2- ������� 3��

����������+

45����� 	�-�����3�3�6 ��78�����

�������
��9

%�- ��:;��38- ������	����<� 	�-���3�3�- 	�=���6 >1- ��� ������6

�������������

%�- ��:?��38����� 6 6 ��78�����

������������@

A2B������
	���
 ����� � 	��8� 	�-���%�78� ����� ��� 6 � � C

����������#

A2	�������6 �D3���- ��� ��*8��%�7
� ��� ��� - ��� � 	��

����������E

������%8
 ��%�*�78�����

������������F

G����D	��2%�����%�6 � ���

A24),H

��	�783�6 ��� �8- ��� ������%

A24),H

������� ��� 	��&()����� ��*8��� ��- � ��%

A)4),I

����J��"�����D��	��D��%�7
� ����� ��6 �

A)4),I

KL��� � � ��*8� 	�-����"3�3�6 ��78�����

A245,I

����� � 6 ��78�����D����*�*������ ��%

A24),H

KL� � B�� �M������%�6 � ���

A24),H

0 ��%�*�7
���"�D�������

A24),H

N ��- ��� ��*8��%�78� �"��� ��� - ��� � 	��L��	�������6 � ��%

A24),H

����J��������D��%�78� ����� ��6 �

A)4),I

��������	����<%���3�� ��� ��%

A24),H

������������F

����������E

����������#

������������@

�������������

�������
��9

����������+

����������/

���������"+��

�����������$#

�������������

Fig. 13. Task Time-Out hidden (grey)

analysis reports no dead states with tokens remaining in
places other than the final place. That means in case of
the construct of a deferred choice, it might be possible
to block a task without creating a deadlock.

If the task Time-Out is hidden (see Figure 13), it will
never start nor finish but its Hide transition will fire,
and the case reaches the Out of deadline place. This
seems to be fine from a syntactical perspective. However
when executing the process, it becomes obvious that the
behavior of the process practically conforms to the be-
havior of the activated Time-Out task. This phenomenon
occurs due to the fact that the Time-Out task can be seen
as a dummy task which is a task not corresponding to
the execution of any work but introduced for changing
the state of a process model, e.g. triggered by an exter-
nal event. As there is no output produced, such dummy
tasks are also called silent tasks or silent transitions. The
hiding of such a task is questionable because in this case
the effect of hiding and activating is quasi-identical.

Configuring tasks with interdependencies with other tasks

If a municipality does not want to ask for supplements in
case a request is not admissible, one could think of block-
ing the task Ask for supplement (see Figure 14). But
then the municipality would end-up with cases lost in
the place Request not admissible, never reaching the

11

����� �����
	���
 ����� � 	��

�������������

��� �
��� �����

����������� �

!���"$#������ ��� 	�����%&����� ��'

����������(��

)&� ��* �+#������ ��� 	��$%&����� ��'

����������,

-.��"�'��
"���� �
	��/* ������� 0��

����������(

1&2 �4365&!�#

�������
��7

"�* ��89��0:* ������	����;� 	�*<��0�0�* 	�=���> ?.* ��� ������>

�������������

"�* ��8@��0:����� > > ���:�����

������������A

3/B������
	���
 ����� � 	��:� 	�*���"��:� ����� ��� > � � C

�����������

3/	�������> �D0���* ��� ��':��"��
� ��� ��� * ��� � 	��

����������E

������":
 ��"�'��:�����

������������F

�����D	��/"�����"�> � ���

3/G&)H!

��	��:0�> ��� �:* ��� ������"

3/G&)H!

#������ ��� 	��$%&����� ��':��� ��* � ��"

3&G&)6!

����I��������D��	��D��"��
� ����� ��> �

3&G&)6!

JK��� � � ��':� 	�*<����0�0�> ���:�����

3/GL)6!

����� � > ���:�����D����'�'������ ��"

3/G&)H!

JK� � B�� �M#�����"�> � ���

3/G&)H!

- ��"�'��
�����D�������

3/G&)H!

N ��* ��� ��':��"��:� ����� ��� * ��� � 	��K��	�������> � ��"

3/G&)H!

����I��������D��"��:� ����� ��> �

3&G&)6!

��������	����;"���0�� ��� ��"

3/G&)H!

������������F

����������E

�����������

������������A

�������������

�������
��7

����������(

����������,

����������(��

����������� �

�������������

Fig. 14. Task Ask for supplement blocked (black): Lost tokens
may remain in the place Request not admissible

final task. So, the other option is to hide the task Ask
for supplement which results in another issue: Non-
admissible requests might time-out while waiting for an
action by the municipality. Formally this is not a prob-
lem, but content-wise it could be unintended behavior.
To resolve this issue and create a valid configuration,
the dummy task Time-Out must be blocked additionally
whenever the task Ask for supplement is hidden (see
Figure 15).

This means that configuration decisions are not al-
ways independent of each other. Whenever a configura-
tion decision eliminates a task’s execution, it must thus
be checked, if the performance of other tasks depends
on the not-performed task. If this is the case, also the
execution of these dependent tasks must be eliminated
by further configuration decisions.

Configuring tasks in explicit choice patterns

When executing the task Judge date of receipt an
explicit choice how the process will continue is made: If
the complaint was received within the deadline, it will
be checked for its admissibility, whereas in case it arrives
too late, it will be refused. But maybe some municipali-
ties want to be less restrictive with the initial deadlines
and consider all objections as being received within the

����� �����
	���
 ����� � 	��

�������������

��� � �"!$#�%

�����������'&

#���()%������ ��� 	���*�+$����� ��,

���������.-��

/$� ��0 �1%������ ��� 	��)+$����� ��,

����������2

34��(�,��
(���� �
	��50 ������� 6��

����������-

7�89%:%:#�;

�������
��<

(�0 ��=>��6?0 ������	����@� 	�0:��6�6�0 	�A���B C40 ��� ������B

�������������

(�0 ��=D��6?����� B B ��E?�����

������������F

�5G������
	���
 ����� � 	��?� 	�0���(�E?� ����� ��� B � � H

����������&

�5	�������B �I6���0 ��� ��,?��(�E
� ��� ��� 0 ��� � 	��

����������J

������(?
 ��(�,�E?�����

������������K

�����I	��5(�����(�B � ���

�5L$/M#

��	�E?6�B ��� �?0 ��� ������(

�5L$/M#

%������ ��� 	��)+$����� ��,?��� ��0 � ��(

�L/"#

����N��.�����I��	��I��(�E
� ����� ��B �

�L/"#

OP��� � � ��,?� 	�0:���.6�6�B ��E?�����

�5L�/"#

����� � B ��E?�����I����,�,������ ��(

�5L$/M#

OP� � G�� �Q%�����(�B � ���

�5L$/M#

3 ��(�,�E
���.�I�������

�5L$/M#

R ��0 ��� ��,?��(�E?� �.��� ��� 0 ��� � 	��P��	�������B � ��(

�5L$/M#

����N��������I��(�E?� ����� ��B �

�L/"#

��������	����@(���6�� ��� ��(

�5L$/M#

������������K

����������J

����������&

������������F

�������������

�������
��<

����������-

����������2

���������.-��

�����������'&

�������������

Fig. 15. To avoid asking for supplements, not only the Task Ask

for supplement is hidden (grey), but also task Time-Out must be
blocked (black)

deadline. So all objections must be checked for their ad-
missibility. However, neither hiding nor blocking of the
task Judge date of receipt helps here. If it is blocked
the process will never go beyond this task. If it is hid-
den, tokens can still be placed into the Out of deadline
place.

In the previous scenario we could achieve the de-
sired behavior by hiding one (Ask for supplement) and
blocking another task (Time-Out). But also this approach
is impossible to apply as neither hiding nor blocking of
task Refuse objection can prevent that tokens are put
into the place Out of deadline and as soon as a token
is in this place it cannot be checked for its admissibility
anymore.

The only chance of enforcing the desired behavior is,
to go to a lower level, i.e., to have a look at the imple-
mentation of the choice on the task page. In a standard
Petri net an explicit choice can only be modelled by a
deferred choice with subsequent silent transitions. In our
implementation of the XOR-split, these silent transitions
are the multiple Done transitions. Only when explicitly
blocking the particular Done transition on this task-level
(see Figure 16), it is possible to restrict the process
model to the desired behavior7. So within a sound pro-

7 The configuration of Done transitions is not yet implemented
in the Protos2C-CPN transformation.

12

���������

��	 ����
���

 � ������� ��

 �

���������

��� ����� ����� ����� ����� � � � � !"��� #�� $%�
���������'& #�� $%��&�((

� � ����� ����� ��� � ����� � � � � !���� #�� $%�
���������%&�#�� $%��&�(�(

��	 ����
���

 � ������� ��

 �
���������

���������

) � ��* ��++�,�-��
.0/ �21�3

� � � � �
1�3�4

576�8 , �
�#�� $%��1 	 & (

��1�� � . 4:9
��1�� � � ���

��1�� � .0/
��1�� � � ���

; -�� . 4
; - � � ���

< ����,�1 � �����
< ����,�1 � ����� � =�� ;) �) �:� < �>����? <�� �

	 1���@
	 ?A� B�� ��� ���< ����,�1 � �����

; -

��1�� ��1��

Fig. 16. Done transition blocked (black) in the sub-page of the
Judge date of receipt task: The task can only exit via the left
path.

cess model the outcome of an explicit choice cannot be
restricted, i.e., configured, at the process level, but on
lower implementation levels.

In general, the analysis of these four configuration
scenarios with both the state space analysis and the sim-
ulation facilities of CPN Tools demonstrated the need
for both of the two configuration mechanisms of block-
ing and hiding, as well as the need to implement them
not only in a straightforward, but also in a creative way.
Taking this into consideration, the examples also hinted
on the power of these mechanisms.

4 Conclusions

By analyzing a set of reference models designed using
the business process modelling language of Protos, we
discovered that these models do not conform to well de-
fined soundness criteria which also prevents the mean-
ingful use of Protos’ simulation features. The main rea-
sons for this are that the developers of the models either
see no value in the Protos simulation, or they are not
aware of its value. We also realized that it is unclear
which of the parameters that can be specified in Protos
are actually used in the Protos simulation. To improve
the value of simulation in this context, we developed the
Protos2CPN transformation which allows the simulation
of Protos models in CPN Tools. The simulation of Protos
models in CPN Tools makes the running process visible
by depicting the moving cases as tokens within the pro-
cess model. It therefore allows for a detailed inspection of
the running process. In addition, the monitoring features
of CPN Tools enable the generation of comprehensive
statistics which can serve as a basis for complex deci-
sions. The models created by our Protos2CPN transfor-
mation already include some basic measurements which
can be extended by experienced users.

In a second step we developed Protos2C-CPN. As
far as we know, this was the first implemented tool of-
fering explicit support for reference model adaptation
by adding standard configuration features to the tasks
in the reference models. These features permit the re-
striction of the possible behavior of the reference model
directly in the model without changing its net structure.
The simulation features of CPN Tools allow for perfor-
mance testing and comparison of different process con-
figurations. By making use of CPN Tools’ state space
analysis feature, we were able to test exemplary configu-
rations on their feasibility in sound process models, but
also realized that certain configurations are undesirable
in specific contexts.

It might be possible to resolve such issues by looking
at lower modelling levels. To explore this further, we
plan to analyze configuration decision in the context of
the workflow patterns [6]. We assume that by analyzing
all workflow patterns on their configurability aspects, we
can develop a set of configuration patterns, i.e. we will
be able to generalize the discussion on the exemplary
configuration scenarios. If such patterns are available,
we could develop an improved version of Protos2C-CPN
which might even be able to transform the configured
model back into an ordinary process model which does
not contain the configuration features anymore.

The idea of performing the transformation purely
with XSL transformations proved feasible but far more
complex than initially thought. To understand the source-
code of the transformation deep knowledge of XSL trans-
formations as well as of the XML definitions of both
languages is needed. We are sure that using, e.g., XML
facades in traditional programming languages as Java
would help making the tool’s code far better readable
and manageable. Thus, before developing a new ma-
jor version of the transformation, we will probably go
through a deeper evaluation to see if it is worth to change
the current approach.

Acknowledgements

The authors would like to thank Kurt Jensen and Lisa
Wells for their continuous feedback and support related
to the use of CPN Tools, as well as Pallas Athena for
providing the Protos reference models.

References

1. W.M.P. van der Aalst. Verification of Workflow Nets. In
P. Azéma and G. Balbo, editors, Application and The-
ory of Petri Nets 1997, volume 1248 of Lecture Notes
in Computer Science, pages 407–426. Springer-Verlag,
Berlin, 1997.

2. W.M.P. van der Aalst. Business Process Management
Demystified: A Tutorial on Models, Systems and Stan-
dards for Workflow Management. In J. Desel, W. Reisig,

13

and G. Rozenberg, editors, Lectures on Concurrency and
Petri Nets, volume 3098 of Lecture Notes in Computer
Science, pages 1–65. Springer-Verlag, Berlin, 2004.

3. W.M.P. van der Aalst and T. Basten. Inheritance of
workflows: an approach to tackling problems related to
change. Theoretical Computer Science, 270(1-2):125–
203, January 2002.

4. W.M.P. van der Aalst, P.J.N. de Crom, R.R.H.M.J.
Goverde, K.M. van Hee, W.J. Hofman, H.A. Reijers,
and R.A. van der Toorn. ExSpect 6.4 An Executable
Specification Tool for Hierarchical Colored Petri Nets.
In M. Nielsen and D. Simpson, editors, Application
and Theory of Petri Nets 2000: 21st International Con-
ference, ICATPN 2000, volume 1825 of Lecture Notes
in Computer Science, pages 455–464, Berlin, Germany,
June 2000. Springer.

5. W.M.P. van der Aalst, A. Dreiling, F. Gottschalk,
M. Rosemann, and M.H. Jansen-Vullers. Configurable
Process Models as a Basis for Reference Modeling. In
C. Bussler and A. Haller, editors, Business Process
Management Workshops, volume 3812 of Lecture Notes
in Computer Science, pages 512–518. Springer Verlag,
February 2006.

6. W.M.P. van der Aalst, A.H.M. ter Hofstede, B. Kie-
puszewski, and A.P. Barros. Workflow Patterns. Dis-
tributed and Parallel Databases, 14(1):5–51, 2003.

7. T. Basten and W.M.P. van der Aalst. Inheritance of
behavior. Journal of Logic and Algebraic Programming,
47(2):47–145, 2001.

8. J. Becker, P. Delfmann, A. Dreiling, R. Knackstedt, and
D. Kuropka. Configurative Process Modeling – Outlin-
ing an Approach to increased Business Process Model
Usability. In Proceedings of the 15th IRMA International
Conference, New Orleans, 2004. Gabler.

9. J. Becker, P. Delfmann, and R. Knackstedt. Kon-
struktion von Referenzmodellierungssprachen: Ein
Ordnungsrahmen zur Spezifikation von Adaptions-
mechanismen für Informationsmodelle (in German).
Wirtschaftsinformatik, 46(4):251–264, 2004.

10. J. vom Brocke and C. Buddendick. Konstruktion-
stechniken für die Referenzmodellierung (in German).
In J. Becker and P. Delfmann, editors, Referenzmod-
ellierung. Grundlagen, Techniken und domänenbezogene
Anwendung, also Proceedings of the 8th Fachtagung Ref-
erenzmodellierung, pages 19–48, Heidelberg, 2004.

11. T. Curran, G. Keller, and A. Ladd. SAP R/3 Business
Blueprint: Understanding the Business Process Reference
Model. Prentice Hall, Upper Saddle River, NJ, USA,
1998.

12. Deloitte & Touche Bakkenist. ExSpect Home Page.
http://www.exspect.com.

13. F. Gottschalk, W.M.P. van der Aalst, and M.H. Jansen-
Vullers. Configurable Process Models – A Founda-
tional Approach. In J. Becker and P. Delfmann, editors,
Reference Modeling. Efficient Information Systems De-
sign Through Reuse of Information Models, pages 59–78.
Springer, July 2007.

14. K. Jensen. Coloured Petri Nets. Basic Concepts, Anal-
ysis Methods and Practical Use. Volume 1. EATCS
monographs on Theoretical Computer Science. Springer-
Verlag, Berlin, 1997.

15. K. Jensen, S. Christensen, and L. M. Kristensen. CPN
Tools State Space Manual. Aarhus, 2006.

16. Kurt Jensen, Lars Michael Kristensen, and Lisa Wells.
Coloured Petri Nets and CPN Tools for Modelling and
Validation of Concurrent Systems. International Journal
on Software Tools for Technology Transfer (STTT), 9(3–
4):213–254, June 2007.

17. R.J. Paul, G.M. Giaglis, and V. Hlupic. Simulation of
business processes. The American Behavioral Scientist,
42(10):1551–1576, August 1999.

18. M. Rosemann and W.M.P. van der Aalst. A Config-
urable Reference Modelling Language. Information Sys-
tems, 32(1):1–23, March 2007.

19. K. Sarshar and P. Loos. Comparing the Control-Flow
of EPC and Petri Net from the End-User Perspective.
In W.M.P. van der Aalst, B. Benatallah, F. Casati,
and F. Curbera, editors, Proceedings of the 3rd Inter-
national Conference on Business Process Management
(BPM 2005), volume 3649 of Lecture Notes in Computer
Science, pages 434–439, Nancy, France, September 2005.
Springer-Verlag.

20. R. Schütte. Grundsätze ordnungsmäßiger Referenzmod-
ellierung – Konstruktion konfigurations- und anpassung-
sorientierter Modelle (in German). Gabler, Wiesbaden,
1998.

21. A. Schwegmann. Objektorientierte Referenzmodel-
lierung: theoretische Grundlagen und praktische Anwen-
dung (in German). Gabler, Wiesbaden, 1999.

22. A. Sharp and P. McDermott. Workflow Modeling: Tools
for Process Improvement and Application Development.
Artech House Publishers, Norwood, MA, 2001.

23. H.M.W. Verbeek and W.M.P. van der Aalst. Woflan
Home Page, Eindhoven University of Technology,
Eindhoven, The Netherlands. http://is.tm.tue.nl/

research/woflan.
24. H.M.W. Verbeek and W.M.P. van der Aalst. Woflan

2.0: A Petri-net-based Workflow Diagnosis Tool. In
M. Nielsen and D. Simpson, editors, Application and
Theory of Petri Nets 2000, volume 1825 of Lecture Notes
in Computer Science, pages 475–484. Springer-Verlag,
Berlin, 2000.

25. H.M.W. Verbeek, T. Basten, and W.M.P. van der Aalst.
Diagnosing Workflow Processes using Woflan. The Com-
puter Journal, 44(4):246–279, 2001.

26. H.M.W. Verbeek, M. van Hattem, H.A. Reijers, and W.
de Munk. Protos 7.0: Simulation Made Accessible. In
G. Ciardo and P. Darondeau, editors, Applications and
Theory of Petri Nets 2005: 26th International Confer-
ence (ICATPN 2005), volume 3536 of Lecture Notes in
Computer Science, pages 465–474, Miami, USA, June
2005. Springer-Verlag.

27. A. Vinter Ratzer, L. Wells, H. M. Lassen, M. Laursen,
J. F. Qvortrup, M. S. Stissing, M. Westergaard, S. Chris-
tensen, and K. Jensen. CPN Tools for Editing, Simu-
lating, and Analysing Coloured Petri Nets. In W.M.P.
van der Aalst and E. Best, editors, Applications and
Theory of Petri Nets 2003: 24th International Confer-
ence, ICATPN 2003, volume 2679 of Lecture Notes in
Computer Science, pages 450–462. Springer Verlag, June
2003.

28. L. Wells. Monitoring a CP-net. http://wiki.daimi.au.
dk/cpntools-help/monitoring_a_cp-net.wiki.

14

http://is.tm.tue.nl/research/woflan�
http://is.tm.tue.nl/research/woflan�
http://wiki.daimi.au.dk/cpntools-help/monitoring_a_cp-net.wiki�
http://wiki.daimi.au.dk/cpntools-help/monitoring_a_cp-net.wiki�

